• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Application of K-means and PCA approaches to estimation of gold grade in Khooni district(central Iran)

    2018-03-28 03:16:53NedaMahvashMohammadiArdeshirHezarkhaniAbbasMaghsoudi
    Acta Geochimica 2018年1期

    Neda Mahvash Mohammadi?Ardeshir Hezarkhani?Abbas Maghsoudi

    1 Introduction

    Evaluation of ore resources is essential for the economic planning of a mining project(Pham 1997).One of the important parameters of resource evaluation is grade estimation.Grade estimation plays a signi fi cant role in evaluating the economic viability of an ore body.There are various methods to estimate grade,including those based on distance and geostatistics(Hassani Pak and Sharafeddin 2005),and nonparametric estimation(Davis and Jalkanen 1988).Recently,clustering methods have been used extensively in the earth sciences to categorize geochemical data.This approach divides the data into clusters;within each cluster,the similarity between data is maximized,and in different clusters,it is minimized(Berkhin 2006).There are no categories of original data;indeed,variables are not divided into independent and dependent groups.Rather,the approach seeks groups of similar data that can be organized by the behavior of the data to achieve better results(Malyszko and Wierzchon 2007).The clustering method is an indirect method.It can be used without previous information on the internal database structure and can illuminate hidden patterns and promote the performance of direct methods(Abolhassani and Salt 2005).K-means is one of the most important and ef fi cient clustering methods and is widely used for data classi fi cation(Lloyd 1957;MacQueen 1967;Hartigan and Wong 1979).K-means clustering allocates all data to k classes.Data within one class are similar,while data in different classes are dissimilar.Cluster analysis endeavors to minimize the average squared distance between data points.In the beginning,random k clusters are selected,with each observed point deposited in the gravity center of the classes(for example,by applying Euclidean distance).This determines the cluster center.There are many algorithms for k-means,but the algorithms of Hartigan(1975)and Mac Queen(1967)are more common than the others.If Manhattan distance is used,the mean of each cluster could double as the gravity center.Algorithm results depend on the number of initial clusters.Therefore,it is possible to choose the appropriate results by using different initial k(Templ et al.2008).Sometimes,principal component analysis(PCA)is used before cluster analysis in order to reduce the dimensionality of the data set(Ng et al.2001;Yeung and Ruzzo 2001;Zha et al.2001).Ding and He(2004)presented the relationship between k-means and PCA.They also showed that principal components are the ongoing solutions to the discrete cluster membership indicators for k-means clustering(Ding and He 2004).Consequently,new lower bounds are achieved for the k-means function.

    Multivariate statistics allows the discovery of geochemical patterns of elements and the investigation of several variables simultaneously.This method is more frequently used in earth sciences due to its greater reliability over univariate and bivariate statistical methods(Howarth and Sinding-Larson 1983).The method’s numerous applications include:determining geochemical anomalies(Loska and Wiechu?a 2003),remote sensing studies(Loughlin 1991;Crosta and Rabelo 1993;Du and Flower 2008),environmental studies(Loska and Wiechu?a 2003),oil and gas studies(Prinzhofer et al.2000;Pasadakis et al.2004),and geophysical studies(Sabeti et al.2007).PCA is one of the multivariate statistical methods based on eigenvalues and eigenvectors.PCA detects directions with the highest variation and moves the data to a new coordinate system,reducing the dimension of the data set and summarizing the data characteristics(Jolliffe 1986).However,information about the source of the sample is required,a non-trivial task due to the huge number of sources and the complexity of in-ground networks.The useful and popular methods of PCA and clustering make use of data source analysis.

    In this paper,PCA was applied for clustering and reducing the dimension of original data and then k-means was used to investigate the behavior of identified elements.This process allowed for the estimation of gold ore grade.

    2 Geology of the Khooni district

    Anarak is the most important metallogenic province of Iran,hosting numerous ore deposits and mineralized veins in its magmatic and metamorphic upper Proterozoic rocks.Previous studies in this area have identified a variety of metallic and non-metallic deposits,including deposits of lead,zinc,gold,silver,chromite,iron,manganese,molybdenum,antimony,etc.The variety of mines in the area has attracted a number of researchers.Khooni is one of the most famous mines in the east of Anarak.It has been an important source of gold(Mahvash Mohammadi et al.2016).Khooni is 60 km northeast of Anarak and 270 km from Esfahan and belongs to the Central Iran geological zone,one of the most complex structural units of Iran due to its position between the Iran and Turan Plates.Faults in the study area include the Darune in the north,the Dehlim-Baghet in the west,the Bashagard in the south,and the Nahbandan in the east(Darvish 2011).

    The first scientific study on the Khooni District was performed by Adib(1972).He carried out multiple atomic absorption analyses to determine the mineralogy.Adib discovered a large amount of gold in the silica and carbonate veins in the study area;the average content of gold was presented as 20 ppm(Adib 1972).The mineralization is mainly vein and poly-metal(Nezampoor and Rasa 2005).Promising mineral potential was signaled by the mineralization and by study of remote sensing maps in the region.According to Mahvash Mohammadi et al.(2016),gold mineralization in the area is at a sufficient grade and tonnage to warrant exploratory investigation.

    Active tectonism and faults have played a major role in the tectonic structure,position of veins,position of igneous rocks,alteration,and mineralization in this area(Bagheri et al.2007).Eocene magmatism and tectonism along with multiple phases of metamorphism are collectively responsible for the deposits.

    Stratigraphy of the study area is from Precambrian to Quaternary.Outcrops in the western portion of the area mainly consist of Cambrian metamorphic units,while in the east are Eocene volcanics and pyroclastics with a dominant composition of and es ite and trachey andesite cut by monzonite dikes.Outcrops of Cretaceous limestone in the northwest corner of the area unconformably overlie older units.Low altitude and lowland areas are covered by old alluvial terraces,plains sediments,and young alluvial deposits.The oldest lithostratigraphic units in the region are a series of metamorphic rocks including schist,quartzite,marble,and amphibolite with serpentine blocks from Precambrian to lower Cambrian (Fig.1;Heydarian Dehkordi and Rassa 2011,2012).

