• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Elemental characteristics and paleoenvironment reconstruction:a case study of the Triassic lacustrine Zhangjiatan oil shale,southern Ordos Basin,China

    2018-03-28 03:16:58DeluLiRongxiLiZengwuZhuXiaoliWuFutianLiuBangshengZhaoJinghuaChengBaopingWang
    Acta Geochimica 2018年1期

    Delu Li?Rongxi Li?Zengwu Zhu?Xiaoli Wu?Futian Liu?Bangsheng Zhao?Jinghua Cheng?Baoping Wang

    1 Introduction

    Oil shale,as one of the most important unconventional petroleum resources,has attracted much attention in recent years(Liu and Liu 2005;Lu¨et al.2015;Hakimi et al.2016;Song et al.2016).In general,shale with over 3.5%oil yield is defined as oil shale,and can release thermal energy and shale oil by low temperature carbonization(Fu et al.2015;Liu et al.2015).Prior research on oil shale has mainly focused on the marine environment,especially in northern China—including the Cretaceous oil shale in Qiangtang Basin(Fu et al.2007,2010a,b,2015,2016;Wang et al.2010),middle-upper Neoproterozoic oil shale in Yanshan Region(Bian et al.2005;Liu et al.2011),etc.Based on elemental geochemistry,the oil shale in Qiangtang Basin was deposited in a tropical-subtropical environment(Fu et al.2009;Wang et al.2010).The Qiangtang oil shale formed at the edge of a gulf-lagoon,with fresh water input and high paleoproductivity(Fu et al.2007;Wang et al.2010);petrography and geochemistry indicate that hydrothermal fluid has impacted its formation(Sun et al.2003;Chen and Sun 2004;Chen et al.2004).Major and trace element analyses suggest hydrothermal activity was frequent during sedimentation of the Xiamaling Formation oil shale in the middle-upper Neoproterozoic(Sun et al.2003).Lacustrine oil shale is widely distributed across China(Bai and Wu 2006;Bai et al.2015;Liu et al.2006).However,most previous studies have concentrated on calculating reserves(Bai and Wu 2006;Bai et al.2009;Lu et al.2006).Elemental and mineral characteristics of lacustrine oil shales,and implications for paleoenvironment,are badly in need of additional investigation.

    Fig.1 a Geologic map of the Ordos Basin and location of studied section(Li et al.2016)and b stratigraphic column of Upper Triassic Yanchang Formation in study area(modifi ed after Qiu et al.2014)

    A typical lacustrine oil shale in China,the Zhangjiatan oil shale of the Triassic Yanchang Formation in the southern Ordos Basin has many merits,such as wide distribution,abundance,and shallow burial(Lu et al.2006;Bai et al.2009;Li et al.2009a,b,2014;Chang et al.2012;Wang and Yan,2012;Deng et al.2013;Luo et al.2014).Organic geochemistry analyses show that the Zhangjiatan oil shale in Chang 7 Member of the Yanchang Formation is dominated by organic matter type II1and approaches mature designation(Liu et al.2009;Ma et al.2016;Wei et al.2016).However,few studies have focused on elemental geochemistry of the oil shale,particularly occurrence of trace elements.Although faunal data,framboidal pyrite,and the ratio of organic carbon to total phosphorus in the oil shale indicate deposition was dominated by oxidizing conditions(Yang et al.2010;Yuan et al.2016),biomarkers have shown reducing conditions(Deng et al.2013).Additionally,discussions of oil shale paleosalinity are still unsettled(Luo et al.2014),with a possible marine transgression event in the southern Ordos Basin.Elemental geochemistry of some oil shale outcrop samples,focusing on Tongchuan City in southern Ordos Basin,has improved understanding of the paleoenvironment(Sun et al.2015).However,two concentrated oil shale samples from one location do not necessarily re fl ect the entire southern Ordos Basin as weathering and alteration can significantly impact elemental characteristics of samples.

    Fig.2 Simplified geologic map of study area,showing the location of drill holes(modified after Ma et al.2016)

    In order to improve understanding,we evaluated the quality of oil shale and the occurrence mode of trace elements.Then,by using the speci fi c or calculated value,paleoenvironment was reconstructed.Finally,relationships between single elements and paleoenvironment were analyzed to determine the indicators of paleoenvironment of the lacustrine oil shale.This study fills gaps of lacustrine oil shale elemental geochemistry in the southern Ordos Basin and should help guide future exploration.

    2 Geologic setting

    The Ordos Basin is a superimposed basin with stable deposition and multiple sedimentary cycles(Fig.1a)located in mid-western China(Liu et al.2008).The Ordos formed as a marine basin of the North China Block by the Carboniferous to Permian and has a Proterozoic crystalline basement(Wan et al.2013;Qiu et al.2015).After the Triassic,the basin gradually departed from the North China Block and evolved into a large inland sedimentary basin with a relatively quiettectonic setting (Lietal.2006,2008).Affected by the Indosinian Orogeny,the whole basin gradually uplifted and subducted in the Early Cretaceous and underwent reformation.According to present tectonic characteristics,basement features and evolutionary history,the basin is divided into six first-order tectonic units:the Weibei Uplift,Yishan Slope,Yimeng Uplift,Jinxi Flexure Zone,Tianhuan Depression,and Western Thrusted Zone.The Triassic Yanchang Formation went through an integrated occurrence-extinction period and deposited a set of progradation aggradation retrogradation strata with a thickness of 1000–1300 m(Wu et al.2004;Li et al.2009a,b;Zou et al.2012).According to sedimentary cycles and rock assemblages,the Yanchang Formation can be further divided into 10 Members:Chang 10 to Chang 1(Qiu et al.2010).During the initial stage of Chang 7,due to extension and sinking of the basin along with orogenies and paroxysmal eruption in the south,the lake reached its largest size(Qiu et al.2015).There are two sets of oil shale in the Yanchang Formation,namely the Zhangjiatan at the bottom of Chang 7 with a thickness of 20–30 m(Wang and Yan 2012)and the Lijiapan(Wang and Yan 2012;Dong et al.2014)at the top of Chang 9 with a thickness of 5–15 m.The Zhangjiatan is the main Mesozoic oil reservoir in the Ordos Basin(He 2003;Deng et al.2013;Li et al.2016).

    Fig.3 Zhangjiatan oil shale sections,showing sampling locations

    The study area is located in the Weibei Uplift,southern Ordos Basin.Due to the Indosinian Orogeny in the Late Triassic and the later Yanshan Orogeny,the study area experienced unbalanced uplift and lacks upper Yanchang strata.The bottom of Chang 7 contains oil shale,shale,mudstone,and silty mudstone(Fig.1b).Shallow burial conditions and the significant thickness of the Zhangjiatan make it economically viable.Understanding the Zhangjiatan may improve oil shale exploration.

    3 Samples and analytical methods

    A total of 16 samples were collected from three oil shale sections in the lower Chang 7 Member in the southern Ordos Basin(Figs.2,3).All samples were analyzed for oil yield(Tad),ash yield(Ad),calorific value(Qb,ad),total sulfur(St,d),major element oxides,and trace elements.Four samples were tested by X-ray diffraction(XRD)for mineral content.

    For the oil yield analysis,samples were ground to a particle size of less than 3 mm,then 50 g of each sample was enclosed in aluminum retort by low temperature carbonization for analysis.The procedure followed the Chinese standard methods SH/T 0508-1992(1992).

    The ash content analysis used the slow-ashing method.Each sample of about 1 g was ground to less than 0.2 mm and tiled to a cupel.Then the cupel was heated to 815 ± 10°C in a muf fl e furnace until the residue content stabilized.We followed the Chinese standard methodsGB/T 212-2008(2008a,b).Precisionwas within 5%.

    Fig.4 Relationships between key parameters of oil shale and silty mudstone samples

    Table 1 Mineral content tested by XRD in oil shale samples(%)

    For the determination of calorific value,samples of 1 g with grain size below 0.2 mm were put into a combustion boat and ignited electrically by oxygen with a purity of more than 99.5%.After 6–7 min,temperatures were recorded for 3 min at 1-min intervals and the highest temperature was recorded as the fi nal temperature.The analytical method followed the Chinese National Standard GB/T 213-2008(GB/T 2008a,b).Analytical error was within 5%.

    The samples for total sulfur analysis were powdered to less than 100 μm and heated in a pipe furnace to 1250 ± 20°C with fluxing agent of cupric oxide powder.The method followed Chinese National Standard GB/T 6730.17-2014(2014).

    For mineral content analysis,XRD was performed with a D8 ADVANCE powder diffractometer.The analytical procedures followed Chinese National Standard SY/T 6210-1996(1996)and the precision was within 1%.

