• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Patterns of biomass,carbon,and nitrogen storage distribution dynamics after the invasion of pine forests by Bursaphelenchus xylophilus(Nematoda:Aphelenchoididae)in the three Gorges Reservoir Region

    2018-03-19 05:08:32RuiheGaoYouqingLuoZhuangWangHanjunYuJuanShi
    Journal of Forestry Research 2018年2期

    Ruihe Gao?Youqing Luo?Zhuang Wang?Hanjun Yu?Juan Shi

    Introduction

    Forests play a dominant role in carbon(C)and nitrogen(N)storage in the terrestrial ecosystem(Houghton;Li et al.;Noh et al.).However,the understanding of C and N allocation among forest ecosystem compartments remains incomplete due to its complex site-speci fi c characteristics,inconsistent measurement methodologies and de fi nitions,and large spatial and temporal uncertainties(Dixon et al.;Litton et al.;Noh et al.).In China,insect epidemics result in signi fi cant tree mortality across millions of hectares,with substantial effects on C and N storage.

    Pine wilt disease(PWD),which is caused by the pine wood nematodeBursaphelenchus xylophilus(Steiner and Buhrer)Nickle(Nematoda:Aphelenchoididae),was fi rst introduced to China from North America in 1982 and is now wide spread in central and southeastern China(Wan et al.;Shi et al.).B.xylophilusis spread via the pine sawyer beetle(Monochamus alternatusHope),and no geographic or physiographic barriers appears to limit its distribution in affected areas.What’s worse,nearly all of the native pine species are highly susceptible to the invasion ofB.xylophiluswithin the current PWD distribution areas in China.As one of the mainB.xylophilushosts,the Masson pine(Pinus massonianaLamb.)is a native species in China and can grow well in the arid,sandy soils and the dry climate areas(Zhao et al.).In China,it is dif fi cult to completely eradicate PWD because pines will be die within 2–3 months after being infected byB.xylophilus.Therefore,theB.xylophilusinvasion has caused huge economic losses in timber industry,important ecological destruction in the forest ecosystem,as well as a huge loss of biomass,C storage and N storage(Shi et al.;Yu et al.;Gao et al.).

    Insect-induced forest disturbances have been widely investigated and well documented across many ecosystems(Swank et al.;Schultz and Baldwin;Fujihara;Cohen and Carlton;Frost and Hunter;Kurz et al.;Gandhi and Herms;Kim et al.;Pfeifer et al.;Jeong et al.).For example,Swank et al.()have shown that a certain number of insect herbivores can signi fi cantly in fl uence soil and surface water NO3-.Due to the death and decomposition of infected trees,insect disturbances can cause reduced autotrophic respiration and increased heterotrophic respiration(Kurz et al.;Edburg et al.;Pfeifer et al.;Jeong et al.).Kim et al.()found that after PWD infection,soil fertility was generally higher at undamaged sites than at damaged plots.Additionally,many research studies have proven that forest insects and diseases can markedly affect C and N cycles by reducing leaf area and killing healthy trees(Morehouse et al.;Lorenz and Lal).

    However,few studies have speci fi cally addressed the impacts of insect disturbance on the forest ecosystem compartments of biomass,C,and N storage and allocation,particularly among individual trees at the stand level before and following disturbance.Outbreaks of spruce budworm in eastern North America have been shown to signi fi cantly increase forest net primary production(Hicke et al.).Kurz et al.()found that mountain pine beetles can cause forests to serve as net sources of C to the atmosphere for several years in British Columbia.Pfeifer et al.()observed that the C stocks in a lodgepole pine forest of the western United States increased continuously following a bark beetle outbreak,recovering to pre-outbreak levels in 25 years or less.Morehouse et al.()found that the C:N mass ratio of ponderosa pine needle fall in bark beetle infected plots was lower than in uninfected plots throughout the growing season.

    However,no studies have been conducted regarding the effects of PWD on pine ecosystem biomass,C,and N storage and allocation.Thus,accurate information must be gathered regarding total ecosystem C and N storage and allocation in the aboveground and belowground biomass of pine stands after PWD outbreaks.Such knowledge is crucial for predicting the responses of regional and global C and N cycling in the future.

    The primary objective of this study was to investigate the immediate response and subsequent trajectories of biomass,C,and N storage in the stand-level major ecosystem compartments of Masson pine forest stands following a PWD epidemic.We measured tree characteristics in different Masson pine stands to compare the changes in the number of stems and mean diameter at breast height(DBH)in the overstory layer.We then estimated the biomasses of the ecosystem compartments and assessed the differences of C and N storage to determine the changes to total ecosystem C and N pool sizes as a function of increasing PWD infection in the Three Gorges Reservoir Region.

    Materials and methods

    Study site

    The study took place in the Yiling District(latitude 30°32′–31°28′N,longitude 110°51′–111°39′E),an eastern part of the Three Gorges reservoir region.With an eastern midsubtropical monsoon climate,the Yiling District has a mean annual precipitation and mean annual temperature of 997–1370 mm and 16.6 °C,respectively.P.massonianais the primary coniferous tree species in this area.Since the fi rst occurrence in 2006,B.xylophilushas spread rapidly in Yiling District(Fig.).

    According to the vegetation survey data,which provided by the Yiling District Forest Pest and Disease Control and Quarantine Station,most of the Masson pine forests in the study areas originated in the late 1970s(Gao et al.).Before the PWD-induced damage,Masson pine was the most prevalent species (Importance Value(IV)=67.23%),followed by relative lower IV tree species,such asQuercus aliena,Quercus variabilis,Rhus chinensis,andCeltis bungeana(Gao et al.).In this study,the stands were divided into fi ve types based on duration of the PWD infection,which allowed us to compare the impact of PWD on the basic ecosystem characteristics,biomass C and N storage and allocation along a space-for-time chronosequence(Hu et al.).

    In our study,ST0 was an uninfected control stand,while ST1,ST3,ST5,and ST7 had all been infected by PWD for 1,3,5,and 7 years,respectively,and contained 2.67,4.33,6.67,and 8.50 Masson pine stumps(stumps indicate infected trees that were removed)per 100 m2(Table),respectively.In addition,each stand type has three stands.Within each stand,three permanent 15 m×15 m Masson pine plots were randomly established that were at least 50 m apart and 50 m from the stand edge,each with same bedrock type and same-facing slopes and aspects.

    Fig.1 The current pine wilt disease distribution areas in Yiling District.(Data obtained from the Station of Pest and Disease Control and Quarantine of Yiling District,Hubei province,P.R.China)

    Field sampling and measurements

    Basic ecosystem ? characteristics

    All tree species with diameter at breast height(DBH)>2.5 cm were surveyed in each 15 m×15 m plot,including individual species name,tree height,DBH,and crown width.In the meantime,allP.massonianatrees in the plots have been surveyed forB.xylophilusinfection using Zhao’s PWD rating system(Zhao et al.),which based on the external symptoms and internal changes of theB.xylophilusinfected pine trees.