    3 Principal component analysis

    Fig.1 Geological map of Khooni district(Pourjabar 2005)

    PCA is one of the most powerful multivariate techniques for data analysis and processing(Jolliffe 1986)and is frequently used in data analysis(Lin 2012)across many fields,such as data compression,image processing,visualization,exploratory data analysis,pattern recognition and time series prediction(Tipping and Bishop 1999;Labib and Vemuri 2005).PCA is applied to reduce dimensions and obtain a smaller number of variables for input to further analysis.In order to achieve this,PCA transforms initial data into a new set of variables—the principal components(Jolliffe 2002).The goal of PCA is to summarize the features of the data.For example,PCA was used to reduce and select the features of the reflectance spectra of lunar soil samples(Xiaoya et al.2009).

    PCA is based on eigenvalues and eigenvectors(Hotelling 1933).It works by identifying directions with the largest variances,then calculating the principal components,which are linear combinations of the correlated initial variables.The initial variables’N-dimensional space is transformed into new Cartesian coordinates of uncorrelated variables in a P-dimensional space such that P is less than N(P<N).

    As mentioned,PCA is a method for finding linear combinations of the correlated initial variables to make a new coordinate system.The new directions are along the largest variance.The component with the largest variance among all principal components is considered the main(PC1).The second(PC2)has the largest possible inertia,has lower variation than PC1,and is orthogonal to PC1.The other components are computed as well.Assume PC1 is a linear combination X1to Xnof the initial variables(Hassani Pak and Sharafeddin 2005):

    If aijcoefficients(weights)of the linear combination were large,the variance would increase significantly.Therefore,the coefficients are limited as follows:

    where[S]is the original variables’covariance matrix and aijare the initial variables’coefficients.The main component can be indicated as a vector[Y],the total of initial variables as another vector[X],and their weights in the form of a matrix[A],with the relationship expressed as follows:

    The number of computable principal components depends on the number of correlated initial variables and the maximum justifiable variance.PC1s usually maximize the variation.Therefore,the number of main components can be significantly reduced compared to the initial variables.

    4 k-means algorithm

    The k-means approach(Ball and Hall 1967;Mac Queen 1967)is one of several clustering methods used in data mining.K-means clustering is considered exclusive and lf at.Samples are clustered into a number of specific clusters(k),calculating the sum of Euclidean distance to minimize each sample from the center of its cluster(Chen and Chien 2010).The k-means algorithm starts with a certain number of clusters and endeavors to achieve cluster centers that are the average points of their respective clusters.The initial number of clusters is randomly selected.Each data point is assigned to one of the clusters based on greater similarity,and new clusters are obtained.This process can be repeated and in each replication,new centers are calculated by averaging the data and reassigning data points to new clusters(Egozcue et al.2003).The processing algorithm is as follows:

    1. There is a set of N data points in multidimensional space.

    2. An integer,k,points are chosen to be cluster centers.

    3. Means of the clusters are calculated as centroids.

    4. Sum of squares Euclidean distance is calculated from the center of clusters.

    5. Each sample is assigned to the cluster whose average has the least within-cluster sum of squares.The goal is to minimize the mean squared distance from each sample to the nearest center.

    where cjis the centroid of the cluster and x is the data in the cluster,and||||indicates distance.

    6. Calculate new means based on the new clusters.

    In this study,we used efficient criteria—known as silhouette criteria—to specify the appropriate number of clusters(k)in the data set.Rousseeuw(1986)presented this method;the silhouette method can group all samples well,even the ones located between clusters.

    4.1 Definition of silhouette

    Initially,all data were classified and put into k clusters.The silhouette,S(i),is a measure of how well the data are assigned to their respective clusters and can be computed as follows(Rousseeuw 1986):

    where a(i)is the average dissimilarity of the sample to all other samples in the same cluster and b(i)is the minimum average dissimilarity of the sample to all other clusters to which the sample is not a member.Since b(i)depends on comparison with other clusters,the number of clusters,k,must be more than one.The equation can be written as:

    where S(i),is between-1 and+1.If S(i)is around+1,the sample is in an appropriate cluster;a negative S(i)indicates the desired sample is in the wrong cluster;and an S(i)=0 indicates that the desired sample fi ts equally in multiple clusters.

    5 Datasets

    About 256 stream sediment samples were analyzed by Inductively Coupled Plasma Mass Spectrometry for 32 elements by the fire assay method(Fig.1).The distributions are not normal.The data,which were normalized by taking logarithms,and their statistical characteristics are presented in Table 1.We used MATLAB and SPSS software to analyze through k-means and PCA the elemental stream sediment data and ultimately to estimate the grade of gold.

    6 Results and discussion

    6.1 Correlation coefficient analysis results

    A correlation coefficient illustrates inter-element relationships and correlations.It can reveal some interesting information about the sources of metals(Rodr?′guez et al.2008).Spearman’s correlation coefficients rank as follows:significant correlation(0.5–1.0 and-1.0 to-0.5)which are bolded in Table 2,medium correlation(0.3–0.5 and-0.5 to-0.3),low correlation(0.1–0.3 and-0.3 to-0.1),and uncorrelated(0.0–0.09 and-0.09 to 0.0;Fei et al.2014).The results of the Pearson correlation coefficients between fi fteen evaluated elements are in Table 2.

    Table 1 Statistical characteristics of elements in the Khooni district(raw values)

    Table 2 Pearson correlation coefficients of elements in the Khooni district

    Correlation coefficients were calculated for the stream sediment samples.These coefficients indicated a significant positive correlation among some elements,such as Au–As(0.810),Au–Sb(0.776),and Sb–As(0.795)which are bolded in Table 2.The relationships between these elements indicate they might feasibly have the same source;the geochemistry is similar across the study area(Mahvash Mohammadi and Hezarkhani 2015).In addition,there are relatively strong correlations between Cu,Mo,Pb,and Sb.

