• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hydroelasitic Analysis of the Gravity Cage Subjected to Irregular Waves and Current

    2018-03-28 12:30:16HUKeFUShixiao
    船舶力學(xué) 2018年3期

    HU Ke,FU Shi-xiao

    (1.State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University,Shanghai 200240,China;2.Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration,Shanghai 200240,China)

    0 Introduction

    The offshore environmental problem is becoming a crucial issue for human society and the development of the nearshore aquaculture industry.Moreover,the demand for more sea foods high in protein is pushing engineers to design cost-effective fish cages that can withstand extreme environmental loads in deeper ocean conditions.Therefore,accurate prediction of a cage’s hydroelastic response has become a key focus in aquaculture engineering.

    Previous investigations into sea loads on gravity net cages normally considered the impact of waves and currents separately.

    First of all,the investigations into the wave loads exerted on the net cages focused on three main aspects:the loads on the net,the loads on the collar and the dynamic response of the fish cage system.

    Concerning wave loads on the net,Lader[1]compared the changes in the wave height and energy before and after the wave passed through the net.Song[2]successfully predicted wave loads of the net by calculating the cubic net cage’s hydrodynamic response based on sinusoidal wave theory and the Morison equation,and he claimed that the relative error between the numerical prediction and test result was under 15%.Ito[3-4]simplified the wave condition intoforms of oscillating flow,under which the hydrodynamic forces on the net with different solidity ratios and pretensioning forces were studied.

    In order to conduct detailed research into the wave loads on the collar,Krassimi[5]calculated the damping coefficient and added mass coefficient for the forced oscillating collar based on the potential flow theory.Kristiansen[6]later conducted a model test in a wave tank with a cylinder fixed on the free surface.He further investigated the nonlinearities in the wave forces on the collar caused by the influence of the free surface.

    To quantify the response of the fish cage,Colbourne[7]conducted an experiment on multiple cages to compare the mooring forces under different kinds of wave loads.Fredriksson[8]and Fredriksson,et al[9-10]carried out a serious of experiments to investigate the mooring line forces and motion of the realistic fish cage.Besides,numerical simulations were also performed,and comparisons between experimental and simulated results indicated good agreements.By using the lumped mass point method and rigid body kinematics theory,Dong[11]and Xu[12]predicted the response of a net cage under irregular wave loads.

    Secondly,in the case with current only(no waves),Aarnses[13]studied the drag force on the net cage,the changes in the cage’s volume and the reduction in current speed by towing a gravity cage model in calm water.Lader[14]conducted an experiment with a full-scale cage to specifically study the relationship between the current speed and cage’s volume.Huang[15]and Zhao[16-17]studied the hydrodynamic response based on the ‘lumped mass point method’.Huang found that the total force of the numerical model was lower than the experimental data when the Reynolds number was lower than the range of 1 400-1 800,while Zhao noticed that the volume of a net cage with diamond grids was larger than that with square grids.Berstad[18]calculated the mooring forces and the volume changes of a net cage by using finite element software(AquaSim).Moe[19]used ABAQUS to analyze the deformation of the net cage in currents with different speeds.Kristiansen[20]estimated the drag force and the volume changes of a net cage by replacing the twine’s drag and lift forces with each plane’s tangential forces and normal forces.The numerical results were in good agreement with the experimental data.

    Based on the previous study,the hydrodynamics of the fish cage under wave or current loads has been researched extensively.Because irregular waves and currents normally co-exist in the real ocean environment,the dynamic response of the gravity net cage under the combined effects of irregular waves and currents needs to be further studied.Besides,because geometric nonlinearity due to net cage’s large deformation under the wave-current loads is evident,research on the full scale model should be conducted.

    In this paper,a full-scale numerical model of a gravity net cage under irregular waves and currents was studied by using FEM.The irregular waves were simulated based on the JONSWAP wave spectrum.On this basis,the dynamic response of the floating collar,the modal contribution from each mode shape to the collar in the combined wave-current flows together and the changes in the mooring-line tension were analyzed.

    1 Basic theory

    1.1 Equations of motion

    When the whole gravity cage is exposed to irregular waves and current,the dynamic equilibrium equations of the structure can be expressed as:

    Both the wave forces fwand the current forces fccan be estimated by the modified Morison equation[21],where the velocity of the current and wave is superposed linearly,as shown in Eq.(3),

    where CMrepresents the inertia coefficient,CM=Cm+1,Cdis the drag coefficient,D is the effective diameter of the beam elements and the truss elements,u and u˙represent velocity and acceleration of water particles in the wave-only condition.U is the current velocity and ρ is the water density.In the dynamic analysis where the motion of the structure must be taken into account,vpand aprepresent the velocity and acceleration of an element forming the structure.In this case,the influence of the mutual interference of the velocity field in the combined wavecurrent condition is not considered,see Lee[22].Based on the equation,the dynamic reponse of the net cage will be studied under wave-current combined condition,and the results will be further compared against those in wave-only condition.

    1.2 Description of irregular waves

    Several linear waves with random phase angles can be combined to generate an irregular wave.

