• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Constraints of molybdenite Re–Os and scheelite Sm–Nd ages on mineralization time of the Kukaazi Pb–Zn–Cu–W deposit,Western Kunlun,NW China

    2018-03-28 03:16:44ChengbiaoLengYuhuiWangXingchunZhangJianfengGaoWeiZhangXinyingXu
    Acta Geochimica 2018年1期

    Chengbiao Leng?Yuhui Wang,2?Xingchun Zhang?Jianfeng Gao?Wei Zhang,3?Xinying Xu

    1 Introduction

    Timing of mineralization is very important for understanding and interpreting metallogenesis and is thus useful for establishing the metallogenetic model.Direct isotopic dating of suitable minerals has been proved as a possible approach to resolving the age of ore formation(Chesley et al.1991).Due to high rhenium(Re)and very low common osmium(Os)concentrations,Re–Os dating of molybdenite has become a powerful tool to constrain the ages of mineralization directly (Stein et al.1997).Scheelite,a common accessory mineralin many hydrothermal deposits with high contents of REE,Sr,and Pb and variable Sm/Nd ratios(e.g.,Bell et al.1989;Voicu et al.2000;Brugger et al.2002),has also been used to constrain timing of mineralization and to trace the source(s)of ore-forming fluids for hydrothermal deposits,especially for hydrothermal W-Au deposits(e.g.,Frei et al.1998;Peng et al.2003,2006).

    The Kukaazi Pb–Zn–Cu–W polymetallic deposit is currently discovered in the metamorphic rocks of the Mesoproterozoic Changcheng Group in the Western Kunlun orogenic belt(WKOB).In this deposit and its adjacent regions,a number of Ordovician granodiorite and monzonite intrusions(471–441 Ma;Wang et al.2013a,b;Zhang et al.2015)were emplaced into the Changcheng Group.However,due to a lack of mineralization age and isotopic data for the Kukaazi deposit,the genetic relationship between the mineralization and such Ordovician granitoid magmatisms remains unclear,which limited the understanding of metallogenesis of the region.Here we present molybdenite Re–Os and scheelite Sm–Nd isochron ages to constrain the timing of Mo and W mineralization at the Kukaazi deposit.In addition,REE contents,Sr,and Nd isotopes of the scheelite are also provided to constrain the sources of ore-forming fluids and metals.

    2 Geological setting

    The Kukaazi deposit,with coordinates of 76°39.5′′E,37°10′N at its center,is located in the WKOB,which is an over 2000 km long NW–SE-trending narrow structural belt between the Tarim Craton and the Karakorum–Qiangtang Block(Fig.1a;e.g.,Xu et al.2011;Zhang et al.2015).Previous researches indicated that the WKOB can be divided into the North Kunlun Terrane(NKT),the South Kunlun Terrane(SKT),and the Taxkorgan-Tianshuihai Terrane(TST)(Fig.1b).They are bordered by the Akazi-Kegang Fault and the Mazha-Kangxiwa Fault from north to south,respectively(e.g.,Pan 1989;Mattern et al.1996;Mattern and Schneider 2000;Xiao et al.2002;Zhang et al.2015).The NKT,bounded by the Tiekelike Fault to the north and the Akazi-Kegang Fault to the south,was generally considered to be a part of the Tarim Craton in the Paleo-Proterozoic(Pan et al.1994;Xu et al.1994;Jiang et al.2000;Yuan et al.2003).It is mainly composed of the Proterozoic to Lower Paleozoic metamorphic rocks,which are overlain by the Devonian to Triassic carbonate and clastic rocks locally(Xiao et al.2002).Previous studies con fi rmed that the metamorphic basement of the NKT was probably formed during 2.4–0.8 Ga (Zhang etal.2004,2007;Wang et al.2009).The SKT is sandwiched between the Akazi-Kegang and Mazha-Kangxiwa faults.It is characterized by the existence of Precambrian gneissschist-migmatite complex and the Kudi ophiolite(Yin and Harrison 2000;Xiao et al.2002),and its southern part is occupied by many Early Carboniferous to Late Triassic arctype magmatic rocks(Xiao et al.2002).According to Yuan et al.(2002),the Precambrian metamorphic rocks of the SKT have much younger depleted mantle Nd model ages(i.e.1.5–1.1 Ga)than those of the North Kunlun Terrane(>2.8 Ga).Meanwhile,the timing of the Kudi ophiolite suite was constrained between 525 and 510 Ma through high-precision SHRIMP zircon U–Pb dating by some researchers(e.g.,Xiao et al.2003;Zhang et al.2004).In the TST,there are outcropping a series of Permo-Triassic fl ysch-facies sedimentary rocks,similar to those of the Bayan Har Block in terms of lithological assemblages(Mattern et al.1996).The TST has been considered to be a giant accretionary wedge formed by the northward subduction of the Paleo-Tethyan ocean basin(Xiao et al.2005).

    From Early Paleozoic to Triassic,the WKOB had experienced the Proto-Tethyan to the Paleo-Tethyan oceans evolutions(Pan et al.1994;Mattern et al.1996;Mattern and Schneider 2000;Xiao et al.2002,2005;Xu et al.2015;Zhang et al.2015).With the expansion,subduction,and closure of the different stages of Tethyan oceanic basins,a large amount of granitoids were emplaced into the western Kunlun area along the striking orientation of the orogenic belt and were controlled by the regional fracture zones(Fig.1b)(Wang et al.2013a;Zhang et al.2015).The Early Paleozoic granite intrusions are distributed mainly in the South Kunlun and North Kunlun terranes,and intruded the metamorphic basement rocks during 521–431 Ma(Fig.1b;Zhang and Xie 1989;Fang and Wang 1990;Xu et al.1994;Jiang et al.1999,2000;Yuan et al.2003;Cui et al.2006,2007;Yu et al.2011;Wang et al.2013a).These granites exhibit arc signatures(i.e.negative anomalies of Nd,Ta,and Ti)and are suggested to originate from partial melting of ma fi c lower crust in an active continental arc setting(Yuan et al.2003;Wang et al.2013a;Jia 2013).The Early Mesozoic granitoids(243–192 Ma)are mainly distributed along the line of the Mazha-Kangxiwa Fault(Fig.1b;Zhang etal.2005,2015).They comprise metaluminous I-type granodiorite and monzogranite and have geochemical features similar to the bulk continental crust,which was ascribed to be resulted from melting of amphibolite of mid-oceanridge basalt protolith during continental collision stages(Zhang et al.2015).

    Fig.1 a A schematic map of the Western Kunlun orogenic belt and its adjacent regions(modifi ed after Zhang et al.2015),and b a simpli fi ed geologic map of the Western Kunlun orogenic belt(modifi ed from Wang et al.2013a and Zhang et al.2015).In b,NKL North Kunlun Terrane,SKT South Kunlun Terrane,TST Taxkorgan-Tianshuihai Terrane;and some represented metallic ore deposits are also labeled

    The WKOB is an important Cu–Pb–Zn–Au mineral deposit belt in China(Sun et al.2003;Zhang et al.2014c)and is also a famous place for producing high-quality nephrite(usually called Hetian nephrite)for the world(Liu et al.2016).Four kinds of metallic ore deposits have been discovered in the WKOB(Fig.1b).They include(1)carbonate-hosted Cu–Pb–Zn-(Au–Co) deposits (e.g.,the Tiekelike Cu–Pb–Zn–Ag,Tamu Zn–Pb–Co,Kalangu Pb–Zn–Co,and Bulunkou Cu–Au deposits;Sun et al.2003;Zhang et al.2014c),(2)volcanic-hosted massive sul fi de Cu–(Zn)deposits(e.g.,the Saluoyi Cu,Aketashi Cu,and Shangqihan Cu–Zn deposits;Sun et al.2003),(3)magmatichydrothermal Cu–Mo–Fe–(Li–Be)deposits(e.g.,the Datong porphyry Cu–Mo,Kayizi porphyry Mo,Kudi skarn Cu–Fe,and Dahongliutan Li–Be deposits;Sun et al.2003;Liu et al.2010),and(4)sandstone Cu deposits(e.g.,the Tegelimansu Cu deposit;Sun et al.2003).The carbonate-hosted Cu–Pb–Zn deposits formed in two epochs,337–331 and 235–206 Ma(Zhang et al.2014c).The VMS Cu–(Zn)deposits are hosted in the Carboniferous bimodal volcanic rocks with a whole-rock Rb–Sr isochron age of 332±66 Ma(Sun et al.2003).While these magmatic-hydrothermal Cu–Mo–Fe–(Li–Be)deposits are closely associated with some felsic intrusions.According to Liu et al.(2010),the molybdenite Re–Os ages of the Kayizi porphyry deposit is consistent with the zircon U–Pb age(251± 5)of the ore-bearing granitoids therein.The Tegelimansu sandstone Cu deposit is hosted in the Early Carboniferous red clastic rocks(Sun et al.2003).Therefore,both the geologic evidence and the available isotopic data suggest that the aforementioned four types of metallic ore deposits were formed in the Late Paleozoic.However,the linkage between the mineralization and the Early Paleozoic granitic intrusions is still unclear,although such granitoids are extensively distributed in the western Kunlun.