    Overstory biomass estimation

    The destructive sampling method of Masson pine trees employed in the present study was similar to the one used in previously reported studies(Peichl and;Li et al.;Noh et al.;Zhao et al.llometric equation for Masson pine tree component biomass was developed using one independent variable(DBH)(Peichl and;Li et al.;Noh et al.;Zhao et al.

    Y=axb+εwherexis the stem diameter at breast height(cm),Yis the biomass(kg)of a given tree component,aandbare equation parameters,and ε is the error term.This equation explained signi fi cant levels of variability for all components across the study sites and was thus used to calculate the Masson pine tree component biomasses.

    Table 1 Characteristics of Masson pine stands infected by pine wood nematode

    To estimate the biomasses of the other tree species,including aboveground and belowground components,we used the allometric regression equations for other tree species(mainlyCinnamomum camphora,Quercus aliena,andQuercus variabilis)in the Three Gorges Reservoir Region developed by Zeng et al.().

    Understory biomass estimation

    We employed destructive sampling techniques to determine understory biomass.Five subplots were randomly selected in each 15 m×15 m plot.Sampling for the shrub layer was conducted in fi ve 2 m×2 m subplots,and herb layer sampling was conducted in fi ve 1 m×1 m subplots.The samples were collected and oven-dried at 75°C to reach constant weight and then ground into powder using a mill.This powder was used for C and N concentration analysis.

    Forest fl oor biomass estimation

    Samples of the forest fl oor layer(excepting living plants)were sampled from fi ve random subplots(1 m×1 m)by collecting the total organic material.All collected materials were sorted into two compartment:an undecomposed layer and semi-full decomposed layer(Tao et al.).The samples were oven-dried at 75°C to reach constant weight and then ground in a ring grinder to produce a fi ne powder with a particle size of approximately1 μm.This powder was used for C and N concentration analysis.

    The C and N concentrations of the different ecosystem compartment(Masson pine components,understory,and forest fl oor)were determined using an Elemental Analyzer(Elementar Analysensysteme Gmbh,Germany)(Noh et al.;Zhao et al.).

    Mineral soil sampling and measurement

    Soil C and N storage were estimated by multiplying the C and N concentrations by soil bulk density in each stand.Using a 100 cm3stainless steel cylinder,three replicate soil samples were extracted from four depths(0–10 cm,10–20 cm,20–30 cm,and 30–40 cm in depth)in each study plot.Prior to measurement,rocks,litter,and other large particles were removed manually from the samples,which were then air-dried,ground,and passed through a 2-mm sieve.The bulk density for each soil depth was analyzed by weighing the whole sample and drying subsamples at 105°C.The potassium dichromate oxidation method and Kjeldahl nitrogen method were used to analyze soil organic carbon(%)and soil total nitrogen(%),respectively.

    Data analysis

    The allometric equations for Masson pine tree component biomass were calculated using simple linear regression analysis:Y=a(DBH)b+ε.The correction factors were determined using the standard error of the estimated,which was converted from base 10 to e-base to obtain the correct value(Noh et al.).One-way analysis of variance(ANOVA)followed by the least signi fi cant difference(LSD)test was performed to detect signi fi cant differences(p<0.05)between stand means and variation within these stands.All statistical analyses were performed using SPSS 18.0 for Windows(SPSS Inc.,Chicago,IL,USA).

    Results

    Basic ecosystem characteristics

    The analyses of the DBH classes of healthy and infected trees are shown in Fig..The results indicate that the rapid spread of PWD kills all sizes of Masson pine.In addition,the majority of the infected Masson pine trees were in the second DBH class(7.51–12.50 cm),comprising 37.96% of the total Masson pine mortality.As DBH increased,the extent of damage tended to decrease.These results suggest that PWD tends to infect young and middle-aged Masson pine trees,leaving larger stems comparatively less infected.

    Fig.2 The distribution of diameter classes of healthy and infected Masson pine trees

    The stem number and mean DBH in the overstory layer of the Masson pine stands are compared in Figs.and.As expected,uninfected stands had a greater density of total trees and Masson pine trees than infected stands.With the increase of PWD damage degrees,the numbers of Masson pine decreased sharply.The density of this species signi fi cantly differed between ST0 and ST3,ST5,and ST7.Conversely,the number of other species had a little change.Infestation withB.xylophilusincreased the mean DBHs of bothP.massoniaanaand other species,which ranged from 10.67 to 21.95 cm and 3.45 to 4.52 cm,respectively.

    Biomass of ecosystem compartments

    C storage

    Fig.3 The number of stems for all tree species measured in the fi ve Masson pine stands.Different letters indicate a signi fi cant difference among different stand types(p<0.05).Error bars standard deviation(SD)

    Fig.4 The distribution of DBH(cm)for all tree species measured in the fi ve Masson pine stands.Different letters indicate a signi fi cant difference among different stand types(p<0.05).Error bars standard deviation(SD)

    N storage

    Mineral soil

    In general,the C and N concentration of the mineral soil decreased signi fi cantly soil depth as the soil depth increased.The mean total C storage of the mineral soil from 0 to 40 cm in ST0 to ST7 was 86.43,80.51,77.35,69.52,and 74.89 Mg C ha-1,respectively(Fig.).More than 70% of soil C was stored within 0–20 cm for each stand type.In addition,little variation was observed in the total mineral-soil nitrogen content as PWD damage degrees increased.The soil nitrogen content within 0–20 cm was much greater in comparison to that in deeper soil(Fig.).

    Table 2 Biomass of different ecosystem compartments of Masson pine stands infected by pine wood nematode

    Ecosystem C and N pools

    The contribution of the forest fl oor to total ecosystem C storage ranged from 4.83 to 9.09%.Tree root C storage represented 5.63%in ST0 and decreased to 4.59%in ST7,with a mean contribution of 5.21%across all stand types.Understory vegetation was the smallest contributor to total ecosystem C storage.

    In general,the N storage of the different ecosystem compartments followed a pattern similar to that of biomass and C storage.The N pools of the aboveground trees and tree roots decreased with the extent of infection(Table),and mineral soil and aboveground trees were the two largest contributors to total ecosystem N storage.The contribution of N storage in tree root biomass to total ecosystem N ranged from 1.22%in ST0 to 0.91%in ST7.The contribution of forest fl oor N storage to total ecosystem N ranged from 3.46 to 7.03%,with a mean contribution of 5.35%across all stand types.

    Discussion

    Pine forest does not become reestablished following PWD-induced mortality but is instead replaced throughout its range by other tree species(Fuj;Fujihara et al.;Yu et al.;Hu et al.is study investigated the immediate response and subsequent trajectories of biomass,C,and N storage in the stand-level major ecosystem compartments of Masson pine forest stands in the Three Gorges Reservoir Region following a PWD epidemic.