    Firstly,the elevation of water surface in an irregular wave can be written as:

    In the four equations above,An,kn, εnand ωnrepresent the wave amplitude,the wave number,the random phase angle and the circular frequency of the nth regular wave component,repectively.z is the vertical position of a water particle,d is the depth of the water,Sη( )ω is the wave spectrum and Δω denotes the difference between the circular frequencies of the measured components.The irregular wave was formed by choosing appropriate input parameters based on the JONSWAP wave spectrum,moreover,the significant wave height defined as the mean of the one third highest waves (H1/3)and the mean wave period (T1)in this paper were chosen as 3 m and 5 s,respectively.The corresponding wave spectrum is shown in Fig.1.

    Based on the wave spectrum presented above,the time series at point(0,0,0)is shown in Fig.2.

    Fig.1 JONSWAP wave spectrum with different significant wave height

    1.3 Geometric nonlinearity

    According to the small deformation hypothesis,the strain in a certain direction at an arbitrary point can be derived by calculating the first-order partial derivative of the corresponding displacement.Under this hypothesis,the large deflection and rotation of the element can be ignored when formulating the equilibrium.Nevertheless,due to the large deformation experienced by the structure,the geometric nonlinearities in the finite element analysis should be focused on in this study.

    Fig.2 Wave elevation time series at point(0,0,0)

    1.3.1 Strain-displacement relationship

    When geometric nonlinearities are considered,the relationship between the stress and the strain can be expressed as:

    1.3.2 Stress-displacement relationship

    The relationship between the increment of stress and that of strain can be expressed as:

    where[D]is the constitutive matrix for the material.Combining Eqs.(8)-(10)can lead to Eq.(11),

    1.3.3 Equilibrium equation

    Based on the principle of virtual work,the equilibrium equation can be expressed as:

    Eq.(15)is the basis for solving geometric nonlinear problems.In this equation,is a standard linear stiffness matrix,is the initial-stress matrix for nonlinear conditions,andis the initial displacement matrix under large deformation.The three matrices can be expressed as:

    1.4 Modal superposition method

    In order to have an overview of the motion and deformation of the system,it is important to study the global deformation of the floating collar at first.Even though it is impossible to use modal superposition method to predict the nonlinear hydrodynamic response of the floating collar,the method can still be considered as a ‘data post-processing’ procedure.Based on the predicted nonlinear hydroelastic results,the method can be applied to analyze the weight of the participation of each mode at any instant.

    In this method,the hydrodynamic response of the floating collar can be described as a linear superposition of all the possible motion and deformation modes:

    After multiplying both sides of Eq.(21)bythe modal-weight matrix at time t can be rewritten as:

    Therefore,the standard deviation of the modal weight can be derived as follows:

    where T is the total time length and)symbolizes the time-averaged modal weight.

    2 Finite element model descriptions

    Numerical and experimental results in the previous work by Lader[14]and Berstad[18]have shown that the bottom nets normally have a negligible effect on the global dynamic response of fish cages.Therefore,in the finite element model,the bottom net and its knots were excluded.The numerical model of the whole gravity net cage is shown in Fig.3.The numerical model is composed of 4 main parts:the floating collar,containment net,mooring lines and bottom ring.To avoid unwanted friction caused by chains and ropes,the bottom ring is attached to the net directly,see Lader[23].The original solidity of net panel is 0.32.The materials used and their relative properties are also listed in Tab.1.Due to the limitation of the computational capability,the mesh size of the net is generally enlarged in order to reduce the computational time.The validation of the simplified method is shown in the section 3.1.Four points on the floating collar(A,B,C and D),marked as chief indications for the the dynamic response of the floating collar,will be further investigated in Chapter 3.

    Fig.3 The complete fish cage system model

    Tab.1 Properties of fish cage system

    To begin with,the collar and bottom ring were simulated by the beam elements.Considering the non-bending properties of net twines,the truss elements were adopted to simulate the twines.

    The instantaneous buoyancy acting on the collar often makes it difficult to calculate the hydrodynamic forces accurately.Therefore,the ‘Buoyancy Distribution’method,see Li[24],was adopted to solve this problem by replacing the partly immerged floating collar with 11 distributed coupled beams as shown in Fig.4.

    Fig.4 Illustration of the distributed coupled beam section

    The instantaneous buoyancy of the whole section fB_sectionequals the sum of the buoyancy of each immerged beamwhich can be expressed as:

    In order to ensure that the distributed beam sections move and deform simultaneously,the six degrees of freedom for each pair of nearby nodes on the neighbouring beams should satisfy the linear constraints.

    Meanwhile,the mass and bending-stiffness properties of the floating collar and the beams must also be equivalent,as described in the following equations:

    where msectionandE()Isectionare the mass density and the bending stiffness of the section in the floating collar,respectively,while miandE()Iiare the mass density and the bending stiffness of the ith distributed beam.

    Secondly,in the simulation of the mooring lines,four spring elements with 6 000 N/m linear tensional stiffness,were employed.The spring elements were attached horizontally to the floating collar in the xoy plane in Fig.3.

    3 Results and discussions

    ABAQUS/Standard,a software for finite element analysis,was used to simulate the model under the combined effect of current and irregular waves.Both the wave load and the current load were calculated based on the Morison equations,the hydrodynamic coefficients CMand Cdshould be chosen according to the Re and KC numbers.In this paper,the Re number was pretty low and the KC number was very high,hence CMand Cdwere chosen as 2.0 and 1.2,respectively[25].Moreover,the geometrical nonlinearities associated with the nets’large deformation and motion were also taken into account.