    6.2 Principal component analysis

    A scree plot(Fig.2)shows that the eigenvalues of the fi rst four components are greater than one,and account for about 85.27%of the total variance of data.With the criteria of eigenvalue greater than 1 and percentage of variance as explained in Table 3,four principal components were selected,which are bolded in Table 3.The first coefficient(F1)from fifteen components had the highest percentage of variability in the area.PCA was used for the concentrations of Au,As,Ag,Sb,Ba,Be,Co,Cr,Cu,Fe,Mo,Ni,Pb,Sn,and Zn to reduce dimensions and classification.PCA results are presented for all four components in Table 4.

    Fig.2 Scree plot of elements in the Khooni district

    As shown in Tables 3 and 4,the first component(PC1)accounted for 38.74%of the total variance with strong loadings on Au(0.973),Sb(0.933),and As(0.870)and mediocre loadings on Cu(0.652),Mo(0.625),Pb(0.646),and Zn(0.658).As shown in Table 4,the amount of strong loading,greater than 0.5,are bolded.The behaviors of elements in this group were highly dependent,with a strong positive correlation between them.PC2 accounted for 25.187%of the total variance,loaded heavily on Co(0.922),Cr(0.836),Fe(0.864),Ni(0.747),and Sn(0.550).PC3 had high loadings only on Ag(0.870)and accounted for 13.019%of the total variance.PC4 accounted for about 8.331%of the total variance and had loadings on Ba(0.701)and Be(0.781).

    Figure 3 shows loading plots of elements in the space defined by two components.As shown in Fig.3a,As and Sb are close to Au;Cu,Mo,and Zn are close to Pb;Ni,Cr,Co,Fe,and Sn are in a group;and Ba and Be are near each other.These groups suggest Au,As,and Sb have strong relationships;other groups of elements suggest the distribution of these elements is related.Likewise,in Fig.3b,Cr,Co,Fe,Sn,and Ni make a group—an association of correlated elements.A good correlation exists between Ba and Be(Fig.3c).Ag is separate and does not fall into any group.The PCA agreed with the cluster analysis,with eachproducing strong clusters and the same element groupings.Au,As,and Sb,which share paragenesis,are in a cluster and have a strong relationship.

    Table 4 Factor loadings of elements in Khooni district

    6.3 K-means results

    In the present study,we used k-means to cluster stream sediment samples of the Khooni area and calculate the optimum k for three elements—gold,arsenic,and antimony—according to the coordinates of the sampling points.The silhouette criterion was used to determine the number of clusters(k);k was varied from 3 to 10.Then,the results were analyzed to select the optimum k.Figure 4 shows average silhouette value based on the number of clusters.The cluster with the maximum average silhouette value was selected as the optimum cluster.According to the above text,if the value of the average silhouette is close to 1,the samples have been clustered correctly.Figure 4a exhibits the average silhouette values for arsenic and antimony;clustering with k=3 is selected as the optimum k,because of the high associated average silhouette value,0.8584.Similarly,k=3 with 0.9647 average silhouette,and k=4 with 0.8064 were chosen as the optimum numbers of clusters for coupling gold and antimony(Fig.4b),and for coupling gold and arsenic(Fig.4c),respectively.

    Table 3 Eigenvalue and percentage of variance of elements in the Khooni district

    Fig.3 Loading by plot of elements Khooni district

    All data were classified by k-means and then the centroids of each cluster were calculated.The diagram of centroids is shown for gold and arsenic with k=4(Fig.5a),for gold and antimony with k=3(Fig.5b),and for arsenic and antimony with k=3(Fig.5c).

    With increasing grade of gold in Fig.5a,the grade of arsenic increases and subsequently decreases.The best regression is a quadratic curve of y=-0.1158x2+8.5502x-4.756with a correlation coefficient R2=0.9625.

    Fig.4 Changes in the value of S(i)based on the number of clusters a arsenic and antimony,b gold and antimony,c gold and arsenic

    The behavior of gold and antimony is similar to the behavior of gold and arsenic(Fig.5b);with increasing gold grade,the grade of antimony initially increases and later decreases.The best regression is a quadratic curve with a negative concavity y=-0.0012x2+0.0928x+1.134and a correlation coefficient R2=1.The behavior of arsenic and antimony is predictable according to previous results.As a result,we expect these two elements to have a direct relationship.The grade of arsenic increases with increased grade of antimony.The best regression plotted on centroids was y=0.0274x+0.9713with a correlation coefficient R2=0.9992(Fig.5c).

    Fig.5 The best regression curve a k=4 classifications relating to Au and As;b k=3 classi fi cations relating to Au and Sb;c k=3 classifications relating to Sb and As

    7 Estimating the grade of gold

    Estimating the gold grade depends on the behavior of gold,arsenic,and antimony related to the sample coordinate.In the first step in determining this relationship,the optimum number of clusters was selected by silhouette criteria.The highest value of the average silhouette was 0.6568,belonging to Class 5(Fig.6).The coordinates of the samples along grade elements of gold,arsenic,and antimony were used as input data.The range of coordinate and grade values are thus different.To avoid creating errors in calculations and to obtain the correct estimation,all input values were placed in a standard range—the interval[0,1]—by Eq.9.

    The specific cluster centers are given in Table 5 for k=5.

    Using multivariate regression in SPSS software to determine the relationship between gold,arsenic,and antimony according to coordinate sampling in the study area,the grade of gold was estimated.Values of gold(the dependent variable)and the amount of arsenic and antimony,and length and width of samples(the independent variables) were introduced into the application.

    Fig.6 Changes in the value of S(i)based on the number of clusters(for gold,arsenic,and antimony)

    Specification and multivariate regression coefficients were calculated and are reported in Table 6.

    According to the coefficients in Table 6,the formula of multiple regressions was determined as follows:

    The R2suggests the regression model could explain the changes to Au.At this point,R2=73.72,thus 73%of changes to the gold value(y)are based on the value of X(arsenic,antimony,length and width of the sample).