    3 Geology of the Kukaazi deposit

    3.1 Wall rocks

    Outcropped strata in the Kukaazi mine are mainly composed of the low-grade metamorphosed clastic rocks,meta-volcanic rocks,marble,and minor garnet skarns of the Middle Proterozoic Changcheng Group(Fig.2a),with a strike of 160°–210°and a steep dip angle of 60°–80°(Fig.2b).The Ordovician granitic plutons,including monzonite,granodiorite,and minor K-feldspar granite,were emplaced into the metamorphic rocksduring 462–456 Ma in the deposit(Wang et al.2013b).These plutons belong to metaluminous I-type granites,with A/CNK values between 0.91 and 1.05.They are enriched in light REE and large ion lithophile elements,relatively depleted in high fi eld strength elements(i.e.Nb,Ta,Ti,P),and possess high initial Sr isotopic ratios and negative εHf(t)values(Yuan et al.2003;Wang et al.2013a;Jia 2013).Hence,they were proposed to result from partial melting of the ma fi c lower crust of the SKT in an active continental arc setting(Yuan et al.2003;Wang et al.2013a,b).

    3.2 Ore bodies

    Ore bodies of the Kukaazi deposit mainly occur in the forms of lenses and veins along beddings of various low-grade metamorphic rocks of the Mesoproterozoic Changcheng Group,which is composed of marble,mica quartz slate,meta-volcanic rocks,and chlorite slate.According to mineral assemblage and spatial distribution,three ore blocks(KI,KII,and KIII)have been outlined in the mine(Fig.2a).

    The KI ore block occurs at the northwest of the mine and is composed of chalcopyrite,scheelite,sphalerite,galena, plus minor pyrite,pyrrhotite,arsenopyrite,molybdenite,tetrahedrite,and bismuthinite(Fig.3).The ores mainly occur in four layers of garnet skarns between a hanging wall of laminated marble and a footwall of the siliceous meta-tuffaceous rocks(Fig.2b).The garnet skarn ore is composed of irregular garnet and marble,with quartz,sulfides,and scheelite grains occurring as patchy aggregates and veins.Marble ore,containing sphalerite,galena,arsenopyrite,and pyrite,is distributed along beddings of the Changcheng Group(Fig.2b).The ore bodies are overall 80–200 m long and 3–12 m wide.A large Cu–W–(Zn–Pb)ore body is over 6 meters in thickness,with average grades of 0.9 wt%for Cu,0.2 wt%for WO3(up to 0.92 wt%),0.8 wt%for Zn,and 0.3 wt% for Pb,respectively.The gangue minerals mainly include garnet,quartz,carbonate,and minor fluorite.

    The KII ore block is located at the center of the mine.In this ore block,three lens-shaped massive ore bodies(comprising of galena+sphalerite+magnetite+pyrite±pyrrhotite±chalcopyrite)occurwithin coarse-grained crystalline marble or between the beddings of marble and tuffaceous slate.The ore bodies are 5–10 m thick(up to 14 m),80 m long,with average ore grades of 13.7 wt%for Pb and 9.9 wt%for Zn.

    The KIII ore block is sited at the southeast of the mine.The lens-shaped ore bodies,consisting of galena+sphalerite+magnetite±arsenopyrite±pyrite±bismuthinite,are hosted in garnet-diopside skarns along the beddings of the marble and meta-rhyolitic tuff or quartz keratophyre.

    Fig.2 a A simplified regional geological map of the Kukaazi deposit,and b a geological cross section along exploration line A3(its location labeled in a)

    Fig.3 Photographs of some representative ores from the Kukaazi deposit:a a chalcopyrite–pyrite–calcite coarse vein in the garnet skarn;ba specimen of chalcopyrite-arsenopyrite skarn ore;c a chalcopyrite-pyrrhotite-quartz vein;da scheelite grain in sphalerite–galena–chalcopyrite–pyrrhotite–arsenopyrite ore specimen;e scheelite in ores under ultraviolet light.Mineral abbreviations:Apy arsenopyrite,Cal calcite,Ccp chalcopyrite,Gn galena,Grt garnet,Po pyrrhotite,Py pyrite;Qz quartz;Sch scheelite;Sph sphalerite

    3.3 Paragenesis of the mineralization

    Two stages of mineralization,including the early diagenesis stage and the late magmatic-hydrothermal stage,have been identified at the Kukaazi deposit(Zhang et al.2014b).The oolitic pyrite,tiny grains of Fe-rich sphalerite,galena,and pyrrhotite in massive sulfide ores in marble were formed in the diagenetic process.The association of chalcopyrite,scheelite,molybdenite,and coarse-grained pyrrhotite,sphalerite,galena,and arsenopyrite in veins suggests that they were formed from magmatic-hydrothermal fluids.Based on field and microscopic observations of cross-cutting relationships and textures of various minerals,we draw the mineral paragenesis diagram for the Kukaazi deposit(Fig.4).

    4 Analytical methods

    4.1 Molybdenite Re–Os analytical methods

    Four molybdenite samples were selected from the KI ore block to undertake Re–Os isotopic dating.Froth flotation was first applied to separate molybdenite from the finely crushed mineralized rocks.Then molybdenite separates were handpicked individually under a binocular microscope to get over 99%purity.Re–Os isotope analysis was performed on a Thermo ICP-MS(X7)in the Re–Os Laboratory,National Research Center of Geoanalysis,Chinese Academy of Geological Sciences in Beijing.The detailed analytical procedures are described in Du et al.(1994,2004).A model age of 220.6±3.2 Ma,which is consistent with the certified value of 221.4±5.6 Ma(Du et al.2004),for the molybdenite standard GBW04435(HLP)has been obtained in this analysis.Procedure blanks were 1.3±0.2 pg for Re and 0.21±0.06 pg for Os,respectively.The187Re decay constant of 1.666×10-11year-1(Smoliar et al.1996)was used to calculate the molybdenite model ages.

    Fig.4 Simpli fi ed paragenetic sequence of ore and gangue minerals for the Kukaazi deposit

    4.2 Sm–Nd,and Sr isotopes analyses of the scheelite

    Nine scheelite-bearing ore samples were also collected from KI ore block to obtain scheelite separates.Sm–Nd and Sr isotopes of scheelite were analyzed at the Tianjin Institute of Geology and Mineral Resources(TIGMR).0.15 g sample powder was weighted and dissolved by HF+HClO4solution in sealed Te fl on reaction container at high temperature for half a day.The Sr obtained through Isotope Concentration procedure needed to be doubly puri fi ed.The phosphoric acid(HDEHP)method was applied for the Nd purification.Measurement of Sm–Nd–Sr isotopic compositions was carried out on a Triton thermal ionization mass spectrometer(TIMS).Sr and Nd isotopic ratios were normalized to88Sr/86Sr ratio of 8.37521 and for146Nd/144Nd ratio of 0.7219,respectively.The measured results were 0.710253±6 for87Sr/86Sr ratio of the Standard NBS987 and 0.511132±5 for143Nd/144Nd ratio of the Standard JMC,respectively,with standard deviation of 2σ.The measured results of the Standard NBS-607(K-feldspar)were 522 ppm for Rb,65.3 ppm for Sr,and 1.200050±5 for87Sr/86Sr ratio.The measured results of the China First Class Standard GBS04419(rock)were 3.02 ppm for Sm,10.07 ppm for Nd,and 0.512739±5 for143Nd/144Nd ratio.The measured results of the International Standard BCR-2(basalt)were 6.61 ppm for Sm,28.13 ppm for Nd,and 0.512643±5 for143Nd/144Nd ratio.The blank of the whole procedure was 56 ng for Rb,38 ng for Sr,30 pg for Sm,and 54 pg for Nd,respectively.The Sm–Nd isochron age was calculated by using Isoplot/Exversion 4.15(Ludwig 2012).

    4.3 REE analysis of the scheelite

    REE analyses of thirteen scheelite samples were conducted at the State Key Laboratory of Ore Deposit Geochemistry(SKLODG),Institute of Geochemistry Chinese Academy of Sciences using PE Elan DRC-e inductively coupled plasma-mass spectrometry(ICP-MS)and with analytical precision and accuracy generally better than 10%.The detailed analytical procedures were broadly similar to those described in Qi et al.(2000).

    5 Results

    5.1 Re–Os ages of molybdenite

    Rhenium,Os concentrations and isotopic ratios of the molybdenite are listed in Table 1.Total Re and187Os concentrations vary from 47.7 to 134 ppm and from 226 to 635 ppb,respectively.All the Re–Os model ages are in a narrow variation,from 451.9±6.3 to 450.5±7.1 Ma.They show an excellent reproducibility,and yield an187Re-187Os isochron age of 450.5± 6.4 Ma (2σ,MSWD=0.057,N=4),with a weighted average age of 451.3± 3.4 Ma(2σ,MSWD=0.037,N=4)(Fig.5).The intercept on the187Os axis is nearly zero within uncertainty,which indicates that the isochron age of the molybdenite is reliable.

    5.2 Sm–Nd and Sr isotopic compositions of scheelite

    147Sm/144Nd and143Nd/144Nd ratios of the scheelite range from 0.0879 to 0.1176 and from 0.512128 to 0.512211,respectively(Table 2).They yield an isochron age of 426± 59 Ma(2σ,MSWD=0.49,N=9),with an initial143Nd/144Nd ratio of 0.511882±0.000038(Fig.6a).Since this age is consistent with the molybdenite Re–Os age within uncertainty,and no linear relationship between the(143Nd/144Nd)tand 1/Nd ratios(Fig.6b),it is thus believed that this Sm–Nd isochron age of the scheelite is acceptable.Taking 426 Ma as the tungsten mineralization time,the calculated initial143Nd/144Nd values vary from 0.511879 to 0.511884(average 0.511882)(Table 2),with uniform εNd(t)values of ca.-4.0.Their depleted mantle Nd model ages(TDM)vary from 1.5 to 1.2 Ga(average 1.3 Ga),consistent with the model ages of the coeval granitoids in the area(Yuan et al.2003;Jia 2013).

    The scheelite has uniform Sr isotopic compositions,with87Sr/86Sr varying from 0.7107 to 0.7118.

    5.3 REE compositions

    REE concentrations and calculated parameters of the scheelite are given in Table 3.The Sm and Nd contents are broadly consistent with those measured by isotope dilution method within the ranges of standard deviation(Table 2).This means that these analytical results were reliable.The scheelite has high contents of REE (including Y,42–96 ppm),similar to the scheelite from the Woxi Au–Sb–W deposit(41–124 ppm,Peng et al.2005)but much lower than the scheelite from the Daping Au(1760–2004 ppm,Xiong et al.2006)and Xuebaoding W–Sn–Be deposits(369–1302 ppm,Liu et al.2007)in China.

    The scheelite is characterized by strong enrichments of light REE(LREE)compared to heavy REE(HREE),with the La/YbNratios varying from 33 to 226(Table 3;Fig.7).These REE features are similar to those of scheelite from the porphyry and skarn types deposits(Fig.8;Song et al.2014)but are obviously contrasted to the scheelite from thelode Au–W(–Sb)deposits in South China that is characterized by middle REE-and HREE-enrichment,but LREE-depletion(Peng et al.2005).In addition,the scheelite has remarkable negative Eu anomalies(δEu=0.13–0.55,average 0.36)similar to that of the scheelite from the Xuebaoding W–Sn–Be deposit(δEu=0.44–0.51,Liu et al.2007)but different from that from the lode Au–W(–Sb)ore deposits with positive Eu anomalies(Peng et al.2005).

    Table 1 Re-Os data for molybdenite from the Kukaazi deposit

    Fig.5 a A Re–Os isochron age diagram,and b a Re–Os weighted average model age diagram for molybdenite samples from the Kukaazi deposit

    Table 2 Sm,Nd,and Sr isotopic compositions of the scheelite from the Kukaazi deposit

    6 Discussion

    6.1 Timing of Mo and W mineralization and its geological significances

    Fig.6 a A Sm–Nd isochron age diagram,and b a plot showing(143Nd/144Nd)tversus 1/Nd ratios for scheelite samples from the Kukaazi deposit

    Table 3 REE concentrations(ppm)and related parameters of the scheelite from the Kukaazi deposit

    In this study,we obtained a precise molybdenite isochron Re–Os age of 450.5± 6.4 Ma and a rough scheelite Sm–Nd isochron age of 426±59 Ma for the Kukaazi deposit.The Sm–Nd isochron age of scheelite is consistent with the Re–Os age of molybdenite within uncertainties.There is no linear relationship between the(143Nd/144Nd)tand 1/Nd values(Fig.6b),suggesting that the Sm–Nd system has not been disturbed by later geological processes such that this Sm–Nd isochron age is acceptable.Moreover,tungsten generally shares similar geochemical behaviors to Mo in magmatic-hydrothermal systems(e.g.,Robb 2005).Thus,W-bearing minerals(such as scheelite)would precipitate simultaneously with molybdenite from the ore-forming fluids,which was also the case at the Kukaazi deposit.For that reason,we proposed that the timing of Mo and W mineralization of the Kukaazi deposit took place at~450 Ma.

    Zircon U–Pb ages of 462–456 Ma for the monzonite and granodiorite in the Kukaazi deposit(Wang et al.2013b)are consistent with the ages of the granites around the 128 milestone of the Route 219(471–458 Ma,Xu et al.1994;Yuan et al.2003),but a little bit older than the Bulong granite(441 Ma,Wang et al.2013a).Therefore,the activity of these granitic magmas could last at least ca.30 million years in the Kukaazi deposit and adjacent areas,covering the timing of W-Mo mineralization.

    Fig.7 Chondrite-normalized REE distribution patterns of the scheelite from the Kukaazi deposit(data of chondrite are from Boynton 1984),data of the granitoids(grey area,Wang et al.2013b)in the deposit are also plotted here for comparison

    Fig.8 Triangular LREE–MREE–HREE diagram of the scheelite from the Kukaazi deposit(areas for scheelite samples from other kinds of deposits were copied from Song et al.2014)

    As stated above,in spite of a large area of the Early Paleozoic(from the Cambrian to Silurian)granitoids exposed in the western Kunlun area,there are no metallic ore deposits reported to be associated with the Early Paleozoic granite intrusions yet.In this study,we provided con fi dent isotopic ages to prove that the Early Paleozoic granitoids(i.e.Ordovician)could lead to economic Mo–W–(Cu)mineralization at favorable districts in the western Kunlun.This result would extend our understanding on the regional metallogenesis,and be greatly helpful for the prospecting explorations in this region.

    6.2 Source of ore-forming materials

    As a kind of Ca-rich minerals in many hydrothermal deposits,scheelite is rich in some trace elements,including REE and Sr,which can substitute Ca2+in the crystal lattice of scheelite in form of isomorphic replacement(Bell et al.1989;Voicu et al.2000;Brugger et al.2002).Chemistry of scheelite is thus commonly used to trace the source of oreforming fluids(e.g.,Frei et al.1998;Peng et al.2003,2006).