    3.1 Validation of the numerical model

    Owing to the large number of meshes in a full-scale net,it is hard to conduct calculations on a model with detailed mesh.Thus,the full-scale model was simplified.The hydrodynamic force,tensile stiffness and mass in the simplified model should be equivalent in the numerical models before and after simplification.This can be described in the following equations:where A and Asectionare the projected area and cross-sectional area of the twine;M is the mass of the net,and E represents the elastic modulus.Moe[19]validated their numerical models by comparing predicted deformation to that of a real model.Similar deformation to that observed by Moe[19]was observed in this model.Moreover,the deformation of the model with detailed mesh agrees well with that of the simplified model.The comparison also indicates that the model with coarse mesh was sufficiently accurate to study the motion and deformation of the gravity cage.The result is shown in Fig.5.

    Fig.5 Validation and verification of the numerical model

    3.2 Modal analysis of floating collar under combined effects of irregular waves and current

    As the modal superposition method mentioned in the section 1.4,the mode shapes of the 1st to the 20th modes of the floating collar calculated by the modal analysis were shown in Fig.6.The modes numbered from 1 to 6 correspond to the six rigid-body-motion modes,while the rest correspond to the flexural deformation modes of the structure.In this analysis,the nonlinearities in the mooring-line are ignored.

    Fig.6 shows that the deformation of the 1st,5th,6th,9th,10th,13th,14th,17th and 18th modes appears in the O-x-y plane,while that of the 2nd,3rd,4th,7th,8th,11th,12th,15th,16th,19th and 20th modes occurs in the O-x-z plane in Fig.3.

    In order to investigate the modal contribution,the numerical model operated in conditions where the current speed was set as 0 m/s,0.5 m/s and 1 m/s,coupled with irregular waves with significant heights set as 0.3 m,1 m and 3 m.Time histories of the modal weight in the horizontal and vertical directions are shown in the figures below(Figs.7-16),and their corresponding standard deviations are depicted in the four following figures(Figs.17-20):

    Analysis of modal weights in the horizontal response revealed that the 5th,6th,9th and 14th modes were the dominant modes.This means that the translational rigid-body-motion modes as well as the in-plane flexural structural-deformation modes dominated the response of the floating collar.However,as the current speed increased,the modal weights of the 5th and 6th modes experienced a steeper increase than the flexural structural-deformation modes,indicating that the current had a stronger influence on the translational rigid-body-motion modes.

    Fig.7 Modal weight(horizontal motion when H1/3=0.3 m,T1=5 s,C=0 m/s)

    Fig.8 Modal weight(vertical motion when H1/3=0.3 m,T1=5 s,C=0 m/s)

    Fig.9 Modal weight(horizontal motion when H1/3=1 m,T1=5 s,C=0 m/s)

    Fig.10 Modal weight(vertical motion when H1/3=1 m,T1=5 s,C=0 m/s)

    Fig.11 Modal weight(horizontal motion when H1/3=3 m,T1=5 s,C=0 m/s)

    Fig.12 Modal weight(vertical motion when H1/3=3 m,T1=5 s,C=0 m/s)

    Fig.13 Modal weight(horizontal motion when H1/3=3 m,T1=5 s,C=0.5 m/s)

    Fig.14 Modal weight(vertical motion when H1/3=3 m,T1=5 s,C=0.5 m/s)

    Fig.15 Modal weight(horizontal motion when H1/3=3 m,T1=5 s,C=1.0 m/s)

    Fig.16 Modal weight(vertical motion when H1/3=3 m,T1=5 s,C=1.0 m/s)

    Fig.17 Standard deviation of the horizontal response of each mode for different significant wave heights

    With regard to the vertical response,the 2nd,3rd,4th and 8th modes participated most actively,as can be observed in Figs.8,10,12,14 and 16.Each modal weight increased with the significant wave height.On the other hand,Figs.12,14,and 16 show that the current had a smaller influence on the modal weight in the vertical direction compared to that in the horizontal direction.

    Fig.18 Standard deviation of the horizontal response of each mode for different current speeds

    Fig.19 Standard deviation of the vertical response of each mode for different significant wave heights

    Fig.20 Standard deviation of the vertical response of each mode for different current speeds

    Besides,the comparison of the horizontal and vertical standard deviations of each mode above shows that much higher modes(flexural structural deformation modes)were excited vertically.The current had a stronger impact on the standard deviation of the 5th and 6th modes in the horizontal direction.In addition,the standard deviation of modal weight increased with significant wave height in both directions,which indicates that higher waves may induce higher order modes.

    From the discussion in this section,it can be seen that compared with the wave-only-condition,the combination of current and wave has a greater influence on the translational rigidbody-motion in the horizontal direction.This indicates that the rigid-body motion of the floating collar should be paid more attention in the design of mooring systems attached to the fish cage in the wave and current combined condition.It has also been suggested that higher wave will arouse more flexible modes,while current contributes little to the flexible modes.

    4 Conclusions

    This paper presents an analysis based on the FEM in predicting the dynamic response of the gravity net cage system under the combined effects of irregular waves and current.The following conclusions are derived:the modal weight in both the horizontal and vertical directions becomes larger as the significant wave height increases,which can be found from the modal analysis of the floating collar under the combination of irregular wave and current.Meanwhile,the modal weight of the rigid-body-motion mode in the horizontal direction grows with the current speed,while the modal weight in the vertical direction is only slightly influenced by the variation of the speed.Moreover,it can be seen from the standard deviation of modal weight that much higher order modes will be excited with significant wave height increased.This indicates that when analyzing the total dynamic response under larger wave height,more attention should be paid on deformation.