    To validate the estimation of gold,some original data were estimated based on Eq.10 to describe the accuracy.Some data were validated(Fig.7).We randomly selected 30%of the samples and estimated the grade of gold based using the grade of arsenic and antimony and length andwidth of the samples.The computed values were then compared with original values,resulting in a correlation coefficient of 91%(Fig.7).The estimated values of gold almost match the original values of gold,demonstrating the accuracy of the applied method.

    Table 6 Specifications and multivariate regression coefficients

    Fig.7 Scatter plot of the measured gold values against estimated values for validation

    Table 5 Speci fi cation of cluster centroids(clustering by k=5)

    8 Conclusion

    Due to the evidence of gold mineralization in the Khooni district,estimating Au concentration is important.Elements were divided into five groups including Au,As,and Sb;Fe,Mo,Cu,and Pb;Ni,Cr,Co,and Sn;Be and Ba;and Ag in a group of its own.Based on paragenesis of Au with As and Sb and the results of our analysis,As and Sb were considered for estimating Au concentration.District Through PCA and k-means,an equation was achieved for estimating the gold grade based on arsenic,antimony,and length and width of the samples:Au=1.995As-14.892Sb+0.221X-0.375Y+0.561with a correlation coefficient of 91%.

    AcknowledgementsThe authors thank the editors and anonymous reviewers for their constructive comments,which have significantly improved the manuscript.

    Abolhassani B,Salt JE(2005)A simplex K-means algorithm for radio-port placement in cellular networks.In:Canadaian Conference on Electrical and Computer Engineering

    Adib D(1972)Khooni mine mineralogy,Ph.D.Thesis,University of Shiraz,Shiraz(in Persian)

    Bagheri H,Moore F,Alderton DHM(2007)Cu–Ni–Co–A-(U)mineralization in the Anarak area of central Iran.J Asian Earth Sci 29:651–665

    Ball GH,Hall DJ(1967)A clustering technique for summarizing multivariate data.Behav Sci 12(2):153–155

    Berkhin P(2006)A survey of clustering data mining techniques.In:Kogan J,Nicholas C,Teboulle M(eds)Grouping multidimensional data.Springer,Berlin,pp 25–71

    Chen TW,Chien SY(2010)Bandwidth adaptive hardware architecture of K-means clustering for video analysis.IEEE Trans VLSI Syst 18(6):957–966

    Crosta AP,Rabelo A(1993)Assessing landsat/TM for hydrothermal mapping in central western,Brazil.In:processing of the 9th thematic conference of geologic remote sensing

    Darvish M(2011)Mineralogy studies and determine Khooni skarn sources-North East of Anarak,Esfahan province.M.Sc.Thesis,University of Esfahan,Esfahan,p 153(in Persian)

    Davis BM,Jalkanen GJ(1988)Nonparametric estimation of multivariate joint and conditional spatial distributions.Math Geol 20(4):367–381

    Ding C,He X(2004)K-means clustering via principal component analysis.In Appearing in proceedings of the 21st international conference on machine learning,Banff

    Du Q,Flower EJ(2008)Low-complexity principal component analysis for hyperspectral image compression.Int J High Perform Comput Appl 22(4):438–448

    Egozcue JJ,Pawlowsky-Glahn V,Mateu-Figueras G(2003)Isometric logratio transformations for compositional data analysis.Math Geol 35:279–300

    Fei Q,Hongbing J,Qian L,Xinyue G,Lei T,Jinguo F(2014)Evaluation of trace elements and identi fi cation of pollution sources in particle size fractions of soil from iron ore areas along the Chao River.J Geochem Explor 138:33–49

    Hartigan JA(1975)Clustering algorithms(probability&mathematical statistics).Wiley,London

    Hartigan JA,Wong MA(1979)A K-means clustering algorithm.J R Stat Soc 28(1):100–108

    Heydarian Dehkordi N,Rassa A(2011)Study of alteration and investigating genetic between gold and other elements in khooni district.J Appl Geol Iran 2:95–106(in Persian)

    Heydarian Dehkordi N,Rassa A(2012)Characteristics and genesis of gold mineralization in Eocene volcanic units of khooni Cheshmeh,Anarak,the nature of mineralizing fluids and comparison with other types of gold deposits.J Geol Iran 17:73–85(in Persian)

    Hotelling H(1933)Analysis of a complex of statistical variables into principal components.J Educ Psychol 24:417–441

    Howarth RJ,Sinding-Larson R(1983)Statistic and data analysis in geochemical prospecting.Handb Explor Geochem Amesterdam 2:207–289

    Jolliffe IT(1986)Principal component analysis.Springer,New York

    Jolliffe I(2002)Principal component analysis for special types of data.In:Principal component analysis,2nd edn.Springer,New York,pp 338–372

    Labib K,Vemuri V(2005)Application of exploratory multivariate analysis for network security.In:Vemuri V(ed)Enhancing computer security with smart technology.CRC Press,Boca Raton,pp 229–261

    Lin JW(2012)Study of ionospheric anomalies due to impact of typhoon using principal component analysis and image processing.J Earth Syst Sci 121(4):1001–1010

    Lloyd S(1957)Least squares quantization in pcm.Bell Telephone Laboratories Paper,Marray Hill

    Loska K,Wiechu?a D(2003)Application of principal component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir.J Chemosphere 51:723–733

    Loughlin WPG(1991)Principal component analysis for alteration mapping.Photogram Eng Remote Sens 57(9):1163–1169

    MacQueen J(1967)Some methods for classi fi cation and analysis of multivariate observations.In:Proceedings of the 5th Berkeley symposium on mathematical statistics and probability,California,vol 1,pp 281–297

    Mahvash Mohammadi N,Hezarkhani A(2015)Estimation of grade gold in Khooni deposit using the behavior of gold,Arsenic and Antimoney elements by clustering K-means method.J Anal Numer Methods Min Eng 5(10):77–92(in Persian)

    Mahvash Mohammadi N,Hezarkhani A,Shokouh Saljooghi B(2016)Separation of a geochemical anomaly from background by fractal and U-statistic methods,a case study:Khooni district,Central Iran.Chem Erde/Geochem 76:491–499

    Malyszko D,Wierzchon ST(2007)Standard and genetic K-means clustering techniques in image segmentation.In:6th International conference on computer information systems and industrial management applications