    Basic ecosystem characteristics

    nematode od wo pine by infected ds stan pine Masson of ents artm mp ass co t biom differen pools of ble 3 Carbon Ta 7 ST g C ha-1)(%)(M)(%5 ST g C ha-1)(M 3 ST g C ha-1)(%)(M 1 ST g C ha-1)(%)(M)(%0 ST g C ha-1)(M ents artm mp Co 6.581 2.0 7.592.65 9.96 2.65 12.61 2.43.35 11.8.13 4.36 0.61 3.01 2.65 0±±1±1.7±0±1.9±0±2±0±0.5±1 30.4 4.90 35.30±8.39 3.176±46.8 12.05±58.91±7.49 1.64 9.14 68.05±3.91 1.21 5.126±11.5 15.27±26.83±a 2.498a a.3 2.87a 5a 4a 3..7060 a 4.76a 2a.16.89a 4.20a 1b 1a.51b.23b 4c 1.01c 3.02a 8±±0±0.6±0.2±1±0.7±0±0±0.3±0.2±0±0±1.1 11.4 1.85 13.33±3.17 1.209±17.6 4.55 22.24±2.83 0.62 3.45 25.69±1.48 0.46 1.93 4.36 5.77.13±10.75±37 9.08.40 8 10.4.39.90.7722 3.65.6 17.4±1.98±0 19 13.55.12 0.86 2.98 3.76.64±0±±2±1±0.46±2.43±0±0±0.68 7±325.35.0 389.18 3.47.65±50.87±12.52±636.01 1.30 7.31.83±702.62 0.90 3.53.49±10.17±15 25.6 a 3.463a a a.5 4.00a 1a 4a 5.25.39a 6.64a 5a 7a.93c 7..4281 a 5a.26a.33ab 4c.13 c 7.19a 4±±0±0.9±0.3±1±0.7±0.1±0±0±0.0±0±0±1±1.4 12.4 2.04 14.48±3.50 1.321±19.3 4.91 24.21±2.29 0.51 2.790±27.0 1.00 0.34 1.34 4.00 5.78 9.78 38.13±8.60 9.95 6±1.35 5 2.3.87.12 13 3.44 16.5.19.50.1 19.91.31 0.25 1.19.13±1±7±±0 0±7±±2±0±2.69 4±±0±0±0.60±1.31 5±3±365.98 42.1 10.2 3.89.27±56.2 14 70.4 5.49 1.19 6.67.1 771.93 0.89 2.82 9.37 10.6 20.0 3.46a.54aa 4.00.93a.35a 5.27a a 6.66.88a.2aa 7.70.37a.13a.24a.10b.48ba 7.33.52±±0 3±±0±0±1.38a 3±±0±0±1.08a 1±±0±0±0±0.53a±0±0 0±142.41 16.9 4.13 1.56.62±225.71 28.3 2.21 0.48 2.68.0 310.78 0.36 1.14 3.77 4.28 8.05 40.2 11.76 8.53 13 3.03 17.70 42.27 5.25 77.81 20 2915 0.18 39.40±±1.7 6.58.98±±1.14±1.3±0.30±1.6±0.3±0.1±0.19±0.6±0.4 45.29±114.28 61.56±.45±15.01±774.95 1.07 6.02.03±831.46 0.77 2.24 8.44 6.28.72±14 4.77a 2a 5.49a 7.18a 2a 9.10a 9a 8.44a 3a 5a 8a 8.38a.98±±0.7±1.23a±0.46a±1.9±0.56a±0.12a±0.6±0.1±0.08a±0.08a±0.2±0.1±0.07a 152.67.65±184.58 1.74 24.96±6.27.22±312.01 0.43 2.44.67±330.59 0.31 0.91 3.42 2.55 5.97.55±40 4.2111 14.27 16.5 3.88.46.85 21 5.66 27.5.15.48 26.8.46.33.23.00 0.88 3±±2±1±2±0±2.62±0±0±0±0.22±1.44±2±4±7±1±8±2±396.71 46.1 11.5 4.38.0 62 15.3 77.4 5.00 1.08 6.08 83.4 1.40 1.00 2.40 8.15 5.97 14.1 6.41a 2a 7.43a 4a 9.83a 5a.38a 12 7a 8a 12.07a 1a 5a 0a 5a 0a.64a 11 17.74±±1.0 3.02.76±±1.7±0.66a±2.5±0.9±0.22a±1.1±0.2±0.1±0.11a±0.1±0.4±0.4 205.19 1.97 27.92±6.92.83±342.25 0.49 2.73.57±370.63 0.45 1.08 3.67 2.69 6.35.00±45 wood d bark un ro d full an Stem Stem stem Tree ch Bran le Need eground Abov ots Ro Total Aboveg Belowground Total Total Shurb HerbtalTo Undecomposed Semi decomposed tal To pine ry Masson p.Other sp erstory f l oor Ov Understo Forest Total level 0.05 p<t at differen wercase letters are signif i cantly different lo by ed a row follow within C stocks of values Mean).n(SD d deviatio ithin-stan±w the stand mean are presented as Data