    The above analyses were conducted at Shaanxi Coal Geological Laboratory Co.,Ltd.

    The samples for element analysis were all powdered to less than 200 mesh,and analyzed by X-ray fluorescence spectrometry(XRF)for major elements and inductively coupled plasma–mass spectrometry(ICP-MS)for traceelements with AA-6800 atomic absorption spectroscopy,UV-2600 ultraviolet–visible spectrophotometer and Perkin Elmer SciexElan 6000.The analytical procedures followed Chinese National Standard GB/T 14506.1~14-2010(2010)and GB/T 14506.30-2010(2010).Analytical precision was within 5%.The analyses were conducted at the Analytical Center,No.203 Research Institute of Nuclear Industry.

    Fig.5 Zhangjiatan oil shale outcrops of Bawang zhuang Proifle in Tongchuan City,southern Ordos Bain

    Table 2 Clay mineral content in oil shale samples(units in%)

    Table 3 Oil yield,calori fi c value,ash yield,total sulfur,and major elements in oil shale samples(units of Qb,ad are MJ/kg;others are%)

    4 Results

    4.1 The industrial quality of shale

    In resource assessment of oil shale,four key parameters(oil yield,calori fi c value,ash yield,and total sulfur)are always considered(Liu et al.2009).Oil yields of oil shale samples are in the range of 4.3%–9.1%(average 6.63%)and calorific values are from 3.85 to 9.49 MJ/kg(average 6.73 MJ/kg).The better the quality,the higher the values of the two parameters(Liu et al.2009;Zhang et al.2013;Sun et al.2015).Ash yields of oil shale samples range from 68.15%to 86.08%(average 76.93%)and total sulfur from 2.47%to 7.48%(average 4.98%).The better the quality,the lower the value of these two parameters(Liu et al.2009;Zhang et al.2013;Sun et al.2015).We found that oil yield correlated positively with calorific value(Fig.4a)and total sulfur(Fig.4b)and negatively with ash yield(Fig.4c).Meanwhile,superb negative correlation was observed between calorific value and ash yield(Fig.4d).According to National Resource Assessment of Oil shale(Dong et al.2006),oil shale is classified as low,middle,and high grade by oil yield of 3.5%–5%,5%–10%,and>10%,respectively.Thus,the oil shale in the southern Ordos Basin is middle grade.

    Fig.6 Relationships among SiO2,Al2O3,K2O,and TiO2 concentrations in oil shale and silty mudstone samples

    4.2 Minerals in oil shale

    The minerals identi fi ed by XRD in oil shale samples were clay minerals,quartz,feldspar,and pyrite(>5%)with minor amounts of calcite,siderite,ankerite,gypsum,and jarosite(Table 1).Pyrite was mostly in the form of nodules(Fig.5a).For clay minerals,mixed-layer illite/smectite was predominant,followed by illite(Table 2).Kaolinite and chlorite were measured in trace amounts(Table 2).Compared with marine oil shale,these samples had higher contents of quartz,feldspar,and clay minerals,and much lower average content of calcite(data from 13 marine oil shale samples in Quse Formation of the Early Jurassic,Qiangtang Depression show average quartz:12.72%;feldspar:3.38%;clay minerals:14.28%;calcite:68.53%,)(Fu et al.2016).The relatively low calcite and high clay mineral contents are likely associated with terrigenous clastic input(Yu and Zhu,2013;Zeng et al.2013,2014;Xie et al.2014).

    4.3 Major element geochemistry

    Major elements can be used to construct associations between elements and minerals in oil shale,as demonstrated by prior study(Fu et al.2010a,b).Table 3 lists major element concentrations of the oil shale samples.Average contents of SiO2(47.28%),Al2O3(13.13%),and TFe2O3(6.00%)were relatively high and the rest were relatively low(<5%).Some major elements show positive correlation with ash yield at95%confidence level,suchas Si(r=0.978),Al(r=0.571),Mg (r=0.574),Ca (r=0.397),Na(r=0.683),K (r=0.719),Mn(r=0.123),and Ti(r=0.355),indicating that these elements have relationships with minerals.P2O5(r=0.654)and TFe2O3(r=0.836)show positive correlation with oil yield,suggesting P and Fe are mainly associated with organic matter.

    Fig.7 Relationships between TFe2O3concentration and total sulfur,oil yield,SiO2,and Al2O3concentrations in oil shale and silty mud stone samples

    The elements Si,Al,Ti,and K have some connection with quartz,feldspar,and clay minerals(Fu et al.2010a,b).Relatively higher correlations among them(Fig.6)illustrate that they mainly stem from a mixed clay assemblage,in accordance with clay mineral analysis.The Al/Si ratio can reflect the source of SiO2(Fu et al.2010a,b).The Al/Si of oil shale samples varied from 0.26 to 0.37(average 0.32),implying most SiO2is in the form of quartz,with some as clay minerals,which is consistent with the high abundance of quartz in XRD analysis.

    The element Fe is generally associated with pyrite in oil shale(Fu et al.2010a,b).The significantly positive correlation between TFe2O3and total sulfur indicates a high proportion of Fe arising from sulfide oxidation and organic sulfur as the dominant component of total sulfur(Fig.7a).This is corroborated by the positive correlation between TFe2O3and oil yield(Fig.7b).TFe2O3showed negative correlations with SiO2and Al2O3(Fig.7c,d),indicating a low frequency of iron in the clay minerals,which contrasts with observations made of marine oil shale(Fu et al.2010a,b).Moreover,according to XRD,there was a small amount of Fe present as siderite,ankerite,and jarosite,demonstrating the occurrence of segmental Fe.

    Calcium presents in various forms(Mukhopadhyay et al.1998).In marine oil shale,a high abundance of calcite indicates that Ca is associated with calcite(Fu et al.2016).However,in the Zhangjiatan oil shale samples,the calcite content was relatively low,suggesting different forms of Ca are present.Low correlation(r=0.396)between CaO and Al2O3suggests presence of Ca not only in clays,but also in other minerals.XRD analysis showed Ca in gypsum.Generally,low CaO content indicates sparse fossil remains in oil shale(Mukhopadhyay et al.1998).Fish fossil remains observed in Zhangjiatan samples(Fig.5b)support Ca being of biological origin.

    Table 4 Trace element contents(ppm)and corresponding UCC values

    4.4 Trace element geochemistry

    The trace element contents of samples are presented in Table 4.Ba,Sr,V,Zr,Cu,Rb,and Zn were in relatively high abundance(>100 ppm on average).Compared with the average value of the upper continental crust(UCC)(McLennan 2001),As,U,Cd,and Mo were highly enriched,while Sr,Nd,and Ta were depleted.Element enrichment was quanti fi ed by the enrichment factor(EF):EF=(X/Al)sample/(X/Al)ucc.All analyzed trace elements from oil shale samples were classified into three groups by EF(Fig.8;Table 5):(1)Cu,As,U,Cd,Bi,and Mo(average EF≥5);(2)Cr,Ba,Sc,V,Zn,Ga,Pb,Rb,Cs,Th,Co,Ni,Hf,Li,In,and B(1≤average EF<5);and(3)Sr,Zr,Nb,Ta,and Be(average EF<1).In general,Cu is associated with biological growth and Mo with chalcophile elements(Sun et al.2015).The highly enriched Cu and Mo imply that there was high productivity during oil shale formation.The extremely high U concentration in oil shale is probably due to redox conditions(Cao et al.2012;Bai et al.2015).

    Fig.8 Spider diagram of trace elements of oil shale samples

    Ba content gradually decreases and can reflect organic matter lakeshore(Sun et al.1997).In addition,Ba is often associated with paleoproductivity and can reflect organic matter content(Sun et al.1997).The average EF of Ba(1.34)in this study indicates that the oil shale was deposited in a depocenter with high organic matter.

    The Sr EF of oil shale samples was higher than that of mudstone from Chang 6 to Chang 3 in the southern Ordos Basin(EF<1.0;Qiu et al.2015).Increased Sr is usually associated with increased salinity and calcite(Zhang et al.2004).This suggests the paleosalinity of southern Ordos Basin water gradually reduced after Chang 7 deposition.In addition,the EF of U in oil shale samples(Table 5)was clearly higher than that in mudstone from Chang 6 to Chang 3(EF just above 1.0),suggesting that reducibility of water gradually declined.Compared with marine oil shale from Bilong Co in China(Fu et al.2016),lacustrine oil shale from Chang 7 returned a significantly lower EF of Sr and higher EF of U.The variation of EF may be due to mineral content,water depth,redox conditions,or paleoclimate(Zhang et al.2004,2011;Ma et al.2016).