    Nezampoor H,Rasa A(2005)Study of gold mineralization in oxide veins Khooni–Anarak region.In The twenty-fourth national geosciences symposium(in Persian)

    Ng A,Jordan M,Weiss Y(2001)On spectral clustering:Analysis and an algorithm.In:Proceedings of the neural in formation processing systems

    Pak HAA,Sharafeddin M(2005)Exploration data analysis.Tehran University Press,Tehran(in Persian)

    Pasadakis N,Obermajer M,Osadetz KG(2004)Definition and characterization of petroleum compositional families in Will is ton Basin,North America using principal component analysis.JOrg Geochem 35:453–468

    Pham TD(1997)Grade estimation using fuzzy-set algorithms.Math Geol 29(2):291–305

    Pourjabar A(2005)Geochemical investigations on the polymetalic vein in Khooni(Esfahan Province),M.Sc Thesis,Amirkabir University of Technology,Tehran,p 217(in Persian)

    Prinzhofer A,Mello MR,Da Sila Freitas LC,Takaki T(2000)A new geochemical characterization of natural gas and its use in oil and gas evaluation.In:Mello MR,Katz BJ(eds)Petroleum systems and south Atlantic Margins.American Association of Petroleum Geologists Bulletin,Memoir 70:107–119

    Rodr?′guez JA,Nanos N,Grau JM,Gil L,Lo′pez-Arias M(2008)Multiscale analysis of heavy metal contents in Spanish agricultural topsoils.Chemosphere 70:1085–1096

    Rousseuw PJ(1987)Silhouettes:a graphical aid to the interpretation and validation of cluster analysis.Comput Appl Math 20:53–65

    Sabeti H,Javaherian A,Araabi ND(2007)Principal component analysis applied to seismic horizon interpretations.International Congress of Petroleum Geostatistics,Cascais,pp 10–14

    Templ M,Filzmoser P,Reimann C(2008)Cluster analysis applied to regional geochemical data:problems and possibilities.Appl Geochem 23(8):2198–2213

    Tipping ME,Bishop CM(1999)Probabilistic principal component analysis.J R Stat Soc B 61:611–622

    Xiaoya Z,Chunlai L,Chang L(2009)Quanti fi cation of the chemical composition of lunar soil in terms of its re fl ectance spectra by PCA and SVM.Acta Geochim 28:204–211

    Yeung KY,Ruzzo WL(2001)Principal component analysis for clustering gene expression data.Bioinformatics 17:763–774

    Zha H,He X,Ding C,Simon H,Gu M(2001)Spectral relaxation for K-means clustering.Technical Report TR-2001-XX,Pennsylvania State University,University Park,PA