    de nemato wood pine by infected stands pine Masson of ts en ass compartm different biom pools of en ble 4 Nitrog Ta 7 ST g N ha-1)(%)(M 5 ST g N ha-1)(%)(M 3 ST g N ha-1)(%)(M 1 ST g N ha-1)(%)(M 0 ST g N ha-1)(%)(M ents artm mp Co 2.382 3.003 6 5.201 6.21 3.294 4.05 4.508 85 0.73 6.91 6.46.99±±0.6±0.9±1.2±1.0±0.7±0.6±1.2±1.9 103.03.03±144.54 6.18.75±244.59.34±29.86±122.82.69±15.02±453.19 2.86 6.05.88±13.06±35.94±48.01a±0.00a.02a.01a.01a.03a.01a.04a.02a.00a.02a.03a.00b.00a.01b.00b.04c.04c.04a 0.07±0 0.02±0 0.09±0 0.03±0 0.04±0 0.15±0 0.03±0 0.18±0 0.08±0 0.02±0 0.10±0 0.27±0 0.02±0 0.02±0 0.04±0 0.09±0 0.22±0 0.31±0 0.61 3.41.90 4.31.35.83 7.49 8.93 3.53 4.34 4.9 12.47.30 1.07 7.12 8.07 7±±0±1±1±1.45±0.81±0±0±0.77.22±3±3±3±4±8±0±1±1±123.45 15.7 5.17 7.05.9 275.10 33.0 10.7 2.32.0 13 46.0 2.22 2.22 4.44.1 13 36.2 49.3 2a±0.0 1a 3a 1a 1a 4a 1a 5a 2a 0a 2a 8a 0a 0a 0a.0 1ab 4c 5c 8a 0.07±0.0 0.02±0.0 0.10±0.0 0.03±0.0 0.04±0.0 0.17±0.0 0.03±0.0 0.20±0.0 0.07±0.0 0.01±0.0 0.08±0.0 0.28±0.0 0.01±0.0 0.01±0 0.03±0.0 0.08±0.0 0.22±0.0 0.30±0.0 0.60 3.617 4.585 6 7.992 9.51 4.358 5.36 14.74 650 1.83 0.67 1.56 15.16±±0.9 4.30.46±±1.4±1.9±1.5±0.9±0.8±0.8±0.7 196.45 8.80 34.71±6.28.99±40.93±102.36 13.29±.28±541.83 2.45 4.28 13.06±.38±28.44±41±0.02a 4a 3a 0.09±0.01a 0.02±0.03a 0.11±0.01a 0.04±0.01a 0.05±0.0 0.20±0.01a 0.04±0.05a 0.23±0.02a 0.06±0.01a 0.01±0.0 0.07±0.08a 0.31±0.00a 0.01±0.00a 0.01±0.00a 0.02±0.01a 0.07±0.00b 0.16±0.01b 0.23±0.07a 0.56 5.55 6.99 21.29 0.03.39 14 3.07 31.07 5.73 0.96 1.35 0.43.61±±1.44 3±±2.14 1±±2.36 0±±0.68±0.34±0.58±0.35 185.32.9 237.98.9 10.82±427.69.51±50.1 112.40.49±13.00±641.56 2.38 3.94.24±13.83±18.07±32 3a.01 a 4a 1a 1a 7a 2a 0a 6a 0a 0a 0a 1a 1a 5a±0.0.0.06a.01a.0.0.02a.0.0.00a.0.0 0.09±0 0.03±0 0.12±0.0 0.04±0.0 0.06±0 0.22±0 0.04±0 0.25±0 0.06±0.0 0.01±0 0.07±0 0.32±0 0.01±0.0 0.01±0.0 0.02±0 0.07±0 0.10±0 0.16±0.0 0.51 6.743 4.8 8.574 3.73 15.8.02 17.87 4.827 5.89 17.01 992 0.35 3.02 2.82 18.64±±1 5.44 24.08±±2.7 8.16 11.17±43.40±±2 7.66 51.06±11.21±±1.0 2.42 13.64±64.70±±0.4 1.49±0.9 3.10±0.6 4.59 12.80±17.92±30.72±4a±0.0 1a 5a 2a 8a 2a 0a 2a 3a 0a 0a 0a 0a 1a 1a 0.10±0.0 0.03±0.0 0.14±0.0 0.05±0.02a 0.06±0.0 0.24±0.0 0.04±0.1 0.29±0.0 0.06±0.01a 0.01±0.0 0.08±0.1 0.36±0.0 0.01±0.0 0.02±0.00a 0.03±0.0 0.07±0.0 0.10±0.0 0.17±0.07a 0.56 wood ll bark und d fu an Stem Stem stem Tree Branch Needleeground Abov ots egro Ro Total Abov Belowground Total Total Shurb Herb Total Undecomposed Semi decomposed Total pine ry Masson p.Other sp erstory f l oor Ov dersto Un Forest Total level 0.05 p<t at differen if i cantly t lowercase letters are sign differen by ed llow a row fo in with N stocks of values Mean).ithin-stand deviation(SD±w d mean e stan th are presented as Data

    Fig.5 Soil carbon storage at different soil depths in the Masson pine forest.Different letters indicate a signi fi cant difference about different stand types in the same soil depth(p<0.05).Error bars standard deviation(SD)

    In the study plots,all diameter classes of Masson pine were infected byB.xylophilus,but the greatest rates of infection occurred in classes of relatively lower diameter.This may be due to the smaller Masson pine trees may provide better food source and oviposition sites for the pine sawyer beetle(Zai and Chen 1992;Chai et al.1996).In addition,these results were supported by a study conducted by Shi et al.(2007),who found that small-diameter Masson pine trees were more susceptible to attack by the pine wood nematode in both inland and island environments,as well as in pure and mixed forests.

    At sites whereB.xylophilushas caused serious damage,Masson pine mortality has been signi fi cant.What’s worse,the rapid spread of PWD may cause Masson pine functional extinction across its range(Gao et al.).In our study,PWD disturbance caused remarkable changes in overstory vegetation density and mean DBH ofP.massoniaana.This result was mainly due to the selective cutting of PWD-induced mortality of Masson pine trees,which opens short-term ecological niches for other tree species(Fujihara;Hu et al.).

    Biomass

    Fig.6 Soil nitrogen storage at different soil depths in the Masson pine forest.Different letters indicate a signi fi cant difference about different stand types in the same soil depth(p<0.05).Error bars standard deviation(SD)

    The change of total biomass indicating that tree biomass decreased with the increase of damage degrees.The pattern of Masson pine biomass distribution among the different Masson pine components followed the order of stem wood>roots>branches>bark>needles.This pattern is similar to that reported by Ding and Wang(2001),who found the same order of biomass distribution in Masson pine components across different stand ages.Although the infestation ofB.xylophilushas no signi fi cant effect on the biomasses of Masson pine components in the short term,the contribution of Masson pine biomass tends to decrease as the extent of infection increases.Conversely,the biomass of other tree species increased over the extent of PWD infection.These results indicate that the invasion ofB.xylophiluschanges the allocation of overstory biomass in the short term and highlight the importance of other tree species in the succession from Masson pine to broad-leaved forest after infection by PWD.

    Many studies have reported that both forest fl oor biomass and understory biomass are highly susceptible to disturbances and variations in stand treatment(Yanai et al.;Johnson et al.;Li et al.).We hypothesized that the thinning Masson pine canopy would transmit morelight to the understory layer after Masson pine mortality,thus enabling rapid increase of understory layer biomass.Our estimates of understory and forest fl oor biomass show an initial decline immediately after PWD infection and recovery over the following several years.Such high variation may be due to the selective cutting of damaged trees,which affectslight,nutrientavailability,and decomposition rate,key factors in the development of understory vegetation and the forest fl oor(Yanai et al.;Peichl and Arain;Li et al.).

    Table 5 Carbon pools of ecosystem compartments of Masson pine stands infected by pine wood nematode

    Table 6 Nitrogen pools of ecosystem compartments of Masson pine stands infected by pine wood nematode

    C and N storage

    In our study,the C and N storage of the different ecosystem compartments followed similar patterns to those of biomass as the extent of infection increases.We found that PWD infestation changed the biomass C and N of the different ecosystem compartments in Masson pine forests.The estimated overstory C and N storage decreased steadily with the extent of infection.Additionally,the C and N storage of other tree species increased with the extent of infection increases,likely due to the selective cutting of Masson pine trees infected byB.xylophilus,which opened canopy gaps and facilitated signi fi cant changes in forest composition and community structure(Fujihara;Spiegel and Leege).

    We observed several relationships between C and N storage in the different ecosystem compartments and the extent of infection,but no clear pattern occurred for the pine forest in total.Interestingly,the contributions of Masson pine C and N to the total different compartments biomass C and N pools varied from 77.41 to 58.91%and from 51.06 to 29.34%,respectively,indicating that C and N storage experienced signi fi cant changes following the PWD epidemic.