    5 Discussion

    5.1 Element associations

    Vertical distributions of selected elements are shown in Fig.9.Compared with silty mudstone,most oil shale samples returned high Cu,U,and V concentrations and low Al and Si concentrations.The variations of Fe,Cu,U,and V roughly paralleled oil yield and total sulfur,indicating that the four elements are closely associated with organic matter.The vertical distributions of Al and Si are similar to that of ash yield,suggesting quartz and clay minerals are the bases of ash yield and Si is present in clay minerals.The element patterns are relatively consistent,indicating that these elements are controlled by a common sedimentary environment(Fu et al.2010a,b,c).

    According to the established sedimentary cycle of the Yanchang Formation,the lake reached its largest scale during oil shale deposition(He 2003),leading to different sedimentary environments between oil shale and silty mudstone.The variation of environment may have in fl uenced the presence of Al and Si.

    Correlation coefficients and tree diagrams in cluster analysis help quantify correlations and attribute relationships in samples by grouping samples to optimize withingroup similarity(Zhu et al.2000;Zhao et al.2015).Statistical Program for Social Sciences(SPSS)version 20.0 developed by IBM was used to analyze element associations.By cluster analysis,trace elements,major elements,total sulfur,oil yield,and ash yield were classi fi ed into two groups(Fig.10).

    Group A includes total sulfur,Fe,Cu,U,V,Sr,Ba,Zn,Ga,As,Mo,Pb,Cd,Cs,Na,P,Ca,Mn,and Tad.The correlation coefficients of Fe-Cu(0.918),U-Cu(0.944),and V-Cu(0.847)were all higher than 0.80,indicating aclose relationship among Fe,Cu,U,and V(Table 6).Elements from this group generally had negative correlation coefficients with ash yield(15 out of 17 elements had negative correlation,with values ranging from-0.890 to 0.277)and generally positive correlation coefficients with oil yield(12 out of 17 elements had positive correlation,with values ranging from-0.424 to 0.566)(Table 6).The positive correlations with oil yield indicate that these elements are mainly associated with organic matter.Previous research has suggested an extremely high positive correlation between total organic carbon and oil shale yield(Liu et al.2009;Zhang et al.2013).

    Table 5 Enrichment factors of trace elements

    Group B includes Tad,Si,K,Rb,Be,In,Hf,Th,Mg,Ti,Ni,B,Cr,Al,Li,Co,Nb,Ta,Bi,Zr,and Sc.These elements generally had positive correlation coefficients with ash yield(13 out of 17 elements had positive correlation,with values ranging from-0.469 to 0.954)and generally negative correlation with oil yield(14 out of 17 elements had negative correlation,with values ranging from-0.707 to 0.326)(Table 6).In addition,the elements in this group showed a positive relationship with Al(with the exception of Bi),indicating a terrigenous source.

    Fig.9 Vertical variation of oil yield,total sulfur,ash yield,certain trace elements,and major elements in oil shale sections(trace elements in ppm,others in%)

    5.2 Reconstruction of paleoenvironment

    Previous studies have suggested that the ratios and calculated values of certain elements can be used to reconstruct lacustrine paleoenvironment(Fan et al.2012;Bai et al.2015;Sun et al.2015;Fu et al.2016;Jema?¨et al.2016).

    The Sr/Cu ratio is sensitive to paleoclimate(Deng and Qian 1993;Fu et al.2010a,b,c;Liang et al.2015).Sr/Cu ratios from 1.3 to 5.0 indicate a warm and humid paleoclimate;>5.0,dry and hot.Sr/Curatios of our oil shale samples ranged from1.01to12.16,with an average of3.26(Table 7),implying that the integral paleoclimate was warm and humid.

    Fig.10 Cluster analysis of major elements,trace elements,oil yield,ash yield,and total sulfur in oil shale samples(cluster method,Furthest Neighbor;interval,Person correlation;transform values,maximum magnitude of 1)

    The Ba/Al ratio can be used to semiquantitatively reconstruct paleoproductivity of lakes(Dean et al.1997;Luo et al.2013).Higher values are associated with higher paleoproductivity;a ratio of 0.010 to 0.012 has been designated as high productivity(Dean et al.1997;Sun et al.2015).Ba/Al in our samples varied from 0.005 to 0.012,with an average of 0.009(Table 7),suggesting relatively high paleoproductivity.

    The Sr/Ba ratio can be used to reconstruct paleosalinity(Wang et al.1979,2014;Wang and Wu 1983;Li and Chen 2003;Guo et al.2015;Li et al.2015).Sr/Ba>1,0.6–1,and<0.6 re fl ect sea water,brackish water,and fresh water,respectively.Sr/Ba ratios of our samples were generally lower than 1.0(from 0.27 to 0.69,with an average of 0.38)(Table 7),suggesting that the oil shale mainly formed in fresh water.This could support the opinion that there was no large-scale marine transgression in the southern Ordos Basin during the Triassic(Yin and Lin 1979;Zhang 1984;Zhang et al.2011;Qiu et al.2015).

    V,Ni,U,and Th are sensitive to redox conditions and V/(V+Ni),U/Th,AU(U-Th/3),and δU(2U/(Th/3+U))can reflect paleo-redox conditions(Ernst 1970;Deng and Qian 1993;Jones and Manning 1994;Dypvik and Harris 2001;Teng et al.2005;Tribovillard et al.2006;Zhao et al.2016a,b).V/(V+Ni) <0.5 and δU<1 both indicate oxidation conditions;V/(V+Ni)>0.5 and δU>1,reducing conditions(Deng and Qian 1993;Zhao et al.2016a,2016b).Strong oxidation conditions are reflected by U/Th<0.75 and AU<5 ppm;strong reducing conditions by U/Th>1.25 and AU>12 ppm;intermediate values indicate weak oxidation–weak reducing conditions(Qiu et al.2015;Sun et al.2015).Average values of V(V+Ni),δU,U/Th,and AU in oil shale samples were 0.88,1.71,3.13,and 35.32 ppm,respectively(Table 7),indicating that the Zhangjiatan oil shale was mainly deposited in reducing conditions.

    The Fe/Ti ratio can be used to measure hydrothermal influence(Bostro¨m 1983;Zhong et al.2015;Chuet al.2016).Fe/Ti>20 reflects definite hydrothermal influence,with higher values indicating greater influence(Chu et al.2016).Sixsamples(ZK702H14,ZK702H18,ZK702H24,ZK702H32ZK1501H3,and ZK1501H6)from the eastern study area had Fe/Ti>20(Table 7),meaning there was hydrothermal influence during oil shale sedimentation. However, three samples(ZK2709H3,ZK2709H6,and ZK2709H8)from the western study area had Fe/Ti<20(Table 7),indicating less hydrothermal influence.

    6 Conclusions

    The oil yields of Zhangjiatan oil shale samples ranged from 4.3%to 9.1%(average 6.63%),classifying the oil shale as middle grade.

    Minerals in the oil shale were mainly clay minerals,quartz,feldspar,and pyrite(>5%),with illite/smectite dominating the clay minerals.In contrast with marine oilshale,quartz,feldspar,and clay minerals in lacustrine oil shale were clearly higher while calcite content was much lower.Si mainly occurred in quartz and in clay minerals.Fe was mainly associated with organic matter and barely present in the clay minerals,which is opposite to marine oil shale.Ca occurred in various forms.

    Table 6 Correlation coefficients of oil yield,calorific value,ash yield,total sulfur,and major elements in oil shale samples

    Table 7 Parameters of paleoenvironment

    According to cluster analysis,Fe,Cu,U,V,Sr,Ba,Zn,Ga,As,Mo,Pb,Cd,Cs,Na,P,Ca,and Mn were generally associated with organic matter,while Si,K,Rb,Be,In,Hf,Th,Mg,Ti,Ni,B,Cr,Al,Li,Co,Nb,Ta,Bi,Zr,and Sc were not;all showed a positive relationship with Al(with the exception of Bi),indicating these elements are closely associated with a terrigenous source.

    The Sr/Cu ratio of oil shale samples ranged from 1.01 to 12.16,with an average of 3.26,indicating a warm and humid paleoclimate.Ba/Al was between 0.005 and 0.012,suggesting that paleoproductivity was high.Sr/Ba varied from 0.27 to 0.69,suggesting that the oil shale was mainly deposited in fresh water and there was no large-scale marine transgression in the southern Ordos Basin.The average values of V/(V+Ni),U/Th,AU,and δU of oil shale samples were 0.88,3.13,35.32 ppm,and 1.71,respectively,indicating that the shale was mainly deposited under reducing conditions.The Fe/Ti ratio of the six oil shale samples from the southern study area was>20,indicating clear hydrothermal influence;the ratio of samples from the western study area was<20,suggesting lesser hydrothermal influence.

