邱麗 過榴曉 劉佳
(江南大學(xué)理學(xué)院, 無錫 214122)
近年來多智能體網(wǎng)絡(luò)系統(tǒng)的合作與協(xié)調(diào)控制已成為眾多領(lǐng)域研究的熱點(diǎn),在無人航天[1],傳感器網(wǎng)絡(luò)[2],衛(wèi)星編隊(duì)[3,4],數(shù)據(jù)融合,多機(jī)械臂的協(xié)同裝備,以及魚群或鳥群的行動(dòng)方向[5,6],分布傳感器的濾波值[7]等眾多領(lǐng)域有著廣泛的應(yīng)用而引起的.文獻(xiàn)[8,9]對(duì)于多智能體網(wǎng)絡(luò)的基本問題進(jìn)行了綜述.另一方面,多智能體網(wǎng)絡(luò)系統(tǒng)往往受到環(huán)境不確定性導(dǎo)致通信延遲[10,11],使它很難及時(shí)準(zhǔn)確的獲得相鄰節(jié)點(diǎn)的信息.由于網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)模型的建立與真實(shí)結(jié)構(gòu)的差異[12,13]、環(huán)境的溫度與濕度等外部條件的變化,節(jié)點(diǎn)之間通信的各種不確定因素的影響,復(fù)雜網(wǎng)絡(luò)中的隨機(jī)性因素是客觀存在的,而且隨機(jī)性因素對(duì)系統(tǒng)造成的影響是不可忽略的,因此造成的延遲通常是由有限的信號(hào)傳輸和記憶效應(yīng)所引起的.主體之間的信息通訊自然相應(yīng)與時(shí)滯效應(yīng)[14].具有延遲非線性的復(fù)雜多智能體網(wǎng)絡(luò)系統(tǒng)的一致性問題引起越來越多的關(guān)注[15].在非線性系統(tǒng)的一致性控制控制研究中,更多借鑒線性的分析時(shí)所用的代數(shù)圖論[16],非負(fù)矩陣論[17]等工具來進(jìn)行研究.陳關(guān)榮[18]運(yùn)用這些工具介紹了帶有延遲方法采樣信息非線性多智能體網(wǎng)絡(luò)的控制問題.最近的工作,Huang和Manton[19]研究在切換拓?fù)浯嬖诨虿淮嬖诘那闆r下,使用算法從隨機(jī)近似在離散時(shí)間情況下的隨機(jī)一致性問題.Li和Zhang[20]將 Huang和Manton的工作擴(kuò)展到連續(xù)時(shí)間設(shè)置,得到平衡網(wǎng)絡(luò)和包含的一個(gè)生成樹隨機(jī)一致的充要條件.因此,建立與實(shí)際情況盡量接近的隨機(jī)復(fù)雜動(dòng)態(tài)網(wǎng)絡(luò)模型,并在根據(jù)具體問題變換模型的基礎(chǔ)上,研究采用不同的分析方法與控制策略是有必要的.另一方面,對(duì)于非線性動(dòng)力學(xué)的多智能體系統(tǒng),每個(gè)代理節(jié)點(diǎn)的內(nèi)在動(dòng)力會(huì)作為耦合項(xiàng)在最終的一致狀態(tài)時(shí)將會(huì)消失.因此,一致性協(xié)議必須是一個(gè)孤立的系統(tǒng).一致性協(xié)議可能是一個(gè)孤立的軌跡平衡點(diǎn),周期軌道,或是一個(gè)混沌軌道[21-23].但是上述論文是基于一個(gè)共同的假設(shè),即每個(gè)節(jié)點(diǎn)與鄰居節(jié)點(diǎn)之間信號(hào)傳遞沒有時(shí)間延遲,在許多情況下是不切實(shí)際的.
令G(V,E,A)表示一個(gè)有向加權(quán)圖,其中V={v1,v2,…vN}表示圖G的頂點(diǎn)集合,E?V×V,V為圖G的邊集,節(jié)點(diǎn)的下標(biāo)集合為Q={1,2,…,N}.定義節(jié)點(diǎn)vi的鄰居集合為Ni={vj∈V|(vi,vj)∈E}.圖G的鄰接矩陣A=[aij]∈RN×N,其中矩陣元素aij為節(jié)點(diǎn)vi與節(jié)點(diǎn)vj的連接權(quán)重. 如果vj∈Ni,則aij>0.否則aij=0.假設(shè)圖G中每個(gè)節(jié)點(diǎn)沒有自連,即對(duì)于?i∈Q,aii=0.