    REE contents of scheelite are affected or controlled by compositions of the hydrothermal fluids and wall rocks(Peng et al.2005).In this study,REE patterns(especially the LREE part)of the scheelite are similar to those of the coeval granitoids in the region(Fig.7),suggesting that the scheelite could be precipitation from the magmatic-hydrothermal fluids that were exsolved from such granitoids in the region.However,the scheelite from the Kukaazi deposit has relatively lower REE contents(especially for HREE and Y)than the granitoid(Fig.7),which could be attributed to the early precipitation of skarn minerals(e.g.,garnet and diopside)that extracted most of HREEs from ore-forming fluids(Song et al.2014).

    Since Eu can substitute Ca2+(ionic radius 1.06 A?)in scheelite as a state of either Eu3+(0.947 A?)or Eu2+(1.17A?),the Eu anomalies in scheelite could be ascribed to the redox conditions of ore-forming fluids(Ghaderi et al.1999;Brugger et al.2000,2002,2008).Previous studies have demonstrated that a high concentration of Eu2+(Eu3+<Eu2+)in reduced fluids would result in a positive Eu anomaly in scheelite,while oxidized fluids would have higher proportion of Eu3+(Eu3+>Eu2+),leading to a negative Eu anomaly in precipitated minerals(Ghaderi et al.1999;Xiong et al.2006).All analyzed scheelite from the Kukaazi deposit has strongly negative Eu anomalies with δEu values of 0.13–0.55,indicative of oxidized oreforming fluids.The oxidized nature of ore-forming fluids also supports the linkage with I-type granitic magmatism.

    Neodymium is one of the light REE so that its isotopic compositions of the geological body bear information of the original source of the REE.The εNd(t)value of scheelite can be used to trace the source of the ore-forming fluid precipitating scheelite(Peng et al.2008).On the other hand,scheelite is a Ca-bearing mineral that can limit the accommodation of Rb in Ca ion positions of its crystal lattice(Deer et al.1992),resulting in extremely low Rb/Sr ratios in scheelite.As such,the radioactive87Sr from the decay of87Rb after its formation is negligible.Moreover,Sr isotopic fractionation during mineral precipitation in the hydrothermal system is less than 0.2‰(Krabbenhoeft et al.2010),much lower than the radiogenic variation of87Sr/86Sr in natural hydrothermal systems.Therefore,the measured87Sr/86Sr ratios of the scheelite can approximately re fl ect the initial Sr isotopic compositions of the fluids where the mineral precipitated.The scheelite from the Kukaazi deposit has uniform low εNd(t)values,with the TDMvalues of 1.5–1.2 Ga.Meanwhile,the scheelite exhibits relatively highly radiogenic87Sr/86Sr ratios of 0.7107–0.7118.These isotopic data broadly agree with those of the coeval granitoids in the region(Yuan et al.2003;Jia 2013).The Sr–Nd isotopes further suggest that the W-mineralizing fluids of the Kukaazi deposit could be derived from the granitoids.

    7 Conclusions

    1. The Mo and W mineralization at the Kukaazi deposit formed at ca.450 Ma,and was closely related to the intrusion of the Ordovician granitoid in the deposit.

    2. The scheelite displays similar REE patterns,Sm/Nd ratios and Sr and Nd isotopic compositions to those of the coeval granitoids in the mine,suggesting that the tungsten probably originates from such granitoids.

    3. We identified the Ordovician granitoids could lead to economic Mo–W–(Cu)mineralization at some favorable districts in the western Kunlun area.This extends our understanding of the regional metallogenesis and is helpful for the prospecting explorations in this region.

    AcknowledgementsThis work is funded by a ‘‘Chinese NSF’’Project(41272114)to Xingchun Zhang,a ‘‘CAS Western Light Talent Culture’’Project to Chengbiao Leng,and a ‘‘CAS Hundred Talents’’Project to Jianfeng Gao.Jin Hu is specially thanked for her kind help in REE analysis.We highly appreciate Wei Terry Chen for his helpful suggestions and language improvement on drafts of this manuscript.

    Bell K,Anglin C,Franklin J(1989)Sm–Nd and Rb–Sr isotope systematics of scheelites:possible implications for the age and genesis of vein-hosted gold deposits.Geology 17:500–504

    Boynton WV(1984)Geochemistry of the rare earth elements:meteorite studies.In:Henderson P(ed)Rare Earth Element Geochemistry.Elsevier,Amsterdam,pp 63–114

    Brugger J,Lahaye Y,Costa S,Lambert D,Bateman R(2000)Inhomogeneous distribution of REE in scheelite and dynamics of Archaean hydrothermal systems(Mt.Charlotte and Drysdale gold deposits,Western Australia).Contrib Miner Petrol 139:251–264

    Brugger J,Maas R,Lahaye Y,McRae C,Ghaderi M,Costa S,Lambert D,Bateman R,Prince K(2002)Origins of Nd–Sr–Pb isotopic variations in single scheelite grains from Archaean gold deposits,Western Australia.Chem Geol 182:203–225

    Brugger J,Etschmann B,Pownceby M,Liu WH,Grundler P,Brewe D(2008)Oxidation state of europium in scheelite:tracking fluidrock interaction in gold deposits.Chem Geol 257:26–33

    Chesley J,Halliday A,Scrivener R(1991)Samarium–neodymium direct dating of fl uorite mineralization.Science 252:949–951

    Cui JT,Wang JC,Bian XW,Zhu HP,Yang KJ(2006)Geological characteristics of Early Paleozoic amphibolite and tonalite in northern Kangxiwar,West Kunlun,China and their zircon SHRIMP U–Pb dating.Geol Bull China 25:1441–1449(in Chinese with English abstract)

    Cui JT,Wang JC,Bian XW,Zhu HP,Luo QZ,Yang KJ,Wang MC(2007)Zircon SHRIMP U–Pb dating of Early Paleozoic granite in the Menggubao-Pushou area on the northern side of Kangxiwar,West Kunlun.Geol Bull China 26:710–719(in Chinese with English abstract)

    Deer W,Howie R,Zussman J(1992)An introduction to the rockforming minerals.Longman Sci Tech 66:509–517

    Du AD,He HY,Yin WN,Zhou XQ,Sun YL,Sun DZ,Chen SZ,Qu WJ(1994)The study on the analytical methods of Re–Os age for molybdenites.Acta Geol Sin 68:339–347(in Chinese with English abstract)

    Du AD,Wu SQ,Sun DZ,Wang SX,Qu WQ,Markey R,Stain H,Morgan J,Malinovskiy D(2004)Preparation and Certification of Re/Os Dating Reference Materials:molybdenites HLP and JDC.Geostand Geoanal Res 28:41–52

    Fang XL,Wang YZ(1990)Preliminary discussion on caledonian granites in western kunlun mountains.Xinjiang Geol 8:153–158(in Chinese with English abstract)

    Frei R,Nagler TF,Schonberg R,Kramers JD(1998)Re–Os,Sm–Nd,U–Pb,and stepwise lead leaching isotope systematics in shearzone hosted gold mineralization:genetic tracing and age constraints of crustal hydrothermal activity.Geochim Cosmochim Acta 62:1925–1936

    Ghaderi M,Palin JM,Campbell IH,Sylvester PJ(1999)Rare earth elementsystematicsin scheelitefrom hydrothermalgold deposits in the Kalgoorlie-Norseman region,Western Australia.Econ Geol 94:423–437

    Jia RY(2013)Petrogenesis and tectonic implications of Qiukesugranite pluton and its enclaves in the western Kunlun Orogen Belt,NW China.Dissertation for master’s degree of Nanjing Universit,1–62

    Jiang YH,Rui XJ,He JR,Guo KY,Yang WZ(1999)Tetonic type of Caledonian granitoids and tectonic significance in the West Kunlun Mts.Acta Petrol Sin 15:105–115(in Chinese with English abstract)

    Jiang YH,Rui XJ,Guo KY,He JR(2000)Tectonic environments of granitoids in the West Kunlun orogenic blet.Acta Geosci Sin 21:23–25(in Chinese with English abstract)