    日本熟妇午夜| 简卡轻食公司| 18禁在线播放成人免费| 国产成人福利小说| 久久精品夜夜夜夜夜久久蜜豆| 亚洲精品日韩在线中文字幕 | 91精品国产九色| 欧美一区二区国产精品久久精品| 国产精品福利在线免费观看| 级片在线观看| 欧美xxxx黑人xx丫x性爽| 91午夜精品亚洲一区二区三区| 99热全是精品| 久久国内精品自在自线图片| 亚洲国产精品sss在线观看| 久久久久久久亚洲中文字幕| 免费搜索国产男女视频| 欧美精品国产亚洲| 三级男女做爰猛烈吃奶摸视频| 淫妇啪啪啪对白视频| 精品久久久久久久末码| 久久精品影院6| 大香蕉久久网| 高清毛片免费看| 少妇猛男粗大的猛烈进出视频 | 插阴视频在线观看视频| 村上凉子中文字幕在线| av在线亚洲专区| 国产成人freesex在线 | 大型黄色视频在线免费观看| 国产av一区在线观看免费| 国产精品久久久久久亚洲av鲁大| 美女 人体艺术 gogo| 国产探花在线观看一区二区| 成人av在线播放网站| 亚州av有码| 日韩av不卡免费在线播放| 成人综合一区亚洲| 97超级碰碰碰精品色视频在线观看| 少妇丰满av| 少妇熟女欧美另类| 悠悠久久av| 国产精品电影一区二区三区| 午夜精品国产一区二区电影 | 国产男人的电影天堂91| 欧美三级亚洲精品| 成人高潮视频无遮挡免费网站| 国产伦精品一区二区三区四那| 青春草视频在线免费观看| av在线老鸭窝| 99热精品在线国产| 99热精品在线国产| 中文字幕av在线有码专区| av黄色大香蕉| 精品日产1卡2卡| 校园春色视频在线观看| 亚洲成人久久爱视频| 一个人观看的视频www高清免费观看| 免费不卡的大黄色大毛片视频在线观看 | 欧美又色又爽又黄视频| 亚洲色图av天堂| 亚洲图色成人| 51国产日韩欧美| 少妇裸体淫交视频免费看高清| 深夜a级毛片| 婷婷精品国产亚洲av| 99热这里只有精品一区| 美女cb高潮喷水在线观看| 九九热线精品视视频播放| 国产伦一二天堂av在线观看| 国产中年淑女户外野战色| 亚洲精品国产av成人精品 | 国内精品宾馆在线| 少妇丰满av| 国产视频一区二区在线看| 别揉我奶头~嗯~啊~动态视频| 国产成年人精品一区二区| 91狼人影院| 亚洲成a人片在线一区二区| 亚洲国产欧洲综合997久久,| 国产乱人视频| 搞女人的毛片| a级毛色黄片| 色哟哟·www| 国产高清不卡午夜福利| av专区在线播放| 非洲黑人性xxxx精品又粗又长| 91久久精品国产一区二区成人| 此物有八面人人有两片| 天堂av国产一区二区熟女人妻| 1024手机看黄色片| 丰满人妻一区二区三区视频av| 亚洲真实伦在线观看| 久久久a久久爽久久v久久| 亚洲婷婷狠狠爱综合网| 亚洲欧美日韩无卡精品| 亚洲真实伦在线观看| 老司机午夜福利在线观看视频| 成人漫画全彩无遮挡| 午夜福利高清视频| 可以在线观看毛片的网站| 欧美成人a在线观看| 日日撸夜夜添| 人妻夜夜爽99麻豆av| 成人鲁丝片一二三区免费| 亚洲国产欧洲综合997久久,| 全区人妻精品视频| 久久久久久久久中文| 极品教师在线视频| 日韩制服骚丝袜av| 别揉我奶头 嗯啊视频| 一区二区三区四区激情视频 | 男人狂女人下面高潮的视频| 欧美zozozo另类| 美女大奶头视频| 国产午夜精品论理片| 干丝袜人妻中文字幕| 校园人妻丝袜中文字幕| 日日啪夜夜撸| 熟妇人妻久久中文字幕3abv| 夜夜夜夜夜久久久久| 岛国在线免费视频观看| av天堂在线播放| 九九在线视频观看精品| 小蜜桃在线观看免费完整版高清| 国产黄色视频一区二区在线观看 | 中文在线观看免费www的网站| 女人被狂操c到高潮| 欧美色欧美亚洲另类二区| 精品日产1卡2卡| 十八禁国产超污无遮挡网站| 国产91av在线免费观看| 蜜桃久久精品国产亚洲av| 国产精品一区二区免费欧美| 成人永久免费在线观看视频| 国产成人a区在线观看| 麻豆av噜噜一区二区三区| 99riav亚洲国产免费| 国产精华一区二区三区| 夜夜爽天天搞| 99久久精品国产国产毛片| 秋霞在线观看毛片| 别揉我奶头 嗯啊视频| 精品久久久久久久久久免费视频| 波多野结衣巨乳人妻| 日韩国内少妇激情av| 亚洲av中文字字幕乱码综合| 国语自产精品视频在线第100页| 黄色一级大片看看| 成人永久免费在线观看视频| 99久久久亚洲精品蜜臀av| 深夜精品福利| 日日摸夜夜添夜夜爱| 老司机影院成人| 最新在线观看一区二区三区| 人妻久久中文字幕网| 欧洲精品卡2卡3卡4卡5卡区| 老司机午夜福利在线观看视频| 97超级碰碰碰精品色视频在线观看| 最近手机中文字幕大全| 久久韩国三级中文字幕| 丝袜美腿在线中文| 99久久无色码亚洲精品果冻| 99国产精品一区二区蜜桃av| 日韩成人av中文字幕在线观看 | 好男人在线观看高清免费视频| 亚洲自偷自拍三级| 五月伊人婷婷丁香| 久久精品国产清高在天天线| 久久久精品欧美日韩精品| 美女黄网站色视频| 亚州av有码| 日本色播在线视频| 国产伦精品一区二区三区视频9| 国产精品三级大全| 波多野结衣高清作品| 22中文网久久字幕| 九九在线视频观看精品| 在线国产一区二区在线| 丝袜喷水一区| 亚洲图色成人| 麻豆av噜噜一区二区三区| 别揉我奶头~嗯~啊~动态视频| 麻豆国产av国片精品| 少妇猛男粗大的猛烈进出视频 | 亚洲五月天丁香| 超碰av人人做人人爽久久| 久久精品国产自在天天线| 国产亚洲精品久久久久久毛片| 日韩高清综合在线| 无遮挡黄片免费观看| 欧美绝顶高潮抽搐喷水| 老司机午夜福利在线观看视频| 午夜免费激情av| 久久午夜福利片| a级毛片免费高清观看在线播放| 97碰自拍视频| 一级黄色大片毛片| 精品久久久噜噜| 午夜爱爱视频在线播放| 久久久精品欧美日韩精品| 草草在线视频免费看| 国产精品一区二区性色av| 成人亚洲欧美一区二区av| 久久久久免费精品人妻一区二区| 真实男女啪啪啪动态图| 一卡2卡三卡四卡精品乱码亚洲| 国产精品一区www在线观看| 