    [1]Lader P F,Olsen A,Jensen A,Sveen J K,Fredheim A,Enerhaug B.Experimental investigation of the interaction between waves and net structures-damping mechanism[J].Aquacultural Engineering,2007,37(2):100-114.

    [2] Song W H,Liang Z L,Zhao F F,Huang L Y,Zhu L X.Approximate calculated on waving-force for a square sea-cage hydrodynamics[J].J Zhejiang Ocean Univ.,2003,23:211-220.(in Chinese)

    [3]Ito S,Kinoshita T,Kitazawa D,Bao W,Itakura H,Nishizawa S.Experimental investigation and numerical modeling of hydrodynamic force characteristics of a heaving net[C].ASME,2010.

    [4]Ito S,Kinoshita T,Kitazawa D,Bao W,Itakura H.Experimental investigation and numerical modeling of hydrodynamic force characteristics and deformation of an elastic net[C].ASME,2011.

    [5]Krassimi I,Doynov.A dynamic response model for free floating horizontal cylinders subjected to waves[D].Doctoral dissertation,University of Florida,1998.

    [6]Kristiansen David.Wave induced effects on floaters of aquaculture plants[D].Doctoral dissertation,Dept.of Marine Hydrodynamics,Norwegian Institute of Technology,2012.

    [7]Colbourne D B,Allen J H.Observations on motions and loads in aquaculture cages from full scale and model scale measurements[J].Aquacultural Engineering,2001,24(2):129-148.

    [8]Fredriksson D W.Open ocean fish cage and mooring system dynamics[D].Dept.Mechanical and Ocean Engineering,U-niversity of New Hampshire,2001.

    [9]Fredriksson D W,Swift M R,Irish J D,Tsukrov I,Celikkol B.Fish cage and mooring system dynamics using physical and numerical models with field measurements[J].Aquacultural Engineering,2003,27:117-46.

    [10]Fredriksson D W,DeCewa J,Swift M R,Tsukrov I,Chambers M D,Celikkol B.The design and analysis of a four-cage grid mooring for open ocean aquaculture[J].Aquacultural Engineering,2004,32:77-94.

    [11]Dong G H,Xu T J,Zhao Y P,Li Y C,Gui F K.Numerical simulation of hydrodynamic behavior of gravity cage in irregular waves[J].Aquacultural Engineering,2010,42(2):90-101.

    [12]Xu T J,Dong G H,Zhao Y P,Li Y C,Gui F K.Analysis of hydrodynamic behaviors of gravity net cage in irregular waves[J].Ocean Engineering,2011,38(13):1545-1554.

    [13]Aarsnes J V,Rudi H,L?land G.Current forces on cage,net deflection[C]//Engineering for offshore fish farming.Proceedings of a conference organised by the Institution of Civil Engineers,17-18 October 1990.Glasgow,UK,Thomas Telford,1990:137-152.

    [14]Lader P F,Enerhaug B.Experimental investigation of forces and geometry of a net cage in uniform flow[J].IEEE Journal of Oceanic Engineering,2005,30(1):79-84.

    [15]Huang C C,Tang H J,Liu J Y.Dynamical analysis of net cage structures for marine aquaculture:Numerical simulation and model testing[J].Aquacultural Engineering,2006,35(3):258-270.

    [16]Zhao Y P,Li Y C,Dong G H,Gui F K,Teng B.Numerical simulation of the effects of structure size ratio and mesh type on three-dimensional deformation of the fishing-net gravity cage in current[J].Aquacultural Engineering,2007,36(3):285-301.

    [17]Zhao Y P,Li Y C,Dong G H,Gui F K,Teng B.The numerical simulation of hydrodynamic behaviors of gravity cage in current and waves[J].International Journal of Offshore and Polar Engineering,2009,19(1):97-107.

    [18]Berstad A J,Tronstad H,Sivertsen S A,Leite E.Enhancement of design criteria for fish farm facilities including operations[C].ASME,2005.

    [19]Moe H,Fredheim A,Hopperstad O S.Structural analysis of aquaculture net cages in current[J].Journal of Fluids and Structures,2010,26(3):503-516.

    [20]Kristiansen T,Faltinsen O M.Modelling of current loads on aquaculture net cages[J].Journal of Fluids and Structures,2012,34:218-235.

    [21]Faltinsen O.Sea loads on ships and offshore structures[M].Cambridge,UK:Cambridge University Press,1993.

    [22]Lee C W,Kim Y B,Lee G H,Choe M Y,Lee M K,Koo K Y.Dynamic simulation of a fish cage system subjected to currents and waves[J].Ocean Engineering,2008,35(14):1521-1532.

    [23]Lader P,Kristiansen D,Jensen O,Fredriksson D W.Experimental study on the interaction between the net and the weight system for a gravity type fish farm[C].ASME,2013.

    [24]Li L,Fu S,Xu Y,Wang J,Yang J.Dynamic responses of floating fish cage in waves and current[J].Ocean Engineering,2013,72:297-303.

    [25]Li L,Fu S,Xu Y.Nonlinear hydroelastic analysis of an aquaculture fish cage in irregular waves[J].Marine Structures,2013,34:56-73.