一個(gè)有向圖叫做強(qiáng)連接的當(dāng)且僅當(dāng)任意兩個(gè)不同的頂點(diǎn)之間存在一個(gè)有向的路徑.此外,一個(gè)有向圖包含一個(gè)有向生成樹,如果存在一個(gè)頂點(diǎn)稱為根,即存在著從這個(gè)根到每一個(gè)其他的頂點(diǎn)的有向路徑.
引理1[24]: 假設(shè)一個(gè)有向圖G(A)是強(qiáng)連接的,且它的拉普拉斯矩陣L不可約,且滿足L1N=0,并且存在一個(gè)對(duì)應(yīng)于零特征值的左特征向量ξ=(ξ1,ξ2,…ξN)T使得ξTL=0,ξT1N=1.
這里xi∈Rn表示第i個(gè)節(jié)點(diǎn)的位置,L=(lij)n×n是通信拓?fù)銰(A)的拉普拉斯矩陣,ui(t)∈Rn為設(shè)計(jì)的控制輸入.然而,每個(gè)個(gè)體的動(dòng)力學(xué)行為一般不是一個(gè)常數(shù),是時(shí)變的.許多學(xué)者開始研究非線性多智能體網(wǎng)絡(luò)系統(tǒng)[18]:
i=1,2,…N
(1)
注1: 本文在系統(tǒng)中充分考慮了環(huán)境噪聲對(duì)多智能體一致性的影響.線性多智能體網(wǎng)絡(luò)中處理噪聲延遲已是很大挑戰(zhàn),目前較多的是離散系統(tǒng)下的噪聲延遲,隨機(jī)布朗運(yùn)動(dòng)的動(dòng)力學(xué)對(duì)個(gè)體的動(dòng)力學(xué)行為有很大影響.本文的模型主要用來描述外部隨機(jī)噪聲,且高斯白噪聲過程滿足dw(t)=n(t)dt,因此本文處理在噪聲環(huán)境下的非線性連續(xù)多智能體網(wǎng)絡(luò)是一個(gè)很大的進(jìn)步.
考慮非線性動(dòng)力系統(tǒng)的多智能體網(wǎng)絡(luò)的延遲控制,那么給出如下的控制協(xié)議:
ui(t)= ∑vj∈Niaij[(xj(t-τ(t))-
xi(t-τ(t))]
(2)
其中τ(t)是在[0,τ](τ>0)的連續(xù)時(shí)間延遲.
為了證明定理,給出如下引理:
引理2: 假設(shè)x∈Rn,Γ=ΓT∈Rn×n,A∈Rm×n并且有Rank(A)=l 證明: ∵E(Ay)=0,即A(E(y))=0. 令y′=E(y),即Ay′=0. 由文獻(xiàn)[26]引理2,有y′TΓy′<0, 又y′TΓy′=(E(y))TΓ(E(y)) =(E(y))TE(Γy) =E(yTΓy) ∴E(yTΓy)≤0 注2: 本文的分布式控制協(xié)議基于延遲控制方法,考慮時(shí)變延遲采樣信息,不僅簡(jiǎn)化控制方法,而且利用客觀環(huán)境噪聲下的動(dòng)態(tài)延遲信息.能夠很好的解釋和理解非線性復(fù)雜性引起的動(dòng)力學(xué)行為. 綜合(1)和(2),非線性動(dòng)力系統(tǒng)的多智能體網(wǎng)絡(luò)一致性的隨機(jī)延遲控制描述為: xi(t-τ(t))]+σi(t,xi(t))n(t) i=1,2,…,N (3) 將(3)寫成隨機(jī)延遲矩陣形式: dx(t)=[f(x(t))-Lx(t-τ(t))]dt+θdw(t) (4) 其中w(t)是一維高斯白噪聲過程,dw(t)=n(t)dt,L=(lij)n×n,是通信拓?fù)銰(A)的拉普拉斯算子矩陣θ=diag(θ1,…,θn) ,θ=[σ1i,σ2i,…,σni] 是n維行向量. 得到主要結(jié)論前,給出如下假設(shè): 假設(shè)1[27]: 對(duì)任意x,y∈Rn,存在常數(shù)α>0,β>0使得非線性函數(shù)f(·)滿足: (x-y)T[f(x)-f(y)-a(x-y)] ≤-β(x-y)T(x-y) 假設(shè)2:對(duì)于任意的x1,x2∈Rn,t≥0,存在一個(gè)非負(fù)常數(shù)ρ,使得: ‖f(x1,t)-f(x2,t)‖≤ρ‖x1-x2‖ 定理1假設(shè)網(wǎng)絡(luò)圖G是連通的,如果存在正數(shù)λ,α,β且存在對(duì)稱矩陣Q,使得ETQE>0并且矩陣不等式成立: (5) 其中: Φ11=2τ2ETQE-ETE Φ22=ET[λI+2(α-β)(I-F)+ρI]E-ETQE Φ33=-2ETQE Φ44=2τ2ETLTQLE-ETQE 則非線性多智能體系統(tǒng)(4)將均方有界一致. 證明:誤差系統(tǒng): δ(t)=x(t)-1α(t)=(I-F)x(t) 這里1表示元素均為1的N維列向量,I是單位矩陣, dδ(t) =(I-F)dx(t) =(I-F)[f(x(t))-Lx(t-τ(t))]dt+ (I-F)θdω(t) Lδ(t-τ(t))]dt+(I-F)θdw(t) (6) 對(duì)系統(tǒng)(6)選取Lyapunov-Krasovskii函數(shù): V(t)=V1(t)+V2(t) 其中V1(t)=eλtδT(t)δ(t), 這里對(duì)于對(duì)稱矩陣Q,有ETQE>0,其中: ξ=(ξ1,ξ2,…ξN)T是拉普拉斯矩陣L的零特征值的左特征向量,有ξT1N=1. dV(δ(t),t)= 2eλtδT(t)(I-F)θdw(t)+ (7) 這里L(fēng)V1≤λeλtδT(t)δ(t)+2eλtδT(t)[(I-F)· eλttrace(I-F)2θTθ ≤λeλtδT(t)δ(t)+2eλtδT(t)[(I-F)· (α-β)δ(t)-Lδ(t-τ(t))]+ eλttrace(I-F)2θTθ ≤λeλtδT(t)δ(t)+2eλtδT(t)[(I-F)· (α-β)δ(t)-Lδ(t-τ(t))]+ eλttrace(I-F)2θTθ- eλtfT(x(t),t)f(x(t),t)+ eλtρδT(t)δ(t) (8) (9) 根據(jù)Jensen不等式: ≤-eλt[δ(t)-δ(t-τ)]TQ[δ(t)-δ(t-τ)], ≤-eλt[δ(t-τ(t))-δ(t-τ)]TQ [δ(t-τ(t))-δ(t-τ)], ≤-eλt[δ(t)-δ(t-τ(t))]TQ [δ(t)-δ(t-τ(t))] 令: δ(t)-δ(t-τ)=v1(t) δ(t-τ(t))-δ(t-τ)=v2(t) δ(t)-δ(t-τ(t))=v3(t) 則綜上可得: dV(δ(t),t)≤ 2eλtδT(t)(I-F)θdw(t)+ eλtηT(t)Γη(t)dt+ eλtC0dt (10) 其中: 其中,M=λI+2(α-β)(I-F)+ρI C0=trace(I-F)2θTθ T=1T 容易驗(yàn)證Ε(Aη(t))=0, 由條件: A⊥TΓA⊥<0 (11) 其中: 則由條件(11)和引理2得E(ηT(t)Γη(t))≤0. 不等式(11)可以寫成: 其中: N=-2τ2ETLTQE Φ11=2τ2ETQE-ETE Φ22=ET[λI+2(α-β)(I-F)+ρI]E-ETQE Φ33=-2ETQE Φ44=2τ2ETLTQLE-ETQE 它與(5)等價(jià).因?yàn)镋TQE>0,因此對(duì)任意小的ε>0,ηT(t)Γη(t)<-ε‖δ(t)‖2. 所以(10)式可以轉(zhuǎn)化為: dV(δ(t),t)≤ 2eλtδT(t)(I-F)θdw(t)+eλtC0dt (12) 由(12)式對(duì)不等式兩邊取期望可得: 從而: E‖δ(t)‖2≤e-λtE(V(δ(0),0))+λ-1C0 (13) 對(duì)式(13)兩側(cè)取極限: 根據(jù)定義以及李雅普諾夫分析方法,誤差系統(tǒng)是漸近穩(wěn)定的,則多智能體網(wǎng)絡(luò)系統(tǒng)(4)可達(dá)到均方有界一致.定理證畢. 注3: 由于在現(xiàn)實(shí)應(yīng)用程序的多智能體的結(jié)構(gòu)中,每個(gè)代理的速度通常不是一個(gè)常數(shù)而是一個(gè)時(shí)變變量, 且介于個(gè)體的通信拓?fù)浣Y(jié)構(gòu)可能動(dòng)態(tài)改變,因此導(dǎo)致連接的失敗或成功,結(jié)合這兩個(gè)方面,考慮切換拓?fù)涞慕Y(jié)構(gòu). dx(t)=[f(x(t))-Lpx(t-τ(t))]dt+θdw(t) 這里P和切換信號(hào)對(duì)應(yīng). 類似可得以下結(jié)論: 設(shè)多智能體網(wǎng)絡(luò)系統(tǒng)(4)是切換拓?fù)渚W(wǎng)絡(luò),則如果存在正數(shù)λ,α,β且存在對(duì)稱矩陣Q,使得ETQE>0并且矩陣不等式成立: 其中: N1=-2τ2ETLPTQE Φ11=2τ2ETQE-ETE Φ22=ET[λI+2(α-β)(I-F)+ρI]E-ETQE Φ33=-2ETQE Φ44=2τ2ETLPTQLE-ETQE 那么在控制協(xié)議(3)下的多智能體非線性動(dòng)力系統(tǒng)(5)實(shí)現(xiàn)均方有界一致. 該部分運(yùn)用計(jì)算機(jī)數(shù)值仿真驗(yàn)證所得理論的正確性和有效性.考慮多智能體網(wǎng)絡(luò)系統(tǒng)(3),網(wǎng)絡(luò)節(jié)點(diǎn)f(xi(t),t)取2維為例. 例: 取f(xi(t),t)=[0.15sin(xi1(t)),0.15cos(xi2(t))]T∈R2,xi(t)=(xi1(t),xi2(t)).設(shè)有5個(gè)網(wǎng)絡(luò)節(jié)點(diǎn),每個(gè)節(jié)點(diǎn)取2維系統(tǒng),網(wǎng)絡(luò)通訊拓?fù)浣Y(jié)構(gòu)為強(qiáng)連接圖,如圖1所示. 隨機(jī)取初始值為: x1(0)=(1.25,0.05)T, x2(0)=(-0.5,0.175)T, x3(0)=(0,0)T, x4(0)=(1.5,-0.75)T, x5(0)=(3.0,-0.65)T. 圖1 5個(gè)節(jié)點(diǎn)的強(qiáng)連接拓?fù)鋱DFig. 1 Strong connection topology of five nodes 動(dòng)態(tài)延遲τ(t)=(|sinπt|,|cost|),隨機(jī)噪聲: 在隨機(jī)噪聲環(huán)境下非線性多智能體網(wǎng)絡(luò)的兩分量的狀態(tài)圖可以達(dá)到一致,見圖2和圖3.數(shù)值仿真得到延遲間隔τ≤0.7.圖4為多智能體誤差系統(tǒng)的狀態(tài).多智能體的一致性整體誤差見圖5,為: 圖2 加入控制后每個(gè)個(gè)體第一個(gè)分量的狀態(tài)圖Fig. 2 State diagram of the first component of each individual under the control protocol 圖3 加入控制后每個(gè)個(gè)體第二個(gè)分量的狀態(tài)圖Fig. 3 State diagram of the second component of each individualunder the control protocol 圖4 系統(tǒng)(1)主體的兩分量誤差狀態(tài)圖Fig. 4 Error state diagram of two components of the system (1) 圖5 系統(tǒng)(1)主體的一致性整體誤差圖Fig. 