摘要:金融投資組合和指數(shù)追蹤領(lǐng)域中的稀疏優(yōu)化問題通常既含有等式約束又含有上下界約束,而現(xiàn)行的稀疏優(yōu)化問題求解算法大多不適用于此類問題。本文主要研究等式與上下界約束稀疏優(yōu)化問題,首先將該問題進(jìn)行一系列變換轉(zhuǎn)化為上下界稀疏優(yōu)化問題,然后應(yīng)用自適應(yīng)Hard閾值算法進(jìn)行求解。將本文處理方法應(yīng)用于金融指數(shù)追蹤問題,數(shù)值實(shí)驗(yàn)表明追蹤組合具有較好的樣本外表現(xiàn)。
關(guān)鍵詞:稀疏優(yōu)化問題;最小二乘問題;Hard閾值追蹤算法;指數(shù)追蹤
結(jié)論
本文主要考慮帶等式與上下界約束的稀疏優(yōu)化問題,通過一系列變換將其轉(zhuǎn)化為帶上下界約束的稀疏優(yōu)化問題,應(yīng)用自適應(yīng)Hard閾值算法即可求解。并將同樣的處理方式應(yīng)用于金融指數(shù)追蹤問題,數(shù)值實(shí)驗(yàn)表明該算法使得追蹤組合具有較好的樣本外表現(xiàn),且樣本內(nèi)外表現(xiàn)一致。
參考文獻(xiàn):
[1] Foucart S. Hard thresholding pursuit: an algorithm for compressive sensing[J]. SIAM Journal on Numerical Analysis, 2011, 49(6): 2543-2563.
[2] Cevher V, Koch C, Becker S, et al. Sparse projections onto the simplex[C]. 30th International Conference on Machine Learning(ICML), 2013
[3] Tropp JA, Gilbert AC. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666
[4] Blumensath T, Yaghoobi M, Davies ME. Iterative hard thresholding and l0 regularization[C]. Honolulu: IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP), 2007, 3: 877-880.
[5] Blumensath T, Davies ME. Iterative thresholding for sparse approximations[J]. Journal of Fourier Analysis and Applications, 2008, 14(5-6): 629-654.
作者簡介:李蒙,陜西渭南人,渭南師范學(xué)院教師。