    AcknowledgementsThis work was supported by funding from the National Natural Science Foundation of China(No.41173055)and the Fundamental Research Funds for the Central Universities(No.310827172101).

    Bai YL,Wu WJ(2006)The resource characteristics of oil shale and analysis of condition of prospecting and using in Minhe Basin,west China.Nat Gas Geosci 17(5):627–633(in Chinese with EnglishAbstract)

    Bai YL,Ma L,Wu WJ,Ma YL(2009)Geological characteristics and resource potential of oil shale in Ordos basin.Geol China 36(5):1123–1137(in Chinese with English abstract)

    Bai Y,Liu Z,Sun P,Liu R,Hu X,Zhao H,Xu Y(2015)Rare earth and major element geochemistry of Eocene fine-grained sediments in oil shale-and coal-bearing layers of the Meihe Basin,Northeast China.J Asian Earth Sci 97(97):89–101

    Bian LZ,Zhang SC,Zhang BM,Wang DR(2005)Red algal fossils discovered from the Neoproterozoic xiamaling oil shales,Xiahuayuan town of Hebei province.Acta Micropalaeontologica Sin 22(3):209–216(in Chinese with English abstract)

    Bostro¨m K(1983)Genesis of ferromanganese deposits-diagnostic criteria for recent and old deposits.In:Rona PA,Bostro¨m K,Laubier L,Smith KL(eds)Hydrothermal processes at sea fl oor spreading centers.Springer,New York,pp 473–489

    Cao J,Wu M,Chen Y,Hu K,Bian LZ,Wang LG,Zhang Y(2012)Trace and rare earth element geochemistry of Jurassic mudstones in the northern Qaidam Basin,northwest China.Chem Erde-Geochem 72:245–252

    Chang Y,Liu RH,Bai WH,Sun SS(2012)Geologic characteristic and regular pattern of Triassic oil shale south of Ordos Basin.China Pet Explor 2:74–78(in Chinese)

    Chen JF,Sun XL(2004)Preliminary study of geochemical characteristics and formation of organic matter rich stratigraphy of Xiamaling-Formation of later Proterozoic in north China.Nat Gas Geosci 15(2):110–114(in Chinese with EnglishAbstract)

    Chen JF,Sun XL,Liu WH,Zheng JJ(2004)Geochemical characteristics of organic matter-rich strata of lower Cambrian in Tarim Basin and its origin.Sci China Ser D Earth Sci 34(S1):107–113(in Chinese with EnglishAbstract)

    Chu CL,Chen QL,Zhang B,Shi Z,Jiang HJ,Yang X(2016)In fl uence on formation of Yuertusi source rock by hydrothermal activities at Dongergou section.Tarim Basin.Acta Sedimentologica Sinica 34(4):803–810(in Chinese with English abstract)

    Dean WE,Gardner JV,Piper DZ(1997)Inorganic geochemical indicators of glacial-interglacial changes in productivity and anoxia on the California continental margin.Geochim Cosmochim Acta 61:4507–4518

    Deng HW,Qian K(1993)Sedimentary Geochemistry and Environmental Analysis.Gansu science and technology press,Lanzhou(in Chinese)

    Deng NT,Zhang ZH,Ren LY,Wang FB,Liang QS,Li YX,Li WH,Zhao SF,Luo MJ(2013)Geochemical characteristics and distribution rules of oil shale from Yanchang Formation Southern Ordos Basin.Pet Geol Exp 35(4):432–437(in Chinese with English abstract)

    Dong QS,Wang LX,Yu WX(2006)The key parameters of oil-shale resource appraisement and its evaluating methods.J Jilin Univ 36(6):899–903(in Chinese with English abstract)

    Dong LH,An SJ,Wang BY(2014)Relationship between distribution of hydrocarbon source rocks and oil-gas enrichment of Yanchang Formation,Triassic Ordos Basin.Unconv Oil Gas 1:17–21(in Chinese with English abstract)

    Dypvik H,Harris NB(2001)Geochemical facies analysis of fi ne grained siliciclastics using Th/U,Zr/Rb and(Zr+Rb)/Sr ratios.Chem Geol 181:131–146

    Ernst TW(1970)Geochemical facies analysis.Elsevier,Amsterdam

    Fan YH,Qu HJ,Wang H,Yang XC,Feng YW(2012)The application of trace elements analysis to identifying sedimentary media environment:a case study of Late Triassic strata in the middle part of western Ordos Basin.Geol China 39(2):382–389(in Chinese with English abstract)

    Fu XG,Wang J,Wang ZJ,Chen WX(2007)Biomarkers and sedimentary environment of Late Jurassic marine oil shale in Qiangtang basin,northern Xizang and its geological significance.Geochimica 36(5):486–496(in Chinese with English abstract)

    Fu X,Jian W,Zeng Y,Li Z,Wang Z(2009)Geochemical and palynological investigation of the Shengli River marine oil shale(China):implications for paleoenvironment and paleoclimate.Int J Coal Geol 78(3):217–224

    Fu SQ,Zhu ZY,Ou YTP,Qiu Y(2010a)Sedimentary records of rare earth elements from southern South China Sea continental slope and Its paleoclimatic implications during late Quaternary.Trop Geogr 30(1):24–29(in Chinese with English abstract)

    Fu XG,Wang J,Zeng Y,Tan F,Chen W,Feng X(2010b)Geochemistry of rare earth elements in marine oil shale-a case study from the Bilong Co area,Northern Tibet,China.Oil Shal 27(3):194–208

    Fu XG,Wang J,Zeng Y,Tan F,Feng X(2010c)REE geochemistry of marine oil shale from the Changshe Mountain area,northern Tibet,China.Int J Coal Geol 81(3):191–199

    Fu X,Wang J,Tan F,Feng X,Wang D(2015)Occurrence and enrichment of trace elements in marine oil shale(China)and their behaviour during combustion.Oil Shale 32(1):42–65

    Fu XG,Wang J,Feng XL,Chen WB,Wang D,Song CY,Zeng SQ(2016)Mineralogical composition of and trace-element accumulation in lower Toarcian anoxic sediments:a case study from the Bilong Co.Oilshale,eastern Tethys.GeolMag 153(4):618–634

    GB/T 14506.1~14-2010(2010)Methods for chemical analysis of silicate rocks.(in Chinese)

    GB/T 14506.30-2010(2010)Methods for chemical analysis of silicate rocks-part 30:determination of 44 elements(in Chinese)

    GB/T 212-2008(2008)Proximate analysis of coal(in Chinese)

    GB/T 213-2008(2008)Determination of calori fi c value of coal(in Chinese)

    GB/T 6730.17-2014(2014)Iron ores-Determination of sulfur content-Combustion iodometric method(in Chinese)

    Guo LY,Li ZS,Xie XN,Shang SF,Fan ZH,Liu ZJ,Wu F(2015)High-frequency variation of geochemical elements and its geological implication on lacustrine organic-rich mudstone and shale formation:an example from the core-taking segment of well BY1 in the Biyang depression. Geoscience 29(6):1360–1370(in Chinese with English abstract)

    Hakimi MH,Wan HA,Alqudah M,Makeen YM,Mustapha KA(2016)Organic geochemical and petrographic characteristics of the oil shales in the Lajjun area,Central Jordan:origin of organic matter input and preservation conditions.Fuel 181:34–45

    He ZX(2003)Evolution history and petroleum of the Ordos Basin.Petroleum Industry Press(in Chinese with EnglishAbstract)

    Jema?¨MBM,Yaakoub NK,Sdiri A,Azouzi R,Cherni R,Aissa LB,Dupaly J(2016)Reconstruction of the late cretaceouspaleocene paleoenvironment(northern tunisia)from biostratigraphy,geochemistry and clay mineralogy.Arab J Geosci 9(2):1–12

    Jones B,Manning DAC(1994)Comparison of geochemical indices used for the interpretation of depositional environments in ancient mudstones.Chem Geol 111(1–4):112–129

    Li JL,Chen DJ(2003)Summary of quanti fi ed research method on paleosalinity.Pet Geol Recovery Ef fi c 10(5):1–3(in Chinese with English abstract)

    Li RX,Xi SL,Di LJ(2006)Oil/gas reservoiring phases determined through petrographic analysis of hydrocarbon inclusions in reservoirs:taking Longdong oil fi eld,Ordos basin,as an example.Oil Gas Geol 27(2):194–199(in Chinese with English abstract)

    Li W,Pang J,Cao H(2009a)Depositional system and paleogeographic evolution of the late Triassic Yanchang Stage in Ordos Basin.J Northwest Univ 39(3):501–506(in Chinese with English abstract)