5 Graph of the consensus global error of the system (1) 1 Paletta N, Dmytriv A, Belardo M. Landing gear concept and dynamic landing loads of the unmannedspace reentry vehicle USV3.ProcediaEngineering, 2015,114:38~45 2 Wang X F, Li J H. Control and flocking of networked systems via pinning.IEEECircuitsandSystemsMagazine, 2010,10(3):83~91 3 Beard R W, Lawton J, Hadaegh F Y. A coordination architecture for spacecraft formation control.IEEETransactionsonControlSystemsTechnology, 2001,9(6):777~790 4 余本嵩,文浩,金棟平. 繩系衛(wèi)星編隊(duì)動(dòng)力學(xué)及控制研究進(jìn)展. 動(dòng)力學(xué)與控制學(xué)報(bào), 2015,5:321~328 (Yu B S, Wen H, Jin D P. Research Progress on dynamics and control of tethered satellite formation.JournalofDynamicsandControl, 2015,13(5):321~328 (in Chinese)) 5 Cao Y, Ren W, Egerstedt M. Distributed containment control with multiple stationary or dynamicleaders in fixed and switching directed networks.Automatica, 2012,48(8):1586~1597 6 Zhou J, Wu X, Yu W. Flocking of multi-agent dynamical systems based on pseudo-leader mech-anism.SystemsandControlLetters, 2012,61(1):195~202 7 Shen B, Wang Z, Liu X. A stochastic sampled-data approach to distributed filtering in sensor networks.IEEETransactionsonCircuitsandSystemsI:RegularPapers, 2011,58(9):2237~2246 8 閔海波,劉源,王仕成等. 多個(gè)體協(xié)調(diào)控制問題綜述. 自動(dòng)化學(xué)報(bào), 2012,38(10):1557~1570 (Min H B,Liu Y, Wang S C, et al. Review on the problem of multi individual coordination control.JournalofAutomation, 2012,38(10):1557~1570 (in Chinese)) 9 劉成林,田玉平. 具有不同通信時(shí)延的多個(gè)體系統(tǒng)的一致性. 東南大學(xué)學(xué)報(bào), 2008,38(1):170~174 (Liu C L, Tian Y P. Consistency of multiple individual systems with different communication delays.JournalofSoutheastUniversity, 2008,38(1):170~174 (in Chinese)) 10 Wang X, Saberi A, Stoorvogel A A. Consensus in the network with uniform constant communication delay.Automatica, 2013,49(8):2461~2467 11 Wu Q, Zhou J, Xiang L. Impulsive consensus seeking in directed networks of multi-agent systems with communication time delays.InternationalJournalofSystemsScience, 2012,43(8):1479~1491 12 Cheng L, Wang Y, Hou Z G. Sampled-data based average consensus of second-order integral multi-agent systems: switching topologies and comm-unication noises.Automatica, 2013,49(5):1458~1464 13 Xie D, Wang S. Consensus of second-order discrete-time multi-agent systems with fixed