    Krabbenhoeft A,Eisenhauer A,Boehm F,Vollstaedt H,Fietzke J,Liebetrau V,Augustin N,Peucker-Ehrenbrink B,Mueller MN,Horn C,Hansen BT,Nolte N,Wallmann K(2010)Constraining the marine strontium budget with natural strontium isotope fractionations(87Sr/86Sr*,δ88/86Sr)of carbonates,hydrothermal solutions and river waters.Geochim Cosmochim Acta 74:4097–4109

    Liu Y,Deng J,Li C,Shi G,Zheng A(2007)REE composition in scheelite and scheelite Sm–Nd dating for the Xuebaoding W–Sn–Be deposit in Sichuan.Chin Sci Bull 52:2543–2550

    Liu JP,Wang H,Li SH,Tong LX,Ren GL(2010)Geological and geochemical features and geochronology of the Kayizi porphyry molybdenum deposit in the northern belt of western Kunlun,NW China.Acta Petrol Sin 26:3095–3105(in Chinese with English abstract)

    Liu Y,Zhang RQ,Abuduwayiti M,Wang C,Zhang S,Shen C,Zhang Z,He M,Zhang Y,Yang X(2016)SHRIMP U–Pb zircon ages,mineral compositions and geochemistry of placer nephrite in the Yurungkash and Karakash Riverdeposits,WestKunlun,Xinjiang,northwest China:implication for a Magnesium Skarn.Ore Geol Rev 72:699–727

    Ludwig K(2012)User’s manual for Isoplot version 3.75–4.15:a geochronological toolkit for Microsoft. Excel Berkley Geochronological Center special publication no.5

    Mattern F,Schneider W(2000)Suturing of the proto-and paleotethys oceans in the western Kunlun(Xijiang,China).J Asian Earth Sci 18:637–650

    Mattern F,Schneider W,Li Y,Li X(1996)A traverse through the western Kunlun(Xinjiang,China):tentative geodynamic implications for the Paleozoic and Mesozoic.GeolRundsch 85:705–722

    Pan YS(1989)A preliminary study on the regionalization of the structures in the Kunlun mountains region.J Nat Resour 4:196–203(in Chinese with English abstract)

    Pan YS,Wang Y,Matte P,Tapponnier P(1994)Tectonic evolution along the geotraverse from Yecheng to Shiquanhe.Acta Geosci Sin 68:295–307(in Chinese with English abstract)

    Peng JT,Hu RZ,Zhao JH,Fu YZ,Lin YX(2003)Scheelite Sm–Nd dating and quartz Ar–Ar dating for Woxi Au–Sb–W deposit,western Hunan.Chin Sci Bull 48:2640–2646

    Peng JT,Hu RZ,Zhao JH,Fu YZ,Yuan SD(2005)Rare earth element(REE)geochemistry for scheelite from the Woxi Au–Sb–W deposit,western Hunan.Geochimica 34:115–122(in Chinese with English abstract)

    Peng B,Frei R,Tu XL(2006)Nd–Sr–Pb Isotopic Geochemistry of Scheelite from the Woxi W–Sb–Au Deposit,Western Hunan Implications for Sources and Evolution of Ore-forming Fluids.Acta Geosci Sin80:561–570(in Chinese with English abstract)

    Peng JT,Zhang DL,Hu RZ,Wu MJ,Lin YX(2008)Sm–Nd and Sr Isotope Geochemistry of Hydrothermal Scheelite from the Zhazixi W–Sb Deposit,Western Hunan.Acta Geosci Sin 82:1514–1521(in Chinese with English abstract)

    Qi L,Hu J,Gregoire DC(2000)Determination of trace elements in granites by inductively coupled plasma mass spectrometry.Talanta 51:507–513

    Robb L(2005)Introduction to ore-forming processes.Blackwell Publishing House,London,p 373

    Smoliar MI,Walker RJ,Morgan JW(1996)Re–Os ages of group IIA,IIIA,IVA,and IVB iron meteorites.Science 271:1099–1102

    Song GX,Qin KZ,Li GM,Evans NJ,Chen L(2014)Scheelite elemental and isotopic signatures:implications for the genesis of skarn-type W-Mo deposits in the Chizhou Area,Anhui Province,Eastern China.Am Miner 99:303–317

    Stein HJ,Markey RJ,Morgan JW,Du A,Sun Y(1997)Highly precise and accurate Re–Os ages for molybdenite from the East Qinling molybdenum belt,Shaanxi Province,China.Econ Geol 92:827–835

    Sun HT,Li CJ,Wu H,Wang HJ,Qi SJ,Chen GM,Liu ZT,Gao P(2003)Introduction to the West KunLun metallogenic province.Geological Publishing House,Beijing(in Chinese)

    Voicu G,Bardoux M,Stevenson R,Jebrak M(2000)Nd and Sr isotope study of hydrothermal scheelite and host rocks at Omai,Guiana Shield:implications for ore fluid source and fl ow path during the formation of orogenic gold deposits.Miner Depos 35:302–314

    Wang C,Liu L,Che ZC,He SP,Li RS,Yang WQ,Cao YT,Zhu XH(2009)Zircon U–Pb and Hf isotopic from the east segment of Tiekelike tectonic belt:constrains on the timing of Precambrian basement at the southwestern margin of Tarim,China.Acta Geosci Sin 83:1647–1656(in Chinese with English abstract)

    Wang C,Liu L,He SP,Yang WQ,Cao YT,Zhu XH,Li RS(2013a)Early Paleozoic magmatism in west Kunlun:constraints from geochemical and zircon U–Pb–Hf isotopic studies of the Bulong granite.Chin J Geol 48:997–1014(in Chinese with English abstract)

    Wang YH,Len CB,Zhang XC(2013b)A-preliminary study on elemental geochemistry and geochronology of intermediateacidic intrusive rocks from Kukaazi Pb–Zn–Cu–W polymetallic deposit,Yecheng County,Xinjiang.Bull Mineral Petrol Geochem 32:736–745(in Chinese with English abstract)

    Xiao WJ,Windley BF,Chen HL,Zhang GC,Li JL(2002)Carboniferous-Triassic subduction and accretion in the western Kunlun,China:implications for the collisional and accretionary tectonics of the northern Tibetan Plateau.Geology 30:295–298

    Xiao XC,Wang J,Sun L,Song SG(2003)A further discussion of the Kudi ophiolite,west Kunlun,and its tectonic significance.Geol Bull China 22:745–750(in Chinese with English abstract)

    Xiao WJ,Windley BF,Liu DY,Jian P,Liu CZ,Yuan C,Sun M(2005)Accretionary tectonics of the Western Kunlun Orogen,China:a Paleozoic–Early Mesozoic,long-lived active continental margin with implications for the growth of southern Eurasia.J Geol 113:687–705

    Xiong DX,Sun XM,Shi GY,Wang SW,Gao JF,Xue T(2006)Trace elements,rare earth elements(REE)and Nd-Sr isotopic compositions in scheelites and their implications for the mineralization in Daping gold mine in Yunnan Province,China.Acta Petrol Sin 22:733–741(in Chinese with English abstract)

    Xu RH,Zhang YQ,Xie YW,Chen FK,Arnaud N(1994)A-discovery of an Early Paleozoic Tectono-magmatic Belt in the northern part of west Kunlun Mountains.Sci Geol Sin 29:313–328(in Chinese with English abstract)

    Xu ZQ,Yang JS,Li HB,Ji SC,Zhang ZM,Liu Y(2011)On the tectonics of the India-Asia collision.Acta Geosci Sin 85:1–33(in Chinese with English abstract)

    Xu ZQ,Dilek Y,Cao H,Robinson P,Ma CQ,Li HQ,Jolivet M,Roger F,Chen XJ(2015)Paleo-Tethyan evolution of Tibet as recorded in the east Cimmerides and west Cathaysides.J Asian Earth Sci 105:320–337

    Yin A,Harrison TM(2000)Geologic evolution of the Himalayan-Tibetan orogen.Annu Rev Earth Plnet Sci 28:211–280