    Generally,stand development is strongly related to C and N storage over the entire life cycle of a forest ecosystem,and C and N cycles are signi fi cantly coupled(Vesterdal et al.;Noh et al.).However,relatively little research is available concerning the impact of PWD on total C and N storage and its allocation in the aboveground and belowground vegetation,forest fl oor,and soil layers of the Masson pine forest ecosystem.Therefore,it is important to understand the shifts in stand-level C and N allocation that maintain C and N balance in Masson pine stands.

    Previous studies have reported that stand development is closely associated with C storage in both the forest fl oor layer and understory layer(Covington;Taylor et al.;Noh et al.).The distribution patterns of C and N storage in the understory and forest fl oor layers were similar to that of biomass,which declined initially after PWD infection and recovered almostentirely after 3–7 years.These results may be explained by the changes in species quantity in the understory layer,and of litter input and slow decomposition in forest fl oor layer(Zhao et al.),after the selective cutting of Masson pine trees infected byB.xylophilus.

    Due to the interaction among productivity,C sequestration,and N availability,soil C and N storage exhibit variation in managed forests(Jandl et al.),but these differences were not statistically signi fi cant among different stands.These results were supported by a study conducted by Jeong et al.(),who found that soil C storage was relatively unaffected by increasing PWD damage intensity.In addition,over 70% of the total soil C and N was stored within 0–20 cm in depth,where the soil could be easily disturbed.Therefore,investigating the spatial distribution of soil C and N storage and protecting the top soil from disturbances are vital to C and N allocation and sequestration(Gao et al.;Zhao et al.).Additionally,the invasion ofB.xylophilusdecreased total soil C and N storage in the present study.This result is similar to those obtained by Jenkins et al.(),who found that the quality of soil N and soil organic matter declined at sites experiencing adelgid infestation.

    In addition,it should be noted that the present study examined sites at 1–7 years after the detection of PWD,which may have been too soon for the Masson pine ecosystem compartments to adequately respond to the weathering processes,light conditions,and changes in forest composition associated with severely Masson pine decline(Kim et al.;Spiegel and Leege).Therefore,we hope to continue to work with these forest ecosystem sites to determine their long-term changes in biomass,C,and N storage distribution dynamics following the PWD outbreak.

    Conclusion

    The PWD-induced Masson pine mortality demonstrated that biomass,C,and N storage in Masson pine forest stands are driven by the invasion ofB.xylophilus.We found that all diameter classes of Masson pine can be infected byB.xylophilus,and the greatest rates of infection occurred in classes of relatively lower diameter.The invasion ofB.xylophiluschanges the allocation of biomass,C,and N storage in overstory layer,which transformed from Masson pine tree to other tree species.We also observed that the biomass,C,and N storage of the understory and forest fl oor initially declined after PWD infection before recovering over the following several years.Little variation was observed in the total mineral soil C and N storage as PWD damage degrees increased.Additionally,understanding biomass,C,and N storage distribution dynamics and their subsequent trajectories is vital to understand the shifts in stand-level C and N allocation in PWD-damaged forest stands,as well as for predicting the responses of regional and global C and N cycling.

    AcknowledgementsAuthors gratefully acknowledge the support from the Hubei Academy of Forestry and Station of Pest and Disease Control and Quarantine of Yiling District,Yichang city,and they are Jingyuan Chen,Chenghao Hong,Dewen Song,and Honggao Liu.

    Chai X,He Z,Li C,Tang L,Cheng S(1996)Studies on oviposition habit of the Japanese pine sawyerMonochamus alternatusHope.J Beijing For Univ 19:69–73

    Cohen AN,Carlton JT(1998)Accelerating invasion rate in a highly invaded estuary.Science 279:555–558

    Covington WW(1981)Changes in forest fl oor organic matter and nutrient content following clear cutting in northern hardwoods.Ecology 62:41–48

    Ding G,Wang P(2001)Study on change laws of biomass and productivity of masson pine forest plantation II.Biomass and productivity of stand at different ages.For Res 15:54–60

    Dixon RK,Solomon A,Brown S,Houghton R,Trexier M,Wisniewski J(1994)Carbon pools and fl ux of global forest ecosystems.Science 263:185–190

    Edburg SL,Hicke JA,Lawrence DM,Thornton PE(2011)Simulating coupled carbon and nitrogen dynamics following mountain pine beetle outbreaks in the western United States.J Geophys Res 116:G04033.doi:

    Frost CJ,Hunter MD(2004)Insect canopy herbivory and frass deposition affect soil nutrient dynamics and export in oak mesocosms.Ecology 85:3335–3347

    Fujihara M(1996)Development of secondary pine forests after pine wilt disease in western Japan.J Veg Sci 7:729–738

    Fujihara M,Hada Y,Toyohara G(2002)Changes in the stand structure of a pine forest after rapid growth ofQuercus serrataThunb.For Ecol Manag 170:55–65

    Gandhi KJ,Herms DA(2010)Direct and indirect effects of alien insect herbivores on ecological processes and interactions in forests of eastern North America.Biol Invasions 12:389–405

    Gao P,Wang B,Geng GG,Zhang GC(2013)Spatial distribution of soil organic carbon and total nitrogen based on GIS and geostatistics in a small watershed in a hilly area of northern China.PLoS ONE 8:e83592

    Gao RH,Shi J,Huang RF,Wang Z,Luo YQ(2015a)Effects of pine wilt disease invasion on soil properties and Masson pine forest communities in the Three Gorges reservoir region,China.Ecol Evol 5:1702–1716

    Gao RH,Song DW,Huang RF,Shi J,Luo YQ,Chen JY(2015b)Characteristics of typical Masson pine community and soil properties at the early invasive stage of pine wood nematode in the Three Gorges Reservoir Region of central China.J Beijing For Univ 37:84–91

    Hicke JA,Asner GP,Randerson JT,Tucker C,Los S,Birdsey R,Jenkins JC,Field C(2002)Trends in North American net primary productivity derived from satellite observations,1982–1998.Global Biogeochem Cycles 16:2-1–2-14

    Houghton RA(2007)Balancing the global carbon budget.Annu Rev Earth Planet Sci 35:313–347

    Hu G,Xu X,Wang Y,Lu G,Feeley KJ,Yu M(2012)Regeneration of different plant functional types in a Masson pine forest following pine wilt disease.PLoS ONE 7:e36432

    Jandl R,Lindner M,Vesterdal L,Bauwens B,Baritz R,Hagedorn F,Johnson DW,Minkkinen K,Byrne KA(2007)How strongly can forest management in fl uence soil carbon sequestration?Geoderma 137:253–268

    Jenkins JC,Aber JD,Canham CD(1999)Hemlock woolly adelgid impacts on community structure and N cycling rates in eastern hemlock forests.Can J For Res 29:630–645