    精品久久久久久久久久免费视频| 久久99热这里只有精品18| 欧美一区二区国产精品久久精品| 欧美成人免费av一区二区三区| 中文字幕久久专区| 噜噜噜噜噜久久久久久91| 亚洲性夜色夜夜综合| 国产精品影院久久| 亚洲专区字幕在线| 国产久久久一区二区三区| 两个人视频免费观看高清| 中文字幕人成人乱码亚洲影| 国产亚洲精品久久久久久毛片| 欧美日韩亚洲国产一区二区在线观看| 熟女电影av网| 午夜福利视频1000在线观看| 一a级毛片在线观看| 欧美日本视频| 免费看日本二区| 日韩有码中文字幕| 久久中文字幕一级| 日韩欧美国产一区二区入口| 丁香六月欧美| 精品无人区乱码1区二区| 午夜福利在线观看吧| 在线免费观看的www视频| 亚洲欧美日韩无卡精品| 小说图片视频综合网站| 国产真人三级小视频在线观看| 无限看片的www在线观看| 看片在线看免费视频| 99热这里只有精品一区 | 校园春色视频在线观看| 亚洲国产精品成人综合色| 色噜噜av男人的天堂激情| 午夜激情福利司机影院| 免费大片18禁| 久久精品国产清高在天天线| 日韩精品青青久久久久久| 两性午夜刺激爽爽歪歪视频在线观看| 又爽又黄无遮挡网站| 母亲3免费完整高清在线观看| 亚洲激情在线av| 99国产极品粉嫩在线观看| 亚洲欧美精品综合一区二区三区| 日韩成人在线观看一区二区三区| 国产综合懂色| 热99re8久久精品国产| 一个人免费在线观看电影 | 真人一进一出gif抽搐免费| 亚洲欧美一区二区三区黑人| 波多野结衣高清作品| 丁香欧美五月| 999久久久国产精品视频| 久久精品人妻少妇| 国产69精品久久久久777片 | 亚洲av中文字字幕乱码综合| 亚洲av电影不卡..在线观看| 欧美成狂野欧美在线观看| 日韩 欧美 亚洲 中文字幕| 网址你懂的国产日韩在线| 特大巨黑吊av在线直播| 搡老妇女老女人老熟妇| 国产高清视频在线观看网站| 午夜免费成人在线视频| 欧美日韩精品网址| 老司机午夜十八禁免费视频| 久久精品夜夜夜夜夜久久蜜豆| 女同久久另类99精品国产91| 国产精品野战在线观看| 久久久久国产一级毛片高清牌| 俺也久久电影网| 成人特级av手机在线观看| 丰满人妻一区二区三区视频av | 亚洲av电影不卡..在线观看| 1024手机看黄色片| 夜夜爽天天搞| 亚洲性夜色夜夜综合| 黄色女人牲交| 最好的美女福利视频网| 日韩人妻高清精品专区| 久久精品亚洲精品国产色婷小说| 操出白浆在线播放| av国产免费在线观看| 最近最新中文字幕大全电影3| 久9热在线精品视频| 成年女人看的毛片在线观看| 两个人看的免费小视频| 在线免费观看不下载黄p国产 | 黄片小视频在线播放| 亚洲精品中文字幕一二三四区| 此物有八面人人有两片| 免费av不卡在线播放| 99热这里只有是精品50| 国产成人精品久久二区二区91| 美女午夜性视频免费| 精品国产亚洲在线| 成人18禁在线播放| 欧美性猛交╳xxx乱大交人| 婷婷亚洲欧美| 精品久久蜜臀av无| 久久久色成人| 欧美xxxx黑人xx丫x性爽| 久久精品影院6| 色综合亚洲欧美另类图片| 亚洲成人中文字幕在线播放| 欧美又色又爽又黄视频| 欧美日本视频| 麻豆一二三区av精品| 久久人妻av系列| 亚洲男人的天堂狠狠| 最新在线观看一区二区三区| 男人的好看免费观看在线视频| 免费大片18禁| 波多野结衣高清作品| 99热只有精品国产| 精品国产三级普通话版| 成人高潮视频无遮挡免费网站| 亚洲avbb在线观看| 性欧美人与动物交配| 午夜福利在线在线| 日本黄色片子视频| 日本一二三区视频观看| 亚洲黑人精品在线| 欧美性猛交黑人性爽| 免费观看人在逋| 天天添夜夜摸| 淫秽高清视频在线观看| 一个人免费在线观看电影 | 色综合欧美亚洲国产小说| 成人18禁在线播放| 国产人伦9x9x在线观看| 伦理电影免费视频| 在线播放国产精品三级| 精品99又大又爽又粗少妇毛片 | 热99re8久久精品国产| bbb黄色大片| 校园春色视频在线观看| 999久久久国产精品视频| 少妇的逼水好多| 国内久久婷婷六月综合欲色啪| 老司机午夜十八禁免费视频| 99精品久久久久人妻精品| 日日干狠狠操夜夜爽| 叶爱在线成人免费视频播放| 19禁男女啪啪无遮挡网站| 亚洲av免费在线观看| 美女午夜性视频免费| 最新中文字幕久久久久 | 国产精品久久久久久亚洲av鲁大| 国产亚洲精品久久久久久毛片| 黄色日韩在线| 欧美不卡视频在线免费观看| 国产亚洲精品一区二区www| 国产精品电影一区二区三区| 