    Yu XF,Sun FM,Li BL,Ding QF,Chen GJ,Ding ZJ,Chen J,Huo L(2011)Caledonian diagenetic and metallogenic events in Datong District in the western Kunlun:evidence from LA-ICP-MS zircon U–Pb dating and molybdenite Re-Os dating.Acta Petrol Sin 27:1770–1778(in Chinese with English abstract)

    Yuan C,Sun M,Zhou MF,Zhou H,Xiao WJ,Li JL(2002)Tectonic evolution of the West Kunlun:geochronologic and geochemical constraints from Kudi Granitoids.Int Geol Rev 44:653–669

    Yuan C,Sun M,Xiao WJ,Zhou H,Hou QL,Li JL(2003)Subduction polarity of the prototethys:insights from the Yirba pluton of the western Kunlun range,NW China.Acta Petrol Sin 19:399–408(in Chinese with English abstract)

    Zhang YQ,Xie YW(1989)A study on the Rb–Sr biotite isochron ages of the granitoid in the Sanshiliyingfang area of the Karakoram and Kunlun MTS,region.J Nat Resour 4:222–227

    Zhang CL,Yu HF,Shen JL,Dong YG,Ye HM,Guo K(2004)Zircon SHRIMP Age Determination of the Giant-crystal Gabbro and Basalt in Kuda,West Kunlun:dismembering of the Kuda Ophiolite.Geol Rev 50:639–643(in Chinese with English abstract)

    Zhang CL,Yu HF,Wang AG,Guo KY(2005)Dating of Triassic granites in the Western Kunlun mountains and its tectonic significance.Acta Geosci Sin 79:645–652(in Chinese with English abstract)

    Zhang CL,Lu SN,Yu HF,Ye H(2007)Tectonic evolution of the Western Kunlun orogenic belt in northern Qinghai-Tibet Plateau:evidencefrom zircon SHRIMP and LA-ICP-MS U–Pb geochronology.Sci China Ser D Earth Sci 50:825–835

    Zhang CL,Zou HB,Santosh M,Ye XT,Li HK(2014a)Is Precambrian basement of the Tarim Craton in NW China composed of discrete terranes?Precambrian Res 254:226–244

    Zhang XC,Wang YH,Leng CB,Zhang W,Xu LL,Zhu JJ,Chen YW(2014b)Geology,sulfur isotopes and scheelite Sm–Nd age of the Kukaazi Pb–Zn–(Cu–W)polymetallic deposit,Yecheng County,Xinjiang,China.Acta Geol Sin-Engl 88:244–246

    Zhang ZW,Shen NP,Peng JT,Yang XR,Feng GY,Yu F,Zhou LJ,Li YJ,Wu CQ(2014c)Syndeposition and epigenetic modifi cation of the strata-bound Pb–Zn–Cu deposits associated with carbonate rocks in western Kunlun,Xinjiang,China.Ore Geol Rev 62:227–244

    Zhang Y,Niu YL,Hu Y,Liu JJ,Ye L,Kong JJ,Duan M(2015)The syncollisional granitoid magmatism and continental crust growth in the West Kunlun Orogen,China—evidence from geochronology and geochemistry of the Arkarz pluton.Lithos 245:191–204