69av精品久久久久久| 成人特级av手机在线观看| 久久这里只有精品中国| 亚洲中文字幕日韩| 少妇熟女aⅴ在线视频| 天堂网av新在线| 日本在线视频免费播放| 久99久视频精品免费| 少妇猛男粗大的猛烈进出视频 | 在线免费观看不下载黄p国产| 亚洲欧美中文字幕日韩二区| av女优亚洲男人天堂| 午夜激情欧美在线| 成人二区视频| 真实男女啪啪啪动态图| 欧美+日韩+精品| 精品人妻偷拍中文字幕| 最新中文字幕久久久久| 舔av片在线| 99久久精品国产国产毛片| 亚洲欧美中文字幕日韩二区| 国产精品一二三区在线看| 九九爱精品视频在线观看| 午夜精品一区二区三区免费看| 成人综合一区亚洲| 久久久久久久久中文| 三级经典国产精品| 成人特级黄色片久久久久久久| 亚洲第一区二区三区不卡| 国产高潮美女av| 国产精品久久久久久亚洲av鲁大| 一a级毛片在线观看| 国产午夜精品久久久久久一区二区三区 | 国产爱豆传媒在线观看| 日韩一区二区视频免费看| 国产精品久久久久久久久免| 亚洲va在线va天堂va国产| 男插女下体视频免费在线播放| 18禁在线播放成人免费| 亚洲内射少妇av| 乱人视频在线观看| 国产精品一区二区三区四区久久| 3wmmmm亚洲av在线观看| 亚洲激情五月婷婷啪啪| 黄色一级大片看看| 成人欧美大片| 欧美色视频一区免费| 少妇的逼好多水| 午夜福利在线观看免费完整高清在 | 亚洲中文日韩欧美视频| 男女那种视频在线观看| 又黄又爽又刺激的免费视频.| 国内精品久久久久精免费| 久久久久久久久久成人| 亚洲一区二区三区色噜噜| av福利片在线观看| .国产精品久久| 人妻夜夜爽99麻豆av| 国产熟女欧美一区二区| 99热精品在线国产| 中文字幕久久专区| 真人做人爱边吃奶动态| 国内精品一区二区在线观看| 日本黄色视频三级网站网址| 12—13女人毛片做爰片一| 大香蕉久久网| 久久久久久久久中文| 免费一级毛片在线播放高清视频| 日韩在线高清观看一区二区三区| 又黄又爽又免费观看的视频| 国产女主播在线喷水免费视频网站 | 一个人观看的视频www高清免费观看| 久久久久国内视频| 国内精品宾馆在线| 99久久精品国产国产毛片| 51国产日韩欧美| 夜夜夜夜夜久久久久| 亚洲av成人精品一区久久| 中文亚洲av片在线观看爽| 22中文网久久字幕| 国产一区二区三区av在线 | 91狼人影院| 国产精品不卡视频一区二区| 在线观看av片永久免费下载| eeuss影院久久| 亚洲18禁久久av| 免费看美女性在线毛片视频| 人妻少妇偷人精品九色| 男人狂女人下面高潮的视频| 乱码一卡2卡4卡精品| 91狼人影院| 国产毛片a区久久久久| 少妇人妻一区二区三区视频| 国内揄拍国产精品人妻在线| 国产男人的电影天堂91| 国产黄a三级三级三级人| 一区二区三区四区激情视频 | 18禁黄网站禁片免费观看直播| 91麻豆精品激情在线观看国产| 男女边吃奶边做爰视频| 观看美女的网站| 精品久久久久久久末码| 亚洲人成网站在线播| 美女被艹到高潮喷水动态| 99久久九九国产精品国产免费| 中文字幕av成人在线电影| 成年女人永久免费观看视频| 91久久精品国产一区二区成人| 99久久精品国产国产毛片| 少妇熟女欧美另类| 欧美成人精品欧美一级黄| 成人高潮视频无遮挡免费网站| 日本黄色视频三级网站网址| av国产免费在线观看| 精品久久国产蜜桃| 成人av在线播放网站| 欧美成人精品欧美一级黄| 亚洲丝袜综合中文字幕| 婷婷精品国产亚洲av| 成人国产麻豆网| 国产一区二区激情短视频| 日日干狠狠操夜夜爽| 久久久国产成人免费| 极品教师在线视频| 大香蕉久久网| 一区二区三区高清视频在线| 国产高清激情床上av| 亚洲国产欧美人成| 国产成人aa在线观看| 亚洲精品乱码久久久v下载方式| 久久久久久久久中文| 日本熟妇午夜| avwww免费| 国产黄a三级三级三级人| 丝袜美腿在线中文| 日韩高清综合在线| 99热这里只有是精品50| 日韩精品中文字幕看吧| 成人特级黄色片久久久久久久| 婷婷精品国产亚洲av在线| 国产蜜桃级精品一区二区三区| 九九热线精品视视频播放| 亚洲婷婷狠狠爱综合网| 成年免费大片在线观看| 啦啦啦观看免费观看视频高清| 久久久久免费精品人妻一区二区| 日本-黄色视频高清免费观看| eeuss影院久久| 丰满乱子伦码专区| 久久草成人影院| 欧美激情国产日韩精品一区| 国产毛片a区久久久久| 自拍偷自拍亚洲精品老妇| a级毛片a级免费在线| 少妇猛男粗大的猛烈进出视频 | 国产爱豆传媒在线观看| 99国产极品粉嫩在线观看| 你懂的网址亚洲精品在线观看 | 日韩三级伦理在线观看| 中国国产av一级| 日本免费a在线| 97超级碰碰碰精品色视频在线观看| 亚洲欧美精品综合久久99| 精品人妻一区二区三区麻豆 | 校园春色视频在线观看| 老女人水多毛片| 小蜜桃在线观看免费完整版高清| 国产精品不卡视频一区二区| 一个人看视频在线观看www免费| 老熟妇乱子伦视频在线观看| 亚洲成人中文字幕在线播放| 久久亚洲精品不卡| 无遮挡黄片免费观看| 久久久久久久久久黄片| 国内少妇人妻偷人精品xxx网站| 欧美bdsm另类| 日韩三级伦理在线观看| 久久久精品94久久精品| 亚洲av美国av| 欧美一区二区国产精品久久精品| 91久久精品国产一区二区成人| 亚洲av一区综合| 午夜福利在线观看吧| 内地一区二区视频在线| 日韩大尺度精品在线看网址| 尾随美女入室| 日本免费一区二区三区高清不卡| 村上凉子中文字幕在线| 国产av在哪里看| 欧美不卡视频在线免费观看| 99久久九九国产精品国产免费| 不卡视频在线观看欧美| 久久久久久九九精品二区国产| 国内揄拍国产精品人妻在线| АⅤ资源中文在线天堂| 搡老妇女老女人老熟妇| 国产乱人偷精品视频| 真人做人爱边吃奶动态| 亚洲精品一卡2卡三卡4卡5卡| 国产午夜精品久久久久久一区二区三区 | 国产精华一区二区三区| 欧美成人精品欧美一级黄| 国产精品人妻久久久久久| 