    Jeong J,Kim C,Lee KS,Bolan NS,Naidu R(2013)Carbon storage and soil CO2ef fl ux rates at varying degrees of damage from pine wilt disease in red pine stands.Sci Total Environ 465:273–278 Johnson DW,Todd D,Tolbert VR(2003)Changes in ecosystem carbon and nitrogen in a loblolly pine plantation over the fi rst 18 years.Soil Sci Soc Am J 67:1594–1601

    Kim C,Jang KS,Kim JB,Byun JK,Lee CH,Jeon KS(2010)Relationship between soil properties and incidence of pine wilt disease at stand level.Landsc Ecol Eng 6:119–124

    Kurz WA,Dymond CC,Stinson G,Rampley GJ,Neilson ET,Carroll AL,Ebata T,Safranyik L(2008)Mountain pine beetle and forest carbon feedback to climate change.Nature 452:987–990

    Li X,Yi MJ,Son Y,Park PS,Lee KH,Son YM,Kim RH,Jeong MJ(2011)Biomass and carbon storage in an age-sequence of Korean pine(Pinus koraiensis)plantation forests in central Korea.J Plant Biol 54:33–42

    Litton CM,Ryan MG,Knight DH(2004)Effects of tree density and stand age on carbon allocation patterns in post fi re lodgepole pine.Ecol Appl 14:460–475

    Lorenz K,Lal R(2010)Carbon sequestration in forest ecosystems.Springer,Dordrecht

    Morehouse K,Johns T,Kaye J,Kaye M(2008)Carbon and nitrogen cycling immediately following bark beetle outbreaks in southwestern ponderosa pine forests.For Ecol Manag 255:2698–2708

    Noh NJ,Son Y,Lee SK,Seo KW,Heo SJ,Yi MJ,Park PS,Kim RH,Son YM,Lee KH(2010)Carbon and nitrogen storage in an agesequence ofPinus densi fl orastands in Korea.Sci China Life Sci 53:822–830

    Noh NJ,Kim C,Bae SW,Lee WK,Yoon TK,Muraoka H,Son Y(2013)Carbon and nitrogen dynamics in aPinus densi fl oraforest with low and high stand densities.J Plant Ecol 6:368–379

    Peichl M,Arain MA(2006)Above-and belowground ecosystem biomass and carbon pools in an age-sequence of temperate pine plantation forests.Agric For Meteorol 140:51–63

    Peichl M,Arain MA(2007)Allometry and partitioning of above-and belowground tree biomass in an age-sequence of white pine forests.For Ecol Manag 253:68–80

    Pfeifer EM,Hicke JA,Meddens AJ(2011)Observations and modeling of aboveground tree carbon stocks and fl uxes following a bark beetle outbreak in the western United States.Global Change Biol 17:339–350

    Schultz JC,Baldwin IT(1982)Oak leaf quality declines in response to defoliation by gypsy moth larvae.Science 217:149–151

    Shi J,Luo YQ,Song JY,Wu HW,Wang L(2007)Traits of Masson pine affecting attack of pine wood nematode.J Integr Plant Biol 49:1763–1771

    Shi J,Luo YQ,Wu HW,Yan XS,Jiang P(2009)Impact of invasion of pine wood nematode on the growth of dominant shrub Pleioblastus amarus inPinus massonianacommunities.For Stud China 11:61–63

    Spiegel KS,Leege LM(2013)Impacts of laurel wilt disease on redbay(Persea borbonia(L.)Spreng.)population structure and forest communities in the coastal plain of Georgia,USA.Biol Invasions 15:2467–2487

    Swank W,Waide J,Crossley JD,Todd R(1981)Insect defoliation enhances nitrate export from forest ecosystems.Oecologia 51:297–299

    Tao LC,Meng XQ,Sun C,Liu QJ(2014)Storage of litter and coarse woody debris of Pinus tabulaeformis plantation in Beijing.J Fujian Coll For 34:26–32

    Taylor AR,Wang JR,Chen HY(2007)Carbon storage in a chronosequence of red spruce(Picea rubens)forests in central Nova Scotia,Canada.Can J For Res 37:2260–2269

    Vesterdal L,Schmidt IK,Callesen I,Nilsson LO,Gundersen P(2008)Carbon and nitrogen in forest fl oor and mineral soil under six common European tree species.For Ecol Manag 255:35–48

    Wan F,Zheng X,Guo J(2005)Biology and management of invasive alien species in agriculture and forestry.Science Publication,Beijing,pp 14–19

    Yanai RD,Arthur MA,Siccama TG,Federer CA(2000)Challenges of measuring forest fl oor organic matter dynamics:repeated measures from a chronosequence.For Ecol Manag 138:273–283

    Yu M,Xu X,Ding P(2011)Economic loss versus ecological gain:the outbreaks of invaded pinewood nematode in China.Biol Invasions 13:1283–1290

    Zai JZ,Chen YL(1992)The distributing characteristic and control methods on pine wood nematode in Xiangshan county.J Zhejiang For Sci Technol 12:22–25

    Zeng LX,Wang PC,Xiao XF,Wan R,Huang ZL,Pan L(2008)Allocation of biomass and productivity of main vegetations in Three Gorges reservoir region.Scientia Silvae Sinicae 44:16–22

    Zhao BG,Futai K,Sutherland JR,Takeychi Y(2008)Pine wilt disease.Springer,Tokyo,pp 202–203

    Zhao JL,Kang FF,Wang LX,Yu XW,Zhao W(2014)Patterns of biomass and carbon distribution across a chronosequence of Chinese pine(Pinus tabulaeformis)forests.PLoS ONE 9:e94966