topology.JournalofMathematicalAnalysisandApplications, 2012,387(1):8~16 14 Wen G, Duan Z, Yu W. Consensus in multi-agentsystems with communication constraints.InternationalJournalofRobustandNonlinearControl, 2012,22(2):170~182 15 Li Z, Ren W, Liu X. Consensus of multi-agent systems with general linear and Lipschitz nonlinear dynamics using distributed adaptive protocols.IEEETransactionsonAutomaticControl, 2013,58(7):1786~1791 16 Liu Z W, Guan Z H, Shen X. Consensus of multi-agent networks with aperiodic sampled communication via impulsive algorithms using position-only measurements.IEEETransactionsonAutomaticControl, 2012,57(10):2639~2643 17 Li S, Du H, Lin X. Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics.Automatica, 2011,47(8):1706~1712 18 Yu W, Zheng W X, Chen G. Second-order consensus in multi-agent dynamical systems with sampledposition data.Automatica, 2011,47(7):1496~1503 19 Huang M, Manton J H. Coordination and consensus of networked agents with noisy measurements: stochastic algorithms and asymptotic behavior.SIAMJournalonControlandOptimization, 2009,48: 134~161 20 Li T, Zhang, J F. Mean square average-consensus under measurement noises and fixed topologies: necessary and sufficient conditions.Automatica, 2009,45:1929~1939 21 Wu Z, Duan J, Fu X. Complex projective sync-hronization in coupled chaotic complex dynamical system.NonlinearDynamics, 2012,69(3):771~779 22 Yu W, Ren W, Zheng W X. Distributed control gains design for consensus in multi-agent systems with second-order nonlinear dynamics.Automatica, 2013,49(7):2107~2115 23 Wu Z, Duan J, Fu X. Complex projective synchronization in coupled chaotic complex dynamical systems.NonlinearDynamics, 2012,69(3):771~779 24 Yu W, Chen G, Cao M. Consensus in directed networks of agents with nonlinear dynamics.IEEETransactionsonAutomaticControl, 2011,56(6):1436~1441 25 Amelina N, Fradkov A, Amelin K. Approximate consensus in multi-agent stochastic systems with switched topology and noise.IEEEInternationalConferenceonControlApplications, 2012:445~450 26 Wen G, Duan Z, Yu W. Consensus of multi-agent systems with nonlinear dynamics and sampled-datd information: a delayed-input approach.InternationalJournalofRobustandNonlinearControl, 2013,23(6):602~619 27 Liu X, Chen T. Synchronization analysis for nonlinearly-coupled complex networks with an asymmetrical coupling matrix.PhysicaA, 2008,387:4429~44391.3 動(dòng)力學(xué)模型
2 主要結(jié)論
3 仿真結(jié)果
4 結(jié)論