    Li YH,Li JC,Jiang T,Wei JS,Lu JC,Hang J(2009b)Characteristics of the Triassic oil shale in the Hejiafang area,Ordos Basin.J Jilin Univ(Earth Sci Ed)39(1):65–71(in Chinese with English abstract)

    Li YH,Jiang T,Wu FL,Zhang HY,Yao ZG,Wang BW(2014)Evaluation methods and results of oil shale resources in southeastern Ordos Basin.Geol Bull China 9:1417–1424(in Chinese with English abstract)

    Li ZC,Li WH,Lai SC,Li YX,Li YH,Shang T(2015)The palaeosalinity analysis of Paleogene lutite in Weihe Basin.Acta Sedimentol Sin 33(3):480–485 (in Chinese with English abstract)

    Li D,Li R,Wang B,Liu Z,Wu X,Liu F,Zhao B,Cheng J,Kang W(2016)Study on oil–source correlation by analyzing organic geochemistry characteristics:a case study of the Upper Triassic Yanchang Formation in the south of Ordos Basin.China.Acta Geochimica 35(4):1–13

    Liang WJ,Xiao CT,Xiao K,Lin W(2015)The relationship of Late Jurassic paleoenvironment and paleoclimate with geochemical elements in Amdo Country of northern Tibet.Geol China 42(4):1079–1091(in Chinese with English abstract)

    Liu ZJ,Liu R(2005)Oil shale resource state and evaluating system.Earth Sci Front 12(3):315–323(in Chinese with English abstract)

    Liu ZJ,Dong QS,Ye SQ,Zhu JW,Guo W,Li DC,Liu R,Zhang HL,Du JF(2006)The situation of oil shale resources in China.J Jilin Univ(Earth Sci Ed)36(6):869–876(in Chinese with English abstract)

    Liu CY,Zhao HG,Zhao JF,Wang JQ,Zhang DD,Yang MH(2008)Temporo-spatial coordinates of evolution of the Ordos Basin and its mineralization responses.Acta Geol Sin 82(6):1229–1243

    Liu ZJ,Yang HL,Dong QS,Zhu JW,Guo W,Ye SQ,Liu R,Meng QT,Zhang HL,Gan SC(2009)Oil Shale in China.Petroleum Industry Press,Beijing

    Liu Y,Zhong NN,Song T,Tian YJ,Han H,Zhu L(2011)Kinetics of marine oil shale:a case study of Xiamaling Formation oil shale in Yanshan region,North China.J Jilin Univ(Earth Sci Ed)41(s1):78–84(in Chinese with English abstract)

    Liu R,Liu Z,Guo W,Chen H(2015)Characteristics and comprehensive utilization potential of oil shale of the Yin’e basin,inner Mongolia,China.Oil Shale 32(4):293–312

    Lu JC,Li YH,Wei XY,Wei JS(2006)Research on the depositional environment and resources potential of the oil shale in the chang 7 member,Triassic Yanchang Formation in the Ordos Basin.J Jilin Univ(Earth Sci Ed)36(6):928–932(in Chinese with English abstract)

    Lu¨DW,Li ZX,Liu HY,Li Y,Feng TT,Wang DD,Wang PL,Li SY(2015)The characteristics of coal and oil shale in the coastal sea areas of Huangxian Coal fi eld. East China. Oil Shale 32(3):204–207

    Luo QY,Zhong NN,Zhu L,Wang YN,Qin J,Qi L,Zhang Y,Ma Y(2013)Correlation of burial organic carbon and paleoproductivity in the Mesoproterozoic Hongshuizhuang Formation,northern North China.Chin Sci Bul 11:1036–1047(in Chinese)

    Luo YS,Zhang SN,Zhang ZH,Deng NT,He YH,Liang QS(2014)Favorable area forecast of oil shale exploration in southern Ordos basin.China Min Mag 1:83–86(in Chinese with English abstract)

    Ma ZH,Chen QS,Shi ZW,Wang C,Du WG,Zhao CY(2016)Geochemistry of oil shale from chang 7 reservoir of Yanchang Formation in south Ordos Basin and its geological significance.Geol Bull China 35(9):1550–1558(in Chinese with English abstract)

    Mclennan SM(2001)Relationships between the trace element composition of sedimentary rocks and upper continental crust.Geochem Geophys Geosyst 2(4):203–236

    Mukhopadhyay PK,Goodarzi F,Crandlemire AL,Gillis KS,Macneil DJ,Smith WD(1998)Comparison of coal composition and elemental distribution in selected seams of the Sydney and Stellarton Basins,Nova Scotia,Eastern Canada.Int J Coal Geol 37(1–2):113–141

    Qiu XW,Liu CY,Mao GZ,Yu D(2010)Enrichment feature of thorium element in tuff interlayers of Upper Triassic Yanchang Formation in Ordos basin.Geol Bull China 29(8):1185–1191(in Chinese with English abstract)

    Qiu X,Liu C,Mao G,Deng Y,Wang F,Wang J(2014)Late Triassic tuff intervals in the Ordos basin,Central China:their depositional,petrographic,geochemical characteristics and regional implications.J Asian Earth Sci 80:148–160

    Qiu XW,Liu CY,Wang FF,Deng Y,Mao GZ(2015)Trace and rare earth element geochemistry of the Upper Triassic mudstones in the southern Ordos Basin,Central China.Geol J 50:399–413

    SH/T 0508-1992(1992)The test method for oil yield from oil shale-The method of low temperature carbonization(in Chinese)

    Song Y,Liu Z,Meng Q,Xu J,Sun P,Cheng L,Zheng G(2016)Multiple controlling factors of the enrichment of organic matter in the upper cretaceous oil shale sequences of the Songliao Basin,NE China:implications from geochemical analyses.Oil Shale 33(2):142–166

    Sun ZC,Yang P,Zhang ZH(1997)Seolmentirry Enuironments and Hydrocarbon Generation of Cenoaoic Sali fi ed Lakes in China.Petroleum Industry Press(in Chinese)

    Sun SL,Chen JF,Liu WH,Zhang SC,Wang DR(2003)Hydrothermal venting on the Sea fl oor and formation of organic-rich sediments-evidence from the Neoproterozoic Xiamaling Formation,North China.Geol Rev 49(6):588–595(in Chinese with English abstract)

    Sun SS,Yao YB,Lin W(2015)Elemental geochemical characteristics of the oil shale and the Paleo-Lake environment of the Tongchuan area,southern Ordos Basin.Bull Mineral Petrol Geochem 34(3):642–645(in Chinese with English abstract)

    SY/T 6210-1996(1996)Oil and gas standard of P.R.China:X-ray diffraction quantitative analysis methods of the clay minerals and common non-clay minerals in sedimentary rocks(in Chinese)

    Teng GE,Hui LW,Xu YC,Chen JF(2005)Correlative study on parameters of inorganic geochemistry and hydrocarbon source rocks formative environment.Adv Earth Sci 20(2):193–200(in Chinese with English abstract)

    Tribovillard N,Algeo TJ,Lyons T,Riboulleau A(2006)Trace metals as paleoredox and paleoproductivity proxies-an update.Chem Geol 232(1–2):12–32

    Wan YS,Xie HQ,Yang H,Wang AJ,Liu DY,Kro¨ner A,Wilde SA,Geng YS,Sun LY,Ma MZ,Liu SJ,Dong CY,Du LL(2013)Is the ordos block archean or paleoproterozoic in age?Implications for the precambrian evolution of the North China craton.Am J Sci 313:683–711

    Wang YY,Wu P(1983)Geochemical criteria of sediments in the coastal area of Jiangsu and Zhejiang Provinces.J Tongji Univ(Nat Sci)4:82–90(in Chinese with English abstract)

    Wang YD,Yan QB(2012)The resource application prospects of Zhangjiatan shale,Southern Ordos Basin.J Northwest Univ(Nat Sci Ed)42(3):453–458(in Chinese with English abstract)

    Wang YY,Guo WY,Zhang GD(1979)Application of some geochemical indicators in determing of sedimentary environment of the Funing Group(Paleogene),Jin-Hu Depression,Kiangsu Provience.J Tongji Univ 7(2):51–60(in Chinese with English abstract)

    Wang J,Fu XG,Li ZX,Xiong S(2010)Formation and significance of the oil shales from the North Qiantang Basin.Sediment Geol Tethyan Geol 30(3):11–17(in Chinese with English abstract)

    Wang CY,Zheng RC,Liu Z,Liang XW,Li TY,Zhang JW,Li YN(2014)Paleosalinity of chang 9 reservoir in Longdong area,Ordos basin and its geological significance.Acta Sedimentol Sin 32(1):159–165(in Chinese with English abstract)