    露出奶头的视频| 久久久国产成人精品二区 | 宅男免费午夜| 日韩熟女老妇一区二区性免费视频| 久久精品国产亚洲av高清一级| 18禁美女被吸乳视频| 51午夜福利影视在线观看| 18在线观看网站| 日本wwww免费看| 亚洲成国产人片在线观看| 在线播放国产精品三级| 亚洲自偷自拍图片 自拍| 一级a爱视频在线免费观看| 精品人妻1区二区| 亚洲国产看品久久| 高清黄色对白视频在线免费看| 国产精华一区二区三区| 狂野欧美激情性xxxx| 久久国产精品人妻蜜桃| www日本在线高清视频| 欧美日韩精品网址| 极品少妇高潮喷水抽搐| videosex国产| 黄色片一级片一级黄色片| 在线播放国产精品三级| 国产精品乱码一区二三区的特点 | 国产在线精品亚洲第一网站| 色婷婷久久久亚洲欧美| av线在线观看网站| 国产真人三级小视频在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 两个人免费观看高清视频| 99在线人妻在线中文字幕 | 国产精品99久久99久久久不卡| 少妇粗大呻吟视频| 亚洲精品一二三| 老司机影院毛片| 国产精品九九99| 久久久久久久久久久久大奶| 欧美黄色淫秽网站| 国产xxxxx性猛交| 91精品三级在线观看| 国产三级黄色录像| 女警被强在线播放| 高潮久久久久久久久久久不卡| 香蕉久久夜色| 欧美+亚洲+日韩+国产| 韩国av一区二区三区四区| aaaaa片日本免费| 91字幕亚洲| 午夜成年电影在线免费观看| 午夜亚洲福利在线播放| 成人av一区二区三区在线看| 脱女人内裤的视频| 91麻豆av在线| 久久性视频一级片| 日本精品一区二区三区蜜桃| 身体一侧抽搐| 9191精品国产免费久久| 免费久久久久久久精品成人欧美视频| 男人的好看免费观看在线视频 | videos熟女内射| 国产精品一区二区在线不卡| 69精品国产乱码久久久| 亚洲精品美女久久久久99蜜臀| 又黄又粗又硬又大视频| 在线av久久热| 亚洲精品自拍成人| 中文字幕人妻丝袜制服| avwww免费| 欧美精品啪啪一区二区三区| 我的亚洲天堂| 久久草成人影院| 一进一出抽搐动态| 一级,二级,三级黄色视频| 国产精品美女特级片免费视频播放器 | 亚洲人成伊人成综合网2020| 日日夜夜操网爽| 亚洲国产精品合色在线| 精品亚洲成国产av| 精品久久久久久久毛片微露脸| 麻豆av在线久日| 精品久久蜜臀av无| 搡老熟女国产l中国老女人| 午夜精品国产一区二区电影| 天堂动漫精品| а√天堂www在线а√下载 | 亚洲全国av大片| 午夜福利乱码中文字幕| 夜夜爽天天搞| 免费久久久久久久精品成人欧美视频| 成年人午夜在线观看视频| 日韩制服丝袜自拍偷拍| 午夜福利免费观看在线| bbb黄色大片| 国产精品一区二区在线不卡| 久久香蕉精品热| 99re在线观看精品视频| 国产成人精品无人区| 女警被强在线播放| 看黄色毛片网站| 精品一区二区三区视频在线观看免费 | 精品国产国语对白av| 亚洲精品国产区一区二| 老汉色av国产亚洲站长工具| 亚洲色图 男人天堂 中文字幕| 色尼玛亚洲综合影院| 色婷婷久久久亚洲欧美| 精品一区二区三卡| 亚洲国产精品一区二区三区在线| 大码成人一级视频| 亚洲一区中文字幕在线| 日韩制服丝袜自拍偷拍| 久久国产乱子伦精品免费另类| 无遮挡黄片免费观看| 人妻一区二区av| 欧美黑人欧美精品刺激| 高清毛片免费观看视频网站 | 很黄的视频免费| 亚洲精品久久午夜乱码| 亚洲欧美激情在线| 久久久水蜜桃国产精品网| 丝袜人妻中文字幕| 久久影院123| 91九色精品人成在线观看| 午夜免费成人在线视频| 欧美日韩乱码在线| 成人三级做爰电影| 老司机亚洲免费影院| 又紧又爽又黄一区二区| 人妻 亚洲 视频| 日本a在线网址| 最新在线观看一区二区三区| 中文字幕精品免费在线观看视频| 国产又色又爽无遮挡免费看| 成人手机av| 久久ye,这里只有精品| av免费在线观看网站| 久久国产乱子伦精品免费另类| 国产成人欧美| 热99国产精品久久久久久7| 国产精品一区二区精品视频观看| 国产淫语在线视频| 欧美亚洲 丝袜 人妻 在线| 交换朋友夫妻互换小说| 亚洲国产中文字幕在线视频| 一级黄色大片毛片| 国产91精品成人一区二区三区| 色精品久久人妻99蜜桃| 国产在线精品亚洲第一网站| 精品电影一区二区在线| 黄色视频不卡| 日韩一卡2卡3卡4卡2021年| 王馨瑶露胸无遮挡在线观看| 午夜福利视频在线观看免费| 一夜夜www| 高清av免费在线| 色婷婷久久久亚洲欧美| 国产av一区二区精品久久| 人成视频在线观看免费观看| 国产在线精品亚洲第一网站| 国产一区有黄有色的免费视频| 狠狠婷婷综合久久久久久88av| 欧美丝袜亚洲另类 | 天天躁夜夜躁狠狠躁躁| 一级黄色大片毛片| 国产深夜福利视频在线观看| 午夜影院日韩av| 成年动漫av网址| 亚洲熟妇熟女久久| 中文字幕人妻丝袜制服| 国产黄色免费在线视频| 亚洲人成电影免费在线| 大码成人一级视频| 欧美久久黑人一区二区| av电影中文网址| 999久久久国产精品视频| 国产一卡二卡三卡精品| 在线观看免费日韩欧美大片| 日日夜夜操网爽| 久久久久久人人人人人| 性色av乱码一区二区三区2| 精品久久蜜臀av无| 欧美成人午夜精品| 欧美日韩亚洲综合一区二区三区_| e午夜精品久久久久久久| 国产在视频线精品| 国产真人三级小视频在线观看| 一区二区三区精品91| 欧美久久黑人一区二区| 亚洲伊人色综图| 欧美日韩亚洲综合一区二区三区_| 日本vs欧美在线观看视频| 国产男女内射视频| 久久久久精品国产欧美久久久| 大香蕉久久成人网| 十分钟在线观看高清视频www| 中文字幕高清在线视频| 亚洲精品一卡2卡三卡4卡5卡| 亚洲片人在线观看| 极品教师在线免费播放| 午夜精品久久久久久毛片777| 熟女少妇亚洲综合色aaa.| 国产亚洲精品一区二区www | 亚洲性夜色夜夜综合| 99国产精品一区二区蜜桃av | 在线观看www视频免费| 亚洲精品久久成人aⅴ小说| 国产免费现黄频在线看| 一级作爱视频免费观看| 9色porny在线观看| 欧美日韩av久久| 纯流量卡能插随身wifi吗| 免费少妇av软件| 亚洲,欧美精品.| 性色av乱码一区二区三区2| 三级毛片av免费| 久久国产精品人妻蜜桃| 一本大道久久a久久精品| 欧美国产精品va在线观看不卡| 波多野结衣av一区二区av| 免费人成视频x8x8入口观看| 两个人看的免费小视频| 午夜视频精品福利| 中文字幕另类日韩欧美亚洲嫩草| 黑人猛操日本美女一级片| 777久久人妻少妇嫩草av网站| 日韩欧美一区二区三区在线观看 | 伦理电影免费视频| 男人舔女人的私密视频| 欧美在线一区亚洲| 我的亚洲天堂| 大型黄色视频在线免费观看| 最近最新免费中文字幕在线| 777米奇影视久久| 欧美激情久久久久久爽电影 | 欧美日韩福利视频一区二区| 手机成人av网站| 在线观看一区二区三区激情| 18在线观看网站| 50天的宝宝边吃奶边哭怎么回事| 纯流量卡能插随身wifi吗| 国产av精品麻豆| 久久精品国产99精品国产亚洲性色 | 亚洲成av片中文字幕在线观看| 成人手机av| 777米奇影视久久| 老司机午夜福利在线观看视频| 真人做人爱边吃奶动态| 精品国产亚洲在线| 日韩欧美国产一区二区入口| 男女免费视频国产| 欧美中文综合在线视频| 手机成人av网站| 99国产精品免费福利视频| 69精品国产乱码久久久| 熟女少妇亚洲综合色aaa.| 亚洲精品一卡2卡三卡4卡5卡| 热99久久久久精品小说推荐| 成人亚洲精品一区在线观看| 免费看十八禁软件| 国产精品欧美亚洲77777| 一二三四在线观看免费中文在| 99热只有精品国产| 制服诱惑二区| 久久人人爽av亚洲精品天堂| 亚洲欧美激情在线| 日韩熟女老妇一区二区性免费视频| 99热国产这里只有精品6| 精品卡一卡二卡四卡免费| 日韩精品免费视频一区二区三区| 国产成人影院久久av| 免费一级毛片在线播放高清视频 | 激情在线观看视频在线高清 | www.精华液| 热re99久久精品国产66热6| 免费观看人在逋| 亚洲精品国产色婷婷电影| 91九色精品人成在线观看| 少妇粗大呻吟视频| 成熟少妇高潮喷水视频| 欧美日韩福利视频一区二区| www.