    麻豆av在线久日| 免费av中文字幕在线| 日韩熟女老妇一区二区性免费视频| 亚洲精品中文字幕在线视频| 色视频在线一区二区三区| 精品国产乱码久久久久久小说| 国产午夜精品一二区理论片| 一级黄色大片毛片| 欧美国产精品一级二级三级| 视频在线观看一区二区三区| 欧美人与善性xxx| 国产高清视频在线播放一区 | 这个男人来自地球电影免费观看| 91麻豆精品激情在线观看国产 | 欧美激情极品国产一区二区三区| 热re99久久精品国产66热6| 国产av国产精品国产| 性少妇av在线| 男女之事视频高清在线观看 | 亚洲国产精品999| 亚洲精品中文字幕在线视频| 亚洲欧美一区二区三区久久| 人成视频在线观看免费观看| 亚洲av在线观看美女高潮| 久久久久网色| 国产成人欧美在线观看 | 欧美人与善性xxx| 极品少妇高潮喷水抽搐| 精品福利观看| 国产人伦9x9x在线观看| 日本色播在线视频| 精品国产一区二区三区久久久樱花| av欧美777| 纯流量卡能插随身wifi吗| 美国免费a级毛片| 欧美另类一区| 天天躁夜夜躁狠狠久久av| 欧美黄色片欧美黄色片| av天堂在线播放| 日韩 亚洲 欧美在线| 日日夜夜操网爽| 久久久久视频综合| 美女大奶头黄色视频| 深夜精品福利| 91成人精品电影| av片东京热男人的天堂| av欧美777| 天堂俺去俺来也www色官网| 脱女人内裤的视频| 国产97色在线日韩免费| 亚洲激情五月婷婷啪啪| 色94色欧美一区二区| 国产一区有黄有色的免费视频| 水蜜桃什么品种好| 久久久久久久精品精品| 国产成人免费观看mmmm| 免费高清在线观看视频在线观看| 国产高清不卡午夜福利| 91成人精品电影| 黄色视频在线播放观看不卡| 亚洲欧美日韩高清在线视频 | 99久久综合免费| 亚洲精品国产色婷婷电影| 欧美黄色淫秽网站| 免费看十八禁软件| 亚洲国产精品一区二区三区在线| 久久鲁丝午夜福利片| 少妇被粗大的猛进出69影院| av天堂在线播放| 亚洲精品国产区一区二| 色婷婷久久久亚洲欧美| av天堂久久9| 国产国语露脸激情在线看| cao死你这个sao货| 女人久久www免费人成看片| 欧美97在线视频| 欧美成人精品欧美一级黄| 2021少妇久久久久久久久久久| 人人妻人人添人人爽欧美一区卜| 久久久久视频综合| 女警被强在线播放| 91国产中文字幕| 天天操日日干夜夜撸| 亚洲精品美女久久久久99蜜臀 | 久久久久久亚洲精品国产蜜桃av| 欧美日韩视频精品一区| 丝袜喷水一区| 悠悠久久av| av国产久精品久网站免费入址| av国产精品久久久久影院| 免费在线观看视频国产中文字幕亚洲 | 黄网站色视频无遮挡免费观看| 久久99热这里只频精品6学生| av一本久久久久| 一本综合久久免费| 菩萨蛮人人尽说江南好唐韦庄| 电影成人av| 如日韩欧美国产精品一区二区三区| kizo精华| 欧美+亚洲+日韩+国产| 午夜福利乱码中文字幕| 午夜视频精品福利| 在现免费观看毛片| 免费在线观看影片大全网站 | 午夜两性在线视频| 高清欧美精品videossex| 免费日韩欧美在线观看| 七月丁香在线播放| 亚洲一卡2卡3卡4卡5卡精品中文| 国产成人av教育| 国产色视频综合| 久久九九热精品免费| 首页视频小说图片口味搜索 | 热re99久久国产66热| 亚洲欧美激情在线| 国产高清videossex| 精品熟女少妇八av免费久了| 成人三级做爰电影| 成人黄色视频免费在线看| 亚洲美女黄色视频免费看| 亚洲av美国av| av视频免费观看在线观看| 女性生殖器流出的白浆| 人妻 亚洲 视频| 少妇精品久久久久久久| 亚洲伊人色综图| 嫩草影视91久久| 久久人人97超碰香蕉20202| 婷婷成人精品国产| 日韩 欧美 亚洲 中文字幕| 国产一级毛片在线| 久久久久久久大尺度免费视频| 国产一级毛片在线| 亚洲精品在线美女| 老熟女久久久| 一级黄色大片毛片| 美女国产高潮福利片在线看| 97在线人人人人妻| 欧美成人精品欧美一级黄| 国产一级毛片在线| 捣出白浆h1v1| 久久亚洲精品不卡| 肉色欧美久久久久久久蜜桃| 国产精品二区激情视频| 国产一卡二卡三卡精品| 国产三级黄色录像| 欧美黄色片欧美黄色片| 一区福利在线观看| 新久久久久国产一级毛片| 十八禁高潮呻吟视频| 亚洲成色77777| 成年动漫av网址| 男女无遮挡免费网站观看| 男女下面插进去视频免费观看| 日韩精品免费视频一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 蜜桃国产av成人99| 丝瓜视频免费看黄片| 超碰97精品在线观看| 欧美日韩亚洲高清精品| 国产伦理片在线播放av一区| av视频免费观看在线观看| 日韩电影二区| 亚洲成色77777| 欧美日本中文国产一区发布| 亚洲国产日韩一区二区| 交换朋友夫妻互换小说| 美女大奶头黄色视频| 天天操日日干夜夜撸| 天天操日日干夜夜撸| 亚洲精品国产色婷婷电影| 在线av久久热| 各种免费的搞黄视频| 91老司机精品| 中文字幕人妻熟女乱码| 99热国产这里只有精品6| 老司机深夜福利视频在线观看 | 久久久国产一区二区| 久久国产亚洲av麻豆专区| 中文精品一卡2卡3卡4更新| 日本猛色少妇xxxxx猛交久久| 无限看片的www在线观看| 国产成人a∨麻豆精品| 亚洲中文日韩欧美视频| 成年av动漫网址| 国产深夜福利视频在线观看| 男人舔女人的私密视频| 一本一本久久a久久精品综合妖精| av视频免费观看在线观看| 男女无遮挡免费网站观看| 色94色欧美一区二区| 美女脱内裤让男人舔精品视频| 国产av精品麻豆| 在线av久久热| 别揉我奶头~嗯~啊~动态视频 | 国产精品av久久久久免费| 国产有黄有色有爽视频| 国产女主播在线喷水免费视频网站| 首页视频小说图片口味搜索 | 亚洲欧美日韩另类电影网站| 国产亚洲精品第一综合不卡| 亚洲国产欧美日韩在线播放| 久久久久久久大尺度免费视频| 久久久国产精品麻豆| 熟女av电影| 高清视频免费观看一区二区| 大型av网站在线播放| 欧美在线一区亚洲| 一区在线观看完整版| 日韩制服骚丝袜av| 日本av手机在线免费观看| 亚洲自偷自拍图片 自拍| 色婷婷久久久亚洲欧美| 国产精品免费视频内射| 欧美性长视频在线观看| 下体分泌物呈黄色| 免费黄频网站在线观看国产| 精品视频人人做人人爽| 国产精品国产av在线观看| 亚洲av欧美aⅴ国产| 伊人亚洲综合成人网| 久久性视频一级片| 精品国产一区二区久久| 国产成人免费无遮挡视频| 免费一级毛片在线播放高清视频 | 久久久久久久久免费视频了| xxxhd国产人妻xxx| 