    Wei D,Ma ZH,Chen QS(2016)Mesozoic–Cenozoic structure characteristics and coexisting relationships of multiple energy minerals in Weibei uplift of Ordos Basin.J Earth Sci Environ 38(3):355–364(in Chinese with English abstract)

    Wu FL,Li WH,Li YH,Xi SL(2004)Delta sediments and evolution of the Yanchang Formation of upper Triassic in Ordos Basin.J Palaeogeogr 6(3):307–315(in Chinese with English abstract)

    Xie SK,Du BW,Wang J,Dong Y(2014)Geochemical characteristics of oil shale member of Dingqinghu Formation in Lunpola Basin of Tibet and their geological implications.Acta Petrologica Et Mineralogica 33(3):503–510 (in Chinese with English abstract)

    Yang H,Zhang WZ,Wu K,Li SP,Peng PA,Qin Y(2010)Uranium enrichment in lacustrine oil source rocks of the Chang 7 member of the Yanchang Formation,Ordos Basin.China.J.Asian Earth Sci 39:285–293

    Yin HF,Lin HM(1979)Triassic marine strata in Weibei area of the southern Ordos basin:implications for the epoch of Shiqianfeng Formation.Acta Stratigraphica Sin 3(4):233–241(in Chinese)

    Yu ZL,Zhu HY(2013)The Oil Shale sedimentary characteristics in Jiufotang Formation of Jianchang Basin in the western Liaoning Province.J Oil Gas Technol 35(1):53–57(in Chinese with English abstract)

    Yuan W,Liu G,Stebbins A,Xu L,Niu X,Luo W,Li C(2016)Reconstruction of redox conditions during deposition of organicrich shales of the Upper Triassic Yangchang Formation,Ordos Basin,China.Palaeogeography Palaeoclimatology Palaeoecology(in press)

    Zeng SQ,Wang J,Fu XG,Feng XL,Sun W(2013)Hydrocarbon generation potential and sedimentary environment for the source rocks along the Changshe Mountain oil shale section in North Qiangtang Basin.Geol China 40(6):1861–1871(in Chinese with English abstract)

    Zeng SQ,Wang J,Fu XG,Feng XL,Feng WB,Sun W(2014)Characteristic and formation condition of the Cretaceous marine oil shale in the Qiangtang Basin.Geol Rev 60(2):449–463(in Chinese with English abstract)

    Zhang K(1984)The Triassic marine strata of south margin of Ordos basin and discussions on some problems concerned.Chin Sci Bull 29(2):233–236(in Chinese with English abstract)

    Zhang XJ,Fan YF,Zhang JJ,Wang GC(2004)Microelement and geologic significance of Yanchang Formation in Fuxian area,Ordos Basin.Xinjiang Pet Geol 25(5):483–485(in Chinese with English abstract)

    Zhang CL,Gao AL,Liu Z,Huang J,Yang YJ,Zhang Y(2011)Study of character on sedimentary water and palaeoclimate for Chang7 member in Ordos Basin.Nat GAS Geosci 22(4):582–587(in Chinese with English abstract)

    Zhang QC,Wang KM,Luo SS,Wu XZ(2013)Study on the characteristics and origin of the oil shale in the chang 7 member,Yanchang Formation in Ordos Basin.Adv Geosci 03(4):197–209(in Chinese with English abstract)

    Zhao Y,Yao JL,Duan Y,Wu YZ,Cao XX,Xu L,Chen SS(2015)Oil-source analysis for chang-9 subsection(Upper Triassic)of Eastern Gansu Province in Ordos Basin.Acta Sedimentol Sin 33(5):1023–1032(in Chinese with English abstract)

    Zhao BS,Li RX,Wang XZ,Wu XY,Wang N,Qin XL,Cheng JH,Li JJ(2016a)Sedimentary environment and preservation conditions of organic matter analysis of Shanxi Formation mud shale in Yanchang exporation area,Ordos Basin.Geol Sci Technol Inf 35(6):103–111(in Chinese with English abstract)

    Zhao J,Jin Z,Jin Z,Geng Y,Wen X,Yan C(2016b)Applying sedimentary geochemical proxies for paleoenvironment interpretation of organic-rich shale deposition in the Sichuan Basin,China.Int J Coal Geol 163:52–71

    Zhong DK,Jiang ZK,Guo Q,Sun HT(2015)A review about research history,situation and prospects of hydrothermal sedimentation.JPalaeogeogr17(3):285–296 (in Chinesewith English abstract)

    Zhu YH,Tai SC,Sun YY(2000)Application of Mathematical Statistics.Wuhan University of Hydraulic and Electric Engineering Press,Wuhan

    Zou C,Wang L,Li Y,Tao S,Hou L(2012)Deep-lacustrine transformation of sandy debrites into turbidites,Upper Triassic,Central China.Sediment Geol 265–266(15):143–155