亚洲天堂国产精品一区在线| 国产久久久一区二区三区| 亚洲精品456在线播放app | 中亚洲国语对白在线视频| 免费在线观看成人毛片| 高清毛片免费观看视频网站| 岛国在线免费视频观看| 成在线人永久免费视频| 五月玫瑰六月丁香| 亚洲激情在线av| 97超视频在线观看视频| 99久久精品热视频| 午夜福利欧美成人| 日韩欧美国产一区二区入口| 男女之事视频高清在线观看| 久久国产乱子伦精品免费另类| av福利片在线观看| 国产亚洲精品综合一区在线观看| 精品一区二区三区视频在线观看免费| 亚洲一区二区三区不卡视频| 欧美日韩国产亚洲二区| 淫秽高清视频在线观看| 国产亚洲av高清不卡| 欧美午夜高清在线| 午夜视频精品福利| 99久久久亚洲精品蜜臀av| 欧美日韩综合久久久久久 | 免费看光身美女| 在线免费观看的www视频| 国产极品精品免费视频能看的| 九九在线视频观看精品| 国产精品一区二区精品视频观看| 国产亚洲av高清不卡| 国产激情欧美一区二区| 国产午夜精品论理片| 精品国产美女av久久久久小说| 亚洲 国产 在线| 亚洲av成人不卡在线观看播放网| 亚洲精品一区av在线观看| 波多野结衣高清无吗| 两个人的视频大全免费| 12—13女人毛片做爰片一| 国内精品美女久久久久久| 国产精品一区二区三区四区免费观看 | 亚洲五月天丁香| 午夜福利免费观看在线| 在线观看美女被高潮喷水网站 | 亚洲五月天丁香| 男插女下体视频免费在线播放| 免费人成视频x8x8入口观看| 在线观看午夜福利视频| 好男人在线观看高清免费视频| 成人国产一区最新在线观看| 少妇熟女aⅴ在线视频| 国产毛片a区久久久久| 小说图片视频综合网站| 精品国产亚洲在线| 伊人久久大香线蕉亚洲五| 国产精品久久久久久亚洲av鲁大| 午夜福利高清视频| 热99在线观看视频| 香蕉av资源在线| 精品乱码久久久久久99久播| 国产欧美日韩一区二区三| 日本精品一区二区三区蜜桃| 国产欧美日韩精品亚洲av| 免费av毛片视频| 女生性感内裤真人,穿戴方法视频| 国产一区二区在线av高清观看| 久久天堂一区二区三区四区| 欧美性猛交╳xxx乱大交人| 长腿黑丝高跟| 少妇裸体淫交视频免费看高清| 日本 欧美在线| 操出白浆在线播放| 色尼玛亚洲综合影院| 最新美女视频免费是黄的| 欧美极品一区二区三区四区| 欧美日韩亚洲国产一区二区在线观看| 中文在线观看免费www的网站| 亚洲第一电影网av| 色av中文字幕| 免费在线观看日本一区| 一本综合久久免费| 动漫黄色视频在线观看| 啦啦啦免费观看视频1| 久久久久久久久久黄片| 久久国产精品影院| 人人妻人人澡欧美一区二区| 欧美在线黄色| 岛国视频午夜一区免费看| 欧美日韩中文字幕国产精品一区二区三区| 精品久久久久久久毛片微露脸| 少妇裸体淫交视频免费看高清| 免费看光身美女| 99视频精品全部免费 在线 | 男女午夜视频在线观看| 韩国av一区二区三区四区| 精品国内亚洲2022精品成人| 国产午夜精品论理片| 黄色日韩在线| 婷婷精品国产亚洲av在线| 久久亚洲精品不卡| 哪里可以看免费的av片| 91av网站免费观看| 青草久久国产| www.www免费av| 亚洲精品456在线播放app | 性欧美人与动物交配| 国产单亲对白刺激| 国产激情偷乱视频一区二区| 亚洲人成网站在线播放欧美日韩| 午夜影院日韩av| 国产欧美日韩一区二区三| 观看美女的网站| 亚洲国产看品久久| 色综合亚洲欧美另类图片| 美女高潮喷水抽搐中文字幕| 日本免费a在线| 午夜免费激情av| 国产亚洲av嫩草精品影院| 非洲黑人性xxxx精品又粗又长| 后天国语完整版免费观看| 在线观看日韩欧美| 99久久精品国产亚洲精品| 成年免费大片在线观看| 亚洲第一电影网av| 99国产精品一区二区三区| 不卡一级毛片| 99re在线观看精品视频| 亚洲国产欧洲综合997久久,| 久久中文字幕一级| 国产欧美日韩一区二区精品| 国产激情久久老熟女| 怎么达到女性高潮| 日韩精品中文字幕看吧| 全区人妻精品视频| 人妻丰满熟妇av一区二区三区| 99国产精品一区二区三区| 亚洲成人免费电影在线观看| 97人妻精品一区二区三区麻豆| 欧美黄色片欧美黄色片| 91久久精品国产一区二区成人 | 日本黄色视频三级网站网址| 人人妻,人人澡人人爽秒播| 深夜精品福利| a级毛片a级免费在线| 真人一进一出gif抽搐免费| 免费av毛片视频| 身体一侧抽搐| 久久人人精品亚洲av| 久久天堂一区二区三区四区| 露出奶头的视频| 