蜜臀久久99精品久久宅男| 国产伦精品一区二区三区视频9| 成人漫画全彩无遮挡| 最后的刺客免费高清国语| 亚洲国产色片| 国产91av在线免费观看| 人人妻人人澡人人爽人人夜夜 | 欧美国产日韩亚洲一区| 午夜免费男女啪啪视频观看 | 欧美一区二区精品小视频在线| 一a级毛片在线观看| 久久综合国产亚洲精品| 久久久国产成人免费| 国产精品久久电影中文字幕| 日韩大尺度精品在线看网址| 亚洲,欧美,日韩| 看非洲黑人一级黄片| 99在线人妻在线中文字幕| 国产成人a∨麻豆精品| 国产精品一二三区在线看| 欧美一级a爱片免费观看看| 久久久久久九九精品二区国产| 国产成人91sexporn| 亚洲av.av天堂| 色播亚洲综合网| 中出人妻视频一区二区| 成人精品一区二区免费| 三级男女做爰猛烈吃奶摸视频| 亚洲国产欧洲综合997久久,| 亚洲激情五月婷婷啪啪| 亚洲精品日韩av片在线观看| 97在线视频观看| 日韩亚洲欧美综合| 亚洲精品乱码久久久v下载方式| 亚洲欧美精品自产自拍| 久久精品国产清高在天天线| 日韩欧美免费精品| 国产亚洲精品久久久com| 国产探花在线观看一区二区| 国产三级中文精品| 国产精品一区二区三区四区久久| 亚洲熟妇熟女久久| 国产精品久久久久久av不卡| 免费看美女性在线毛片视频| 少妇人妻精品综合一区二区 | 搡老熟女国产l中国老女人| 在线天堂最新版资源| 精品一区二区免费观看| 免费人成视频x8x8入口观看| 欧美3d第一页| 欧美+日韩+精品| 国产免费一级a男人的天堂| 日日撸夜夜添| 69av精品久久久久久| 啦啦啦啦在线视频资源| 欧美高清成人免费视频www| ponron亚洲| 精品久久国产蜜桃| 如何舔出高潮| 内射极品少妇av片p| 男女啪啪激烈高潮av片| 欧美bdsm另类| 偷拍熟女少妇极品色| 久久精品夜色国产| 国内精品久久久久精免费| 熟女电影av网| 精品久久久久久久久亚洲| 91久久精品国产一区二区三区| 久久久色成人| 男女那种视频在线观看| 你懂的网址亚洲精品在线观看 | 成人毛片a级毛片在线播放| av视频在线观看入口| 亚洲美女搞黄在线观看 | 联通29元200g的流量卡| 国产精品国产高清国产av| 人人妻,人人澡人人爽秒播| 深爱激情五月婷婷| 中文字幕精品亚洲无线码一区| 99精品在免费线老司机午夜| 成年版毛片免费区| 哪里可以看免费的av片| 一本一本综合久久| 国产 一区 欧美 日韩| 欧美区成人在线视频| 欧美日韩精品成人综合77777| 男人的好看免费观看在线视频| 一本精品99久久精品77| 欧美最新免费一区二区三区| 村上凉子中文字幕在线| 我要搜黄色片| 亚洲av一区综合| 国产成人影院久久av| 99热这里只有精品一区| 欧美不卡视频在线免费观看| 国产精品三级大全| 亚洲成人久久爱视频| 国产精品野战在线观看| 天天躁夜夜躁狠狠久久av| 国产一区二区三区av在线 | 天堂av国产一区二区熟女人妻| 亚洲欧美成人综合另类久久久 | 亚洲综合色惰| 久久韩国三级中文字幕| 亚洲精品乱码久久久v下载方式| 成人亚洲欧美一区二区av| 色综合站精品国产| 亚洲欧美日韩高清专用| 精品久久久久久久久久免费视频| 国产成人精品久久久久久| 日韩欧美免费精品| 国产视频内射| 欧美+日韩+精品| 日韩中字成人| 嫩草影院入口| 久久亚洲国产成人精品v| 久久久午夜欧美精品| 综合色丁香网| 晚上一个人看的免费电影| 国产高潮美女av| 精品一区二区免费观看| 黄色视频,在线免费观看| 成人鲁丝片一二三区免费| 在线观看av片永久免费下载| 精品欧美国产一区二区三| 我的老师免费观看完整版| 国产人妻一区二区三区在| 精品一区二区三区人妻视频| 国产欧美日韩一区二区精品| 又粗又爽又猛毛片免费看| 国产精品美女特级片免费视频播放器| 久久久久国产精品人妻aⅴ院| 久久精品综合一区二区三区| 一本精品99久久精品77| 亚洲成人中文字幕在线播放| 乱系列少妇在线播放| 亚洲精华国产精华液的使用体验 | 久久精品国产亚洲av天美| 国产在线精品亚洲第一网站| 插逼视频在线观看| 国产成年人精品一区二区| 97热精品久久久久久| 国产色爽女视频免费观看| 亚洲国产高清在线一区二区三| 国产精品,欧美在线| 免费看美女性在线毛片视频| 晚上一个人看的免费电影| 日日摸夜夜添夜夜添小说| av.在线天堂| 欧美性猛交黑人性爽| 久久99热6这里只有精品| 久久久久国产网址| 日韩欧美三级三区| 欧美高清性xxxxhd video| 夜夜看夜夜爽夜夜摸| 亚洲国产欧美人成| 97超级碰碰碰精品色视频在线观看| av专区在线播放| 免费不卡的大黄色大毛片视频在线观看 | 欧美日韩在线观看h| av视频在线观看入口| 日日摸夜夜添夜夜添av毛片| 麻豆成人午夜福利视频| 99久久精品一区二区三区| 久久精品人妻少妇| 男女边吃奶边做爰视频| 如何舔出高潮| 欧美日本亚洲视频在线播放| 男女视频在线观看网站免费| 一本精品99久久精品77| 国产爱豆传媒在线观看| 亚洲自偷自拍三级| 国产精品一区二区免费欧美| 国产不卡一卡二| 级片在线观看| 亚洲自偷自拍三级| 国产日本99.免费观看| 国产乱人视频| 日本爱情动作片www.在线观看 | 久久精品国产鲁丝片午夜精品| 99热这里只有是精品50| 天天躁夜夜躁狠狠久久av| 亚洲最大成人手机在线| 波多野结衣巨乳人妻| av中文乱码字幕在线| 卡戴珊不雅视频在线播放| 国产伦精品一区二区三区四那| 人人妻人人澡人人爽人人夜夜 | 在线观看66精品国产| 亚洲av.av天堂| 国产欧美日韩一区二区精品| 你懂的网址亚洲精品在线观看 | 免费一级毛片在线播放高清视频| 91午夜精品亚洲一区二区三区| av卡一久久| 中文在线观看免费www的网站| av在线观看视频网站免费| 亚洲av熟女| 人妻丰满熟妇av一区二区三区| 亚洲精品亚洲一区二区| 国产人妻一区二区三区在| 国内精品一区二区在线观看| 日韩欧美一区二区三区在线观看| 久99久视频精品免费|