    大型黄色视频在线免费观看| 日韩成人在线观看一区二区三区| 欧美成人午夜精品| 岛国在线观看网站| 成人国产综合亚洲| 免费在线观看视频国产中文字幕亚洲| 国产亚洲精品综合一区在线观看 | 免费少妇av软件| 久久精品aⅴ一区二区三区四区| 亚洲精品中文字幕在线视频| 成人特级黄色片久久久久久久| 18禁观看日本| 久久中文看片网| 国产91精品成人一区二区三区| 成在线人永久免费视频| tocl精华| 成熟少妇高潮喷水视频| 久久人人爽av亚洲精品天堂| 日日摸夜夜添夜夜添小说| 韩国av一区二区三区四区| 国语自产精品视频在线第100页| 免费看a级黄色片| 亚洲男人天堂网一区| 日韩欧美免费精品| 亚洲精华国产精华精| 国产极品粉嫩免费观看在线| 欧美大码av| 精品国产国语对白av| 在线观看www视频免费| 久久精品aⅴ一区二区三区四区| 日韩视频一区二区在线观看| 国产成人欧美在线观看| 天天一区二区日本电影三级 | 亚洲男人的天堂狠狠| 亚洲午夜精品一区,二区,三区| 涩涩av久久男人的天堂| а√天堂www在线а√下载| 欧美色欧美亚洲另类二区 | 久久久久久久精品吃奶| 国产aⅴ精品一区二区三区波| 亚洲欧美精品综合一区二区三区| 色综合亚洲欧美另类图片| cao死你这个sao货| 亚洲欧洲精品一区二区精品久久久| 一边摸一边抽搐一进一出视频| 无遮挡黄片免费观看| 99国产综合亚洲精品| 极品人妻少妇av视频| 麻豆一二三区av精品| 久久久久久人人人人人| 久久精品影院6| 成年人黄色毛片网站| 精品一区二区三区av网在线观看| 黑人巨大精品欧美一区二区mp4| 男女做爰动态图高潮gif福利片 | 女人爽到高潮嗷嗷叫在线视频| 久久久久亚洲av毛片大全| 久久久国产精品麻豆| 黄色片一级片一级黄色片| 一级毛片精品| 亚洲精品一区av在线观看| 一个人免费在线观看的高清视频| 久久草成人影院| 色婷婷久久久亚洲欧美| 免费av毛片视频| av网站免费在线观看视频| 欧美日韩亚洲国产一区二区在线观看| 国产精品免费视频内射| 国产欧美日韩精品亚洲av| 男人操女人黄网站| 成人精品一区二区免费| 久久欧美精品欧美久久欧美| 黄频高清免费视频| 国产亚洲欧美精品永久| 国产精品亚洲一级av第二区| 老汉色av国产亚洲站长工具| 老司机午夜十八禁免费视频| 国产精品乱码一区二三区的特点 | 91老司机精品| 亚洲一区二区三区色噜噜| 欧美黑人欧美精品刺激| 午夜老司机福利片| av电影中文网址| 日韩成人在线观看一区二区三区| 满18在线观看网站| 久久人妻av系列| 亚洲精品在线美女| or卡值多少钱| 亚洲欧美精品综合久久99| 欧美激情久久久久久爽电影 | 啦啦啦观看免费观看视频高清 | 成人国语在线视频| 国产精品99久久99久久久不卡| 国产蜜桃级精品一区二区三区| 欧美成人一区二区免费高清观看 | 免费少妇av软件| 亚洲国产欧美日韩在线播放| 我的亚洲天堂| 一级毛片精品| 色哟哟哟哟哟哟| 一区二区三区激情视频| 中文字幕人成人乱码亚洲影| 女性生殖器流出的白浆| 久久亚洲真实| aaaaa片日本免费| 中文字幕高清在线视频| 欧美不卡视频在线免费观看 | 十八禁网站免费在线| 国产精品一区二区三区四区久久 | 精品国内亚洲2022精品成人| 日韩精品中文字幕看吧| 韩国精品一区二区三区| 久久婷婷人人爽人人干人人爱 | 好看av亚洲va欧美ⅴa在| 黄网站色视频无遮挡免费观看| 午夜免费成人在线视频| 亚洲成人久久性| 黄色 视频免费看| 搡老岳熟女国产| 亚洲中文av在线| 又大又爽又粗| 久久草成人影院| 成人精品一区二区免费| 国产一级毛片七仙女欲春2 | 欧美黑人欧美精品刺激| 一夜夜www| 国产麻豆成人av免费视频| 国产日韩一区二区三区精品不卡| 岛国在线观看网站| 97碰自拍视频| av视频免费观看在线观看| 满18在线观看网站| 黄色丝袜av网址大全| 欧美亚洲日本最大视频资源| 亚洲狠狠婷婷综合久久图片| 国产av一区在线观看免费| 国产一区二区三区视频了| 亚洲av日韩精品久久久久久密| 可以免费在线观看a视频的电影网站| 免费无遮挡裸体视频| 国产精品久久久久久精品电影 | 国产成人av激情在线播放| 日本免费一区二区三区高清不卡 | 少妇 在线观看| 亚洲av美国av| 性欧美人与动物交配| 欧美精品亚洲一区二区| 视频区欧美日本亚洲| www国产在线视频色| 又紧又爽又黄一区二区| 国产av精品麻豆| 国产激情久久老熟女| 午夜两性在线视频| 琪琪午夜伦伦电影理论片6080| 亚洲一区高清亚洲精品| 亚洲精品一卡2卡三卡4卡5卡| 天堂动漫精品| 久久久久国产一级毛片高清牌| 国产视频一区二区在线看| 久久香蕉国产精品| 亚洲欧美精品综合久久99| 夜夜看夜夜爽夜夜摸| 国产黄a三级三级三级人| av片东京热男人的天堂| 日本黄色视频三级网站网址| 亚洲欧美一区二区三区黑人| 精品国内亚洲2022精品成人| 精品一品国产午夜福利视频| 麻豆国产av国片精品| 无限看片的www在线观看| 精品人妻在线不人妻| 别揉我奶头~嗯~啊~动态视频| 熟妇人妻久久中文字幕3abv| 天堂动漫精品| 免费久久久久久久精品成人欧美视频| 日韩精品青青久久久久久| 亚洲av熟女| 欧美久久黑人一区二区| 成人三级黄色视频| 午夜免费激情av| 成人精品一区二区免费| 18禁国产床啪视频网站| 首页视频小说图片口味搜索| 亚洲电影在线观看av| 90打野战视频偷拍视频| 久久午夜综合久久蜜桃| 久久国产乱子伦精品免费另类| a在线观看视频网站| 亚洲中文日韩欧美视频| 91麻豆精品激情在线观看国产| 亚洲人成电影免费在线| 岛国在线观看网站| 亚洲av电影在线进入| 美女扒开内裤让男人捅视频| 此物有八面人人有两片| 嫁个100分男人电影在线观看| 波多野结衣巨乳人妻| 在线观看免费视频网站a站| 午夜精品在线福利| 亚洲欧美精品综合一区二区三区| 日韩欧美免费精品| 久久国产亚洲av麻豆专区| 国产成人系列免费观看| 操出白浆在线播放| 亚洲三区欧美一区| 高清黄色对白视频在线免费看| 中文字幕久久专区| av视频免费观看在线观看| 精品国产一区二区久久| 亚洲熟女毛片儿| 国产精品自产拍在线观看55亚洲| 欧美国产日韩亚洲一区| 村上凉子中文字幕在线| 麻豆国产av国片精品| 久久久久国产精品人妻aⅴ院| 亚洲国产精品999在线| 国产亚洲精品久久久久5区| 亚洲五月婷婷丁香| 亚洲国产精品久久男人天堂| 国产精品国产高清国产av| 精品人妻在线不人妻| 欧美在线一区亚洲| x7x7x7水蜜桃| 精品久久久久久久久久免费视频| 身体一侧抽搐| 亚洲中文av在线| 给我免费播放毛片高清在线观看| 大码成人一级视频| 91九色精品人成在线观看| 99国产极品粉嫩在线观看| 久久久精品欧美日韩精品| 国产麻豆69| 9191精品国产免费久久| 日本五十路高清| 亚洲男人天堂网一区| 天天添夜夜摸| 精品无人区乱码1区二区| 国产精品久久电影中文字幕| 熟妇人妻久久中文字幕3abv| 美女午夜性视频免费| 黄频高清免费视频| 亚洲国产欧美网| 欧美午夜高清在线| 亚洲av电影不卡..在线观看| 久久久国产欧美日韩av| 黄色片一级片一级黄色片| 国产视频一区二区在线看| 少妇裸体淫交视频免费看高清 | 俄罗斯特黄特色一大片| 91精品国产国语对白视频| 男女做爰动态图高潮gif福利片 | 麻豆久久精品国产亚洲av| 亚洲国产精品成人综合色| 99国产精品99久久久久| www.999成人在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 老司机靠b影院| 国产高清有码在线观看视频 | 国产区一区二久久| 亚洲专区中文字幕在线| 午夜精品在线福利| 中文亚洲av片在线观看爽| 免费观看人在逋| 精品国产乱子伦一区二区三区| 亚洲国产看品久久| 久久精品国产99精品国产亚洲性色 | 在线观看免费视频网站a站| 非洲黑人性xxxx精品又粗又长| 一边摸一边做爽爽视频免费| 久久精品国产亚洲av高清一级| 免费一级毛片在线播放高清视频 | 热re99久久国产66热| 午夜免费观看网址| 久久久久国产一级毛片高清牌| 亚洲 国产 在线| 十八禁人妻一区二区| 岛国在线观看网站| 狠狠狠狠99中文字幕| 男男h啪啪无遮挡| 欧美激情 高清一区二区三区| 午夜福利成人在线免费观看| 丁香欧美五月| www国产在线视频色| 自线自在国产av| 大香蕉久久成人网| 又紧又爽又黄一区二区| 久久精品91无色码中文字幕| 国产精品国产高清国产av| 俄罗斯特黄特色一大片| 在线观看舔阴道视频| 亚洲av成人av| 日本在线视频免费播放| 日本 av在线| 女人精品久久久久毛片| 国产男靠女视频免费网站| 99精品久久久久人妻精品| 亚洲欧美日韩另类电影网站| 夜夜爽天天搞| 国语自产精品视频在线第100页| 欧美激情高清一区二区三区| 国产伦一二天堂av在线观看| 国产精品精品国产色婷婷| 一级毛片精品| 久久香蕉国产精品| 国产成人av激情在线播放| 日韩欧美一区二区三区在线观看| 精品久久久久久成人av| 国产一区在线观看成人免费| 狂野欧美激情性xxxx| 久久久久亚洲av毛片大全| 别揉我奶头~嗯~啊~动态视频| 成人特级黄色片久久久久久久| 老鸭窝网址在线观看| 无限看片的www在线观看| 90打野战视频偷拍视频| 黄色毛片三级朝国网站| 啦啦啦 在线观看视频| 国产在线精品亚洲第一网站| 人人妻人人爽人人添夜夜欢视频| 亚洲精品国产色婷婷电影| 国产不卡一卡二| 女人被狂操c到高潮| 精品人妻1区二区| 人人妻人人澡人人看| 国产午夜福利久久久久久| 久久精品成人免费网站| 在线观看66精品国产| 啪啪无遮挡十八禁网站| 午夜激情av网站| 两个人视频免费观看高清| 搡老熟女国产l中国老女人| 成人免费观看视频高清| 亚洲av片天天在线观看| or卡值多少钱| 亚洲一区二区三区不卡视频| 日本免费a在线| 亚洲中文日韩欧美视频| 久久久精品欧美日韩精品| 看黄色毛片网站| 99在线人妻在线中文字幕| 久久国产精品人妻蜜桃| 在线永久观看黄色视频| 国产片内射在线| 婷婷六月久久综合丁香| svipshipincom国产片| 国产真人三级小视频在线观看| 国产成人欧美在线观看| 精品国产一区二区三区四区第35| 欧美另类亚洲清纯唯美| 亚洲精品久久成人aⅴ小说| 亚洲av电影不卡..