99久久无色码亚洲精品果冻| 午夜精品在线福利| 99久国产av精品| 亚洲人成网站高清观看| 国产亚洲精品综合一区在线观看| 久久香蕉精品热| 国产又色又爽无遮挡免费看| 亚洲无线在线观看| 日本一二三区视频观看| 精品久久久久久成人av| 久久久久免费精品人妻一区二区| av福利片在线观看| 国产av在哪里看| 国产黄a三级三级三级人| 欧美成人一区二区免费高清观看 | 国内精品一区二区在线观看| 亚洲av成人不卡在线观看播放网| 日韩欧美三级三区| 久久亚洲真实| 国产成人欧美在线观看| 中文字幕高清在线视频| 久久精品91蜜桃| 在线观看一区二区三区| 偷拍熟女少妇极品色| 国产精品久久久久久亚洲av鲁大| 1024香蕉在线观看| 日本免费a在线| 欧美色欧美亚洲另类二区| 亚洲 欧美一区二区三区| 久久香蕉精品热| 国产高清激情床上av| 亚洲av第一区精品v没综合| 成人鲁丝片一二三区免费| 久久久久久久久中文| 欧美三级亚洲精品| 国产精品久久久久久精品电影| 黄频高清免费视频| 欧美日韩福利视频一区二区| 九九热线精品视视频播放| 成人无遮挡网站| 国产精品永久免费网站| 欧美日韩综合久久久久久 | 亚洲成人免费电影在线观看| 极品教师在线免费播放| www.精华液| 成人高潮视频无遮挡免费网站| 97人妻精品一区二区三区麻豆| 亚洲九九香蕉| 非洲黑人性xxxx精品又粗又长| 97超视频在线观看视频| 国产黄色小视频在线观看| 99热6这里只有精品| 夜夜躁狠狠躁天天躁| 一级毛片高清免费大全| 中亚洲国语对白在线视频| 成人午夜高清在线视频| 一进一出抽搐动态| 99精品在免费线老司机午夜| 欧美日韩黄片免| 在线免费观看的www视频| 嫁个100分男人电影在线观看| 国内久久婷婷六月综合欲色啪| 国产精品99久久99久久久不卡| 男女下面进入的视频免费午夜| 国产黄色小视频在线观看| 少妇的丰满在线观看| 一本综合久久免费| 久久久国产欧美日韩av| 久久久精品欧美日韩精品| 亚洲人成伊人成综合网2020| 搞女人的毛片| 啦啦啦免费观看视频1| 午夜亚洲福利在线播放| 久久久久性生活片| 老司机午夜十八禁免费视频| 亚洲av片天天在线观看| 午夜福利在线在线| 一个人免费在线观看的高清视频| 久久性视频一级片| 精品国内亚洲2022精品成人| 又粗又爽又猛毛片免费看| 久久久久性生活片| 一本精品99久久精品77| 亚洲精品一卡2卡三卡4卡5卡| 老汉色av国产亚洲站长工具| 国产精品亚洲av一区麻豆| 欧美一级a爱片免费观看看| 一级黄色大片毛片| 国产精品av视频在线免费观看| 一个人观看的视频www高清免费观看 | 国产三级黄色录像| 亚洲色图 男人天堂 中文字幕| 99热这里只有是精品50| 国产99白浆流出| 免费电影在线观看免费观看| a在线观看视频网站| svipshipincom国产片| 婷婷亚洲欧美| 在线观看一区二区三区| 99久久无色码亚洲精品果冻| 亚洲国产中文字幕在线视频| 国产乱人伦免费视频| 一区福利在线观看| 久久精品91无色码中文字幕| 99久国产av精品| 欧美精品啪啪一区二区三区| 国产一区在线观看成人免费| av视频在线观看入口| 国产精品久久电影中文字幕| 三级男女做爰猛烈吃奶摸视频| 国产高清激情床上av| 日本 欧美在线| 日本三级黄在线观看| 变态另类成人亚洲欧美熟女| 99久久精品热视频| 日本一二三区视频观看| 久久久精品大字幕| 悠悠久久av| 视频区欧美日本亚洲| 国产97色在线日韩免费| 伊人久久大香线蕉亚洲五| 天堂动漫精品| www.熟女人妻精品国产| 变态另类成人亚洲欧美熟女| 日本精品一区二区三区蜜桃| 色av中文字幕| 色综合欧美亚洲国产小说| 亚洲va日本ⅴa欧美va伊人久久| 村上凉子中文字幕在线| 国产成人精品久久二区二区91| 又爽又黄无遮挡网站| 亚洲午夜精品一区,二区,三区| 日韩欧美一区二区三区在线观看| 嫩草影院入口| 久久国产精品人妻蜜桃| 免费人成视频x8x8入口观看| 制服丝袜大香蕉在线| 色综合欧美亚洲国产小说| 夜夜看夜夜爽夜夜摸| 久久久国产精品麻豆| 老司机福利观看| 亚洲国产高清在线一区二区三| 国产一区二区三区在线臀色熟女| 久久久久国产一级毛片高清牌| 久久香蕉精品热| 欧美性猛交黑人性爽| 91麻豆av在线| 免费在线观看影片大全网站| 嫩草影院精品99| 欧美国产日韩亚洲一区| 国产一区二区三区视频了| 综合色av麻豆| 久久这里只有精品19| 又黄又爽又免费观看的视频| 