熟女人妻精品国产| 国产免费男女视频| av线在线观看网站| 日韩三级视频一区二区三区| 亚洲av日韩在线播放| 成人黄色视频免费在线看| 日本vs欧美在线观看视频| 欧美最黄视频在线播放免费 | 搡老岳熟女国产| 成人免费观看视频高清| 在线观看免费日韩欧美大片| 黑人操中国人逼视频| 人妻一区二区av| 女人精品久久久久毛片| 国产亚洲精品久久久久久毛片 | 最新美女视频免费是黄的| 精品少妇一区二区三区视频日本电影| 国产欧美日韩精品亚洲av| 日韩一卡2卡3卡4卡2021年| 欧美精品亚洲一区二区| 国产精品九九99| 欧美丝袜亚洲另类 | 国产高清视频在线播放一区| 91av网站免费观看| 亚洲情色 制服丝袜| 99国产极品粉嫩在线观看| 日韩人妻精品一区2区三区| 久久ye,这里只有精品| 丰满饥渴人妻一区二区三| 免费观看人在逋| 国产aⅴ精品一区二区三区波| 国产精品影院久久| av网站免费在线观看视频| 亚洲av片天天在线观看| 国产蜜桃级精品一区二区三区 | 亚洲精品中文字幕在线视频| 久久九九热精品免费| 9191精品国产免费久久| 亚洲男人天堂网一区| 亚洲精品乱久久久久久| 一级毛片女人18水好多| 亚洲欧美色中文字幕在线| 午夜精品在线福利| 一边摸一边抽搐一进一出视频| 国产亚洲欧美在线一区二区| 国产男女内射视频| 亚洲伊人色综图| 大香蕉久久成人网| 色播在线永久视频| 国产欧美日韩精品亚洲av| 色综合欧美亚洲国产小说| 飞空精品影院首页| 国产男女超爽视频在线观看| 午夜成年电影在线免费观看| 啦啦啦免费观看视频1| 制服诱惑二区| 欧美乱色亚洲激情| 午夜福利,免费看| 少妇的丰满在线观看| 老汉色∧v一级毛片| 日本a在线网址| √禁漫天堂资源中文www| 12—13女人毛片做爰片一| 男女之事视频高清在线观看| 怎么达到女性高潮| 午夜福利乱码中文字幕| aaaaa片日本免费| 亚洲专区中文字幕在线| 久久久久国内视频| 欧美激情久久久久久爽电影 | 每晚都被弄得嗷嗷叫到高潮| 丝袜美腿诱惑在线| av天堂久久9| av中文乱码字幕在线| 国产欧美日韩综合在线一区二区| 国产视频一区二区在线看| 久久人妻福利社区极品人妻图片| 免费观看精品视频网站| 99国产精品免费福利视频| 国产亚洲欧美精品永久| 精品人妻1区二区| 成人手机av| 日韩免费高清中文字幕av| 日本精品一区二区三区蜜桃| 欧洲精品卡2卡3卡4卡5卡区| av天堂在线播放| 丝袜人妻中文字幕| 国产99久久九九免费精品| 欧美日本中文国产一区发布| 色尼玛亚洲综合影院| 91成人精品电影| 青草久久国产| 黄色 视频免费看| 亚洲国产欧美一区二区综合| 精品久久久精品久久久| 日韩三级视频一区二区三区| 美女福利国产在线| 亚洲精品美女久久久久99蜜臀| 黑人猛操日本美女一级片| 午夜福利视频在线观看免费| 亚洲一区高清亚洲精品| 亚洲少妇的诱惑av| 国产欧美日韩综合在线一区二区| 久久精品国产a三级三级三级| 最新在线观看一区二区三区| 国产在线一区二区三区精| 麻豆国产av国片精品| 亚洲欧美精品综合一区二区三区| 亚洲精品自拍成人| 午夜激情av网站| 免费观看人在逋| 日日爽夜夜爽网站| 免费在线观看完整版高清| 亚洲国产中文字幕在线视频| 日韩 欧美 亚洲 中文字幕| 美女扒开内裤让男人捅视频| 国产一区在线观看成人免费| 亚洲精品乱久久久久久| 999久久久国产精品视频| 很黄的视频免费| 亚洲国产欧美日韩在线播放| 麻豆av在线久日| 午夜两性在线视频| 最新的欧美精品一区二区| 国产乱人伦免费视频| 国产三级黄色录像| 黄色丝袜av网址大全| 国产不卡一卡二| 国产精品亚洲av一区麻豆| 91字幕亚洲| 18在线观看网站| 变态另类成人亚洲欧美熟女 | 久久久久国产精品人妻aⅴ院 | www.熟女人妻精品国产| 国产精品二区激情视频| 91大片在线观看| 国产精品久久久人人做人人爽| 女人被狂操c到高潮| 国产男靠女视频免费网站| 久久香蕉激情| 亚洲午夜精品一区,二区,三区| 人妻一区二区av| 在线观看日韩欧美| 好看av亚洲va欧美ⅴa在| 嫩草影视91久久| 日本a在线网址| 久久这里只有精品19| 午夜日韩欧美国产| 日韩制服丝袜自拍偷拍| 在线天堂中文资源库| 成人国语在线视频| 午夜两性在线视频| 他把我摸到了高潮在线观看| 操出白浆在线播放| 亚洲一区中文字幕在线| 99re6热这里在线精品视频| 欧美黄色淫秽网站| 一二三四在线观看免费中文在| 精品人妻熟女毛片av久久网站| 久久久久久亚洲精品国产蜜桃av| 国产野战对白在线观看| 亚洲综合色网址| 国产一区在线观看成人免费| 国产精品亚洲av一区麻豆| 丰满饥渴人妻一区二区三| 两性夫妻黄色片| 女人爽到高潮嗷嗷叫在线视频| 亚洲av日韩精品久久久久久密| 精品久久久精品久久久| 丝袜美腿诱惑在线| 日本vs欧美在线观看视频| 精品一区二区三卡| 精品午夜福利视频在线观看一区| 9热在线视频观看99| 欧美日韩乱码在线| 在线观看免费视频日本深夜| 丝袜人妻中文字幕| 成人国产一区最新在线观看| 中文欧美无线码| 999久久久国产精品视频| 国产成人欧美在线观看 | 国产成人欧美在线观看 | 自拍欧美九色日韩亚洲蝌蚪91| 国产欧美日韩一区二区三| 多毛熟女@视频| 80岁老熟妇乱子伦牲交| 国产成人啪精品午夜网站| 国产在线一区二区三区精| 免费在线观看黄色视频的| 亚洲精品中文字幕在线视频| 后天国语完整版免费观看| 老司机靠b影院| 天天添夜夜摸| 少妇猛男粗大的猛烈进出视频| 涩涩av久久男人的天堂| 精品无人区乱码1区二区| 亚洲av成人不卡在线观看播放网| 日本wwww免费看| 精品人妻1区二区| 女人久久www免费人成看片| 亚洲成人手机| 亚洲精品久久成人aⅴ小说| 少妇的丰满在线观看| 精品亚洲成a人片在线观看| 久9热在线精品视频| 美女国产高潮福利片在线看| 欧美日韩亚洲综合一区二区三区_| 在线观看舔阴道视频| 午夜福利免费观看在线| 午夜91福利影院| 一个人免费在线观看的高清视频| 国产片内射在线| 日韩欧美一区视频在线观看| 啪啪无遮挡十八禁网站| 成年人午夜在线观看视频| 亚洲av日韩在线播放| 女性被躁到高潮视频| 国产成人精品无人区| av免费在线观看网站| 一级片免费观看大全| 美女福利国产在线| 精品国产乱码久久久久久男人| 国产成人免费无遮挡视频| 成人免费观看视频高清| 亚洲一区二区三区不卡视频| 久久人妻福利社区极品人妻图片| 成人永久免费在线观看视频| 欧美午夜高清在线| 国产精品免费大片| 国产主播在线观看一区二区| 国产极品粉嫩免费观看在线| 亚洲精品成人av观看孕妇| 超色免费av| 国产无遮挡羞羞视频在线观看| 成年人黄色毛片网站| 美女视频免费永久观看网站| 成人黄色视频免费在线看| 亚洲国产精品合色在线| av超薄肉色丝袜交足视频| 国产精品99久久99久久久不卡| 日韩大码丰满熟妇| 精品国产超薄肉色丝袜足j| 欧美日韩视频精品一区| 欧美日韩亚洲高清精品| 亚洲一卡2卡3卡4卡5卡精品中文| 成人国产一区最新在线观看| 十分钟在线观看高清视频www| 天天影视国产精品| 国产成人一区二区三区免费视频网站| 国产男靠女视频免费网站| 国产成人一区二区三区免费视频网站| 自线自在国产av| 18在线观看网站| 久久精品国产综合久久久| 国产一区在线观看成人免费| 高清在线国产一区| 日韩 欧美 亚洲 中文字幕| 多毛熟女@视频| 国产一卡二卡三卡精品| 人人澡人人妻人| 人妻丰满熟妇av一区二区三区 | 亚洲精品在线观看二区| 亚洲五月婷婷丁香| 国产精品久久久久久精品古装| 69精品国产乱码久久久| 黑人巨大精品欧美一区二区mp4| 男女之事视频高清在线观看| av免费在线观看网站| 99riav亚洲国产免费| 在线观看免费视频日本深夜| 国产精品成人在线| 下体分泌物呈黄色| 午夜福利在线观看吧| 日韩中文字幕欧美一区二区| 国产亚洲精品久久久久5区| 久久久久国产精品人妻aⅴ院 | 精品少妇久久久久久888优播| 亚洲,欧美精品.| 看免费av毛片| 国产一区二区三区综合在线观看| 99热网站在线观看| 亚洲国产精品sss在线观看 | 日韩制服丝袜自拍偷拍| 欧美乱妇无乱码| 一边摸一边抽搐一进一出视频| 狠狠婷婷综合久久久久久88av| 欧美日韩精品网址| 老鸭窝网址在线观看| 色综合婷婷激情| 亚洲五月色婷婷综合| 18禁国产床啪视频网站| 亚洲第一欧美日韩一区二区三区| 国产成人欧美| 精品人妻熟女毛片av久久网站| 美女扒开内裤让男人捅视频| 韩国精品一区二区三区| 欧美精品一区二区免费开放| 欧美乱码精品一区二区三区| avwww免费| 日韩欧美三级三区| 老司机午夜福利在线观看视频| 丰满饥渴人妻一区二区三| 久久久久国内视频| 777久久人妻少妇嫩草av网站| 搡老岳熟女国产| 夜夜夜夜夜久久久久| 又紧又爽又黄一区二区| 国产精品久久久久久人妻精品电影| 中文字幕高清在线视频| 女性生殖器流出的白浆| 看免费av毛片| 高清视频免费观看一区二区| 最近最新中文字幕大全电影3 | 黄网站色视频无遮挡免费观看| 电影成人av| 欧美性长视频在线观看| 久久中文字幕一级| 王馨瑶露胸无遮挡在线观看| www.999成人在线观看| 99国产精品99久久久久| cao死你这个sao货| 岛国在线观看网站| 国产精品一区二区在线观看99| 老熟妇乱子伦视频在线观看| 国产欧美日韩一区二区精品| 十八禁高潮呻吟视频| 脱女人内裤的视频| 久久精品国产清高在天天线| 脱女人内裤的视频| 亚洲片人在线观看| 精品少妇久久久久久888优播| 国产成人精品在线电影| 激情在线观看视频在线高清 |