在线观看| 久热这里只有精品99| 午夜久久久在线观看| 啦啦啦免费观看视频1| 亚洲一区高清亚洲精品| 国产xxxxx性猛交| 91麻豆av在线| 日韩精品免费视频一区二区三区| 日韩欧美在线二视频| 精品国产一区二区三区四区第35| www.精华液| 亚洲国产看品久久| www.熟女人妻精品国产| 精品乱码久久久久久99久播| 免费在线观看日本一区| 久久久久久大精品| 国产伦一二天堂av在线观看| 最近最新中文字幕大全免费视频| 国语自产精品视频在线第100页| 久久亚洲真实| 亚洲熟女毛片儿| 禁无遮挡网站| 欧美亚洲日本最大视频资源| 18禁黄网站禁片午夜丰满| 久久久久久人人人人人| 老司机午夜十八禁免费视频| 欧美av亚洲av综合av国产av| 欧美成人免费av一区二区三区| 国产xxxxx性猛交| 国产亚洲欧美精品永久| 国产欧美日韩一区二区三| 亚洲精品国产一区二区精华液| 亚洲片人在线观看| 最新美女视频免费是黄的| 丰满的人妻完整版| 欧美久久黑人一区二区| 亚洲精品粉嫩美女一区| 精品第一国产精品| 丁香欧美五月| 香蕉国产在线看| 一区二区三区国产精品乱码| 美女免费视频网站| 欧美乱妇无乱码| 亚洲自偷自拍图片 自拍| 亚洲成av片中文字幕在线观看| 狂野欧美激情性xxxx| 午夜精品国产一区二区电影| 一个人观看的视频www高清免费观看 | 日本撒尿小便嘘嘘汇集6| 九色亚洲精品在线播放| 久久久精品欧美日韩精品| 国产aⅴ精品一区二区三区波| 97人妻精品一区二区三区麻豆 | 亚洲黑人精品在线| 两性午夜刺激爽爽歪歪视频在线观看 | 丁香欧美五月| 成人18禁在线播放| 亚洲熟妇中文字幕五十中出| 丝袜美足系列| 久久精品国产亚洲av高清一级| 欧美不卡视频在线免费观看 | 日日干狠狠操夜夜爽| 手机成人av网站| 国产精品 国内视频| 亚洲欧美激情在线| 国产熟女午夜一区二区三区| 精品人妻1区二区| 可以免费在线观看a视频的电影网站| 国产不卡一卡二| 亚洲精品国产色婷婷电影| 午夜福利,免费看| 一级毛片女人18水好多| 成人亚洲精品一区在线观看| 亚洲欧美日韩高清在线视频| 国产亚洲欧美在线一区二区| 在线国产一区二区在线| 性色av乱码一区二区三区2| 色婷婷久久久亚洲欧美| 高清毛片免费观看视频网站| 999久久久国产精品视频| 精品无人区乱码1区二区| 亚洲欧美日韩无卡精品| 欧洲精品卡2卡3卡4卡5卡区| 黄片小视频在线播放| 国产99久久九九免费精品| 久久久久久久午夜电影| 成人永久免费在线观看视频| 色精品久久人妻99蜜桃| 亚洲熟女毛片儿| 波多野结衣一区麻豆| 欧美+亚洲+日韩+国产| 成人国语在线视频| 色综合亚洲欧美另类图片| 欧美乱码精品一区二区三区| 欧美激情 高清一区二区三区| 麻豆av在线久日| 久久精品91无色码中文字幕| 一本综合久久免费| 亚洲狠狠婷婷综合久久图片| 99精品在免费线老司机午夜| 变态另类丝袜制服| 高潮久久久久久久久久久不卡| 国产精品免费一区二区三区在线| 色综合欧美亚洲国产小说| 自线自在国产av| bbb黄色大片| 神马国产精品三级电影在线观看 | 91麻豆精品激情在线观看国产| 丰满人妻熟妇乱又伦精品不卡| 欧美av亚洲av综合av国产av| 操美女的视频在线观看| 亚洲 国产 在线| 一进一出抽搐动态| 一进一出抽搐gif免费好疼| 欧美人与性动交α欧美精品济南到| 亚洲熟女毛片儿| 国产av又大| 午夜福利高清视频| 久久性视频一级片| 欧美日韩黄片免| 青草久久国产| 身体一侧抽搐| 一进一出抽搐动态| 国产麻豆成人av免费视频| 精品国内亚洲2022精品成人| 亚洲成人国产一区在线观看| 色综合欧美亚洲国产小说| 成人三级黄色视频| 国产麻豆69| 日韩免费av在线播放| 国产熟女午夜一区二区三区| 久久精品91蜜桃| 午夜福利在线观看吧| 少妇熟女aⅴ在线视频| 叶爱在线成人免费视频播放| 热re99久久国产66热| 久久久久久国产a免费观看| 啦啦啦观看免费观看视频高清 | 国产精品一区二区在线不卡| avwww免费| 欧美日韩亚洲国产一区二区在线观看| 国产不卡一卡二| 亚洲在线自拍视频| 欧美日韩乱码在线| 精品国产超薄肉色丝袜足j| 亚洲欧美激情综合另类| 日韩欧美一区二区三区在线观看| 99国产精品99久久久久| 高清黄色对白视频在线免费看| 动漫黄色视频在线观看| 日本撒尿小便嘘嘘汇集6| 黄色女人牲交| 精品第一国产精品| 久久精品影院6| 91精品国产国语对白视频| 黑丝袜美女国产一区| 亚洲国产日韩欧美精品在线观看 | 国产片内射在线| 视频区欧美日本亚洲| 激情在线观看视频在线高清| 99香蕉大伊视频| 美女午夜性视频免费| 高潮久久久久久久久久久不卡| 91av网站免费观看| 亚洲精品在线美女| 国产区一区二久久| 免费少妇av软件| 日本在线视频免费播放| 女同久久另类99精品国产91| 午夜福利欧美成人| 人妻久久中文字幕网| 国产精品影院久久| 欧美色视频一区免费| 日韩中文字幕欧美一区二区| 夜夜爽天天搞| 久热爱精品视频在线9| 夜夜爽天天搞| 97人妻天天添夜夜摸| 高清黄色对白视频在线免费看| 色老头精品视频在线观看| 国产成人精品无人区| 国产精品98久久久久久宅男小说| 色精品久久人妻99蜜桃| 久热爱精品视频在线9| 桃红色精品国产亚洲av| 国产成人欧美| 女警被强在线播放| 日韩精品青青久久久久久| e午夜精品久久久久久久| 天天躁狠狠躁夜夜躁狠狠躁| 首页视频小说图片口味搜索| 国产又爽黄色视频| 亚洲成国产人片在线观看| 国产精品久久久av美女十八| 欧美一级毛片孕妇| 亚洲第一av免费看| 法律面前人人平等表现在哪些方面| 在线永久观看黄色视频| 成人18禁高潮啪啪吃奶动态图| 欧美日本亚洲视频在线播放| 欧美激情 高清一区二区三区| 欧美国产日韩亚洲一区| 两个人免费观看高清视频| 成人18禁在线播放| 黄片小视频在线播放| 啦啦啦韩国在线观看视频| 国产成人精品在线电影| 国产亚洲精品一区二区www| 黄频高清免费视频| 国产乱人伦免费视频| 高清毛片免费观看视频网站| 身体一侧抽搐| 久久久精品国产亚洲av高清涩受| 日本五十路高清| www国产在线视频色| 日韩欧美一区视频在线观看| 国产片内射在线| 亚洲av成人av| 欧美乱码精品一区二区三区| 久久久久久久精品吃奶| 亚洲三区欧美一区| 一区在线观看完整版| 12—13女人毛片做爰片一| 18禁裸乳无遮挡免费网站照片 | 日本vs欧美在线观看视频| 国产真人三级小视频在线观看| 啦啦啦观看免费观看视频高清 | 国产欧美日韩一区二区三区在线| 久久伊人香网站| 90打野战视频偷拍视频| 亚洲国产高清在线一区二区三 | 日韩有码中文字幕| 国产野战对白在线观看| 久久人妻av系列| 日日干狠狠操夜夜爽| 亚洲 国产 在线| 国产aⅴ精品一区二区三区波| 亚洲av第一区精品v没综合| 国产高清视频在线播放一区| 国产av一区在线观看免费| 制服丝袜大香蕉在线| 纯流量卡能插随身wifi吗| 母亲3免费完整高清在线观看| 91字幕亚洲| 最近最新中文字幕大全电影3 | 国产精华一区二区三区| 中文字幕人成人乱码亚洲影| 亚洲国产欧美网| 制服诱惑二区| 婷婷六月久久综合丁香| 国产成+人综合+亚洲专区| 在线观看免费午夜福利视频| 国产一卡二卡三卡精品| 亚洲国产精品合色在线| av福利片在线| 国产精品久久久人人做人人爽| 无限看片的www在线观看| 国产欧美日韩综合在线一区二区| 国产91精品成人一区二区三区| 色婷婷久久久亚洲欧美| 很黄的视频免费| www.999成人在线观看| 一级a爱视频在线免费观看| 最新在线观看一区二区三区| 欧美激情极品国产一区二区三区|