国产午夜精品久久久久久| 一卡2卡三卡四卡精品乱码亚洲| 午夜福利在线观看免费完整高清在 | 免费一级毛片在线播放高清视频| 欧美日本亚洲视频在线播放| 这个男人来自地球电影免费观看| 国产成人精品久久二区二区免费| 国产一区二区在线av高清观看| 亚洲av成人精品一区久久| 国产精品久久久久久亚洲av鲁大| 欧美xxxx黑人xx丫x性爽| 国产欧美日韩精品一区二区| 国产91精品成人一区二区三区| av片东京热男人的天堂| 99视频精品全部免费 在线 | 精品久久久久久成人av| 999精品在线视频| 国产91精品成人一区二区三区| 午夜激情欧美在线| 精品福利观看| 欧美性猛交黑人性爽| 日本三级黄在线观看| 国产爱豆传媒在线观看| 免费搜索国产男女视频| 成人精品一区二区免费| 日韩欧美一区二区三区在线观看| 三级毛片av免费| 麻豆成人av在线观看| 99国产综合亚洲精品| 男女那种视频在线观看| 国产三级在线视频| 桃红色精品国产亚洲av| 在线观看舔阴道视频| 国产91精品成人一区二区三区| 老司机午夜十八禁免费视频| 国产亚洲精品久久久久久毛片| 叶爱在线成人免费视频播放| 国产精品一区二区免费欧美| 亚洲国产精品999在线| 性色avwww在线观看| 色综合婷婷激情| 久久99热这里只有精品18| 久久这里只有精品19| 欧美三级亚洲精品| 午夜亚洲福利在线播放| 香蕉国产在线看| 9191精品国产免费久久| 国产精品,欧美在线| 老司机午夜福利在线观看视频| 成人av一区二区三区在线看| 欧美在线一区亚洲| 亚洲av成人一区二区三| 精品乱码久久久久久99久播| 国产v大片淫在线免费观看| 人妻夜夜爽99麻豆av| 18美女黄网站色大片免费观看| 国产亚洲精品av在线| 深夜精品福利| 精品99又大又爽又粗少妇毛片 | 三级毛片av免费| 精品福利观看| 国产精品av久久久久免费| 脱女人内裤的视频| 久久精品国产亚洲av香蕉五月| e午夜精品久久久久久久| 三级国产精品欧美在线观看 | 天堂av国产一区二区熟女人妻| 久久99热这里只有精品18| www国产在线视频色| 999久久久国产精品视频| 久久精品91无色码中文字幕| 亚洲一区二区三区不卡视频| 亚洲av成人av| 国产精品一区二区免费欧美| 精品乱码久久久久久99久播| 免费观看精品视频网站| 午夜a级毛片| 特大巨黑吊av在线直播| 美女大奶头视频| 少妇的丰满在线观看| 日本与韩国留学比较| 桃色一区二区三区在线观看| 亚洲av成人不卡在线观看播放网| 久久久色成人| 不卡一级毛片| 国模一区二区三区四区视频 | 听说在线观看完整版免费高清| 真人做人爱边吃奶动态| 亚洲av成人av| 久久久精品大字幕| 美女黄网站色视频| 国产综合懂色| 丰满人妻一区二区三区视频av | 亚洲国产欧美一区二区综合| 岛国在线观看网站| 99国产精品一区二区蜜桃av| 超碰成人久久| 51午夜福利影视在线观看| 国产亚洲精品av在线| 久久久精品欧美日韩精品| 国产1区2区3区精品| 亚洲av成人av| 亚洲人成网站高清观看| 1024香蕉在线观看| 国产av一区在线观看免费| 亚洲av日韩精品久久久久久密| 欧美日韩亚洲国产一区二区在线观看| 男女午夜视频在线观看| 成人性生交大片免费视频hd| 又紧又爽又黄一区二区| 亚洲av熟女| 在线十欧美十亚洲十日本专区| 偷拍熟女少妇极品色| 亚洲国产欧美网| 久久久久久久午夜电影| 可以在线观看毛片的网站| 波多野结衣高清作品| 最近最新中文字幕大全电影3| 久久99热这里只有精品18| 美女扒开内裤让男人捅视频| 国产成人系列免费观看| 国产单亲对白刺激| 亚洲美女黄片视频| 久久这里只有精品19| 97碰自拍视频| 非洲黑人性xxxx精品又粗又长| 日韩免费av在线播放| 别揉我奶头~嗯~啊~动态视频| 亚洲国产高清在线一区二区三| www.www免费av| 婷婷亚洲欧美| 色播亚洲综合网| 亚洲最大成人中文| 日本免费a在线| 国产成+人综合+亚洲专区| 嫩草影院精品99| 亚洲一区二区三区不卡视频| 成在线人永久免费视频| 成人精品一区二区免费| 琪琪午夜伦伦电影理论片6080| 窝窝影院91人妻| 国产又色又爽无遮挡免费看| 亚洲欧美激情综合另类| 日本五十路高清| 国产69精品久久久久777片 | 18禁裸乳无遮挡免费网站照片| 一级黄色大片毛片| www.www免费av| 国产精品久久久久久久电影 | 亚洲aⅴ乱码一区二区在线播放| 一区二区三区激情视频| 久久性视频一级片| 999精品在线视频|