午夜91福利影院| 亚洲欧美色中文字幕在线| 国产成人系列免费观看| 国产成人一区二区在线| 亚洲av电影在线进入| 十分钟在线观看高清视频www| 亚洲国产av新网站| 婷婷丁香在线五月| 国产成人a∨麻豆精品| 亚洲中文日韩欧美视频| 免费日韩欧美在线观看| 日韩中文字幕欧美一区二区 | 日韩人妻精品一区2区三区| 亚洲国产av影院在线观看| 精品一区二区三区av网在线观看 | 亚洲国产精品国产精品| 在线观看www视频免费| 极品少妇高潮喷水抽搐| 国产不卡av网站在线观看| 久久人妻熟女aⅴ| 久久免费观看电影| 精品欧美一区二区三区在线| 日韩中文字幕视频在线看片| 久久99热这里只频精品6学生| 亚洲,一卡二卡三卡| 精品久久久精品久久久| 波多野结衣av一区二区av| 久热这里只有精品99| 亚洲av日韩精品久久久久久密 | 久久久久久久久免费视频了| 午夜精品国产一区二区电影| 三上悠亚av全集在线观看| 久久精品aⅴ一区二区三区四区| 亚洲激情五月婷婷啪啪| 婷婷色综合大香蕉| 一级毛片我不卡| 丝袜脚勾引网站| 精品亚洲成a人片在线观看| 亚洲精品在线美女| 午夜福利乱码中文字幕| 亚洲欧美清纯卡通| 亚洲国产看品久久| 精品视频人人做人人爽| 丝袜美腿诱惑在线| av网站在线播放免费| √禁漫天堂资源中文www| 中文字幕av电影在线播放| 丝袜喷水一区| 亚洲av日韩精品久久久久久密 | xxx大片免费视频| 黄片播放在线免费| 亚洲国产精品国产精品| 亚洲精品一二三| 国产成人精品在线电影| 国产成人一区二区三区免费视频网站 | 青草久久国产| 成年人午夜在线观看视频| 亚洲精品中文字幕在线视频| 黄频高清免费视频| 满18在线观看网站| 日本一区二区免费在线视频| 亚洲专区国产一区二区| 久久久久久久大尺度免费视频| 免费女性裸体啪啪无遮挡网站| 亚洲精品自拍成人| 最黄视频免费看| 97精品久久久久久久久久精品| 欧美 日韩 精品 国产| 男人添女人高潮全过程视频| 国产黄频视频在线观看| 9色porny在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 丁香六月天网| 日韩,欧美,国产一区二区三区| 国产黄色免费在线视频| 亚洲国产欧美在线一区| 欧美日韩av久久| 黄网站色视频无遮挡免费观看| 在线观看人妻少妇| 日韩av在线免费看完整版不卡| 国产一区二区三区av在线| av不卡在线播放| 精品少妇一区二区三区视频日本电影| 欧美+亚洲+日韩+国产| 国产亚洲精品久久久久5区| 99热国产这里只有精品6| 777久久人妻少妇嫩草av网站| 又紧又爽又黄一区二区| 亚洲成人免费av在线播放| 纵有疾风起免费观看全集完整版| 国产黄频视频在线观看| 亚洲五月色婷婷综合| 亚洲av综合色区一区| 久久久欧美国产精品| 国产男人的电影天堂91| 精品第一国产精品| 91麻豆精品激情在线观看国产 | 亚洲中文日韩欧美视频| 一级黄色大片毛片| 建设人人有责人人尽责人人享有的| 乱人伦中国视频| cao死你这个sao货| 国产一区亚洲一区在线观看| 亚洲欧洲日产国产| 女人精品久久久久毛片| 国产免费视频播放在线视频| 亚洲精品一二三| 婷婷色麻豆天堂久久| av一本久久久久| 欧美av亚洲av综合av国产av| 亚洲人成电影免费在线| 亚洲欧美日韩另类电影网站| 狠狠婷婷综合久久久久久88av| xxxhd国产人妻xxx| 亚洲人成网站在线观看播放| 日韩中文字幕视频在线看片| 婷婷色av中文字幕| 国产有黄有色有爽视频| 如日韩欧美国产精品一区二区三区| 亚洲精品久久午夜乱码| 人人妻,人人澡人人爽秒播 | 中文字幕最新亚洲高清| 99久久99久久久精品蜜桃| 丝袜喷水一区| 精品免费久久久久久久清纯 | 在线观看www视频免费| 永久免费av网站大全| 脱女人内裤的视频| 国产成人系列免费观看| 亚洲人成电影免费在线| 一级黄色大片毛片| 性高湖久久久久久久久免费观看| 中文精品一卡2卡3卡4更新| 热re99久久精品国产66热6| 亚洲,欧美,日韩| 可以免费在线观看a视频的电影网站| 国产片特级美女逼逼视频| 久久亚洲国产成人精品v| 黄色片一级片一级黄色片| 天天躁日日躁夜夜躁夜夜| 赤兔流量卡办理| 亚洲欧美成人综合另类久久久| 一区二区三区四区激情视频| 精品亚洲成a人片在线观看| 久久精品亚洲av国产电影网| 王馨瑶露胸无遮挡在线观看| 国产不卡av网站在线观看| 亚洲伊人久久精品综合| 国产精品国产三级国产专区5o| 国产有黄有色有爽视频| 日日夜夜操网爽| 精品人妻在线不人妻| 色婷婷av一区二区三区视频| 日韩中文字幕欧美一区二区 | 视频区图区小说| av不卡在线播放| 亚洲,欧美精品.| bbb黄色大片| 精品少妇内射三级| 91九色精品人成在线观看| 国产主播在线观看一区二区 | 王馨瑶露胸无遮挡在线观看| 青春草视频在线免费观看| 欧美成狂野欧美在线观看| 亚洲国产精品成人久久小说| 国产精品二区激情视频| 成人国产av品久久久| 嫁个100分男人电影在线观看 | 亚洲人成77777在线视频| 久久久精品94久久精品| 人人妻,人人澡人人爽秒播 | 女人爽到高潮嗷嗷叫在线视频| 国产不卡av网站在线观看| 久久久精品国产亚洲av高清涩受| 一边摸一边做爽爽视频免费| 日本wwww免费看| 高清欧美精品videossex| 亚洲,欧美,日韩| 丰满迷人的少妇在线观看| 午夜福利,免费看| 脱女人内裤的视频| 日韩一卡2卡3卡4卡2021年| 欧美日韩国产mv在线观看视频| 韩国精品一区二区三区| 国产高清不卡午夜福利| 久久国产精品人妻蜜桃| 宅男免费午夜| 99热国产这里只有精品6| 亚洲精品国产av成人精品| 人人妻人人爽人人添夜夜欢视频| 免费日韩欧美在线观看| 人人妻,人人澡人人爽秒播 | 超色免费av| 精品国产超薄肉色丝袜足j| 日韩 欧美 亚洲 中文字幕| 久久性视频一级片| 欧美大码av| 一本一本久久a久久精品综合妖精| 国产福利在线免费观看视频| 人人妻人人添人人爽欧美一区卜| 国产爽快片一区二区三区| 国产伦人伦偷精品视频| 国产高清videossex| 丝袜在线中文字幕| 午夜福利免费观看在线| xxx大片免费视频| 精品一品国产午夜福利视频| 十八禁人妻一区二区| 午夜福利视频精品| 亚洲欧美色中文字幕在线| 久久久久久久久久久久大奶| 亚洲国产精品一区三区| 国产91精品成人一区二区三区 | 久久精品国产a三级三级三级| 日韩,欧美,国产一区二区三区| 精品久久蜜臀av无| 建设人人有责人人尽责人人享有的| videosex国产| 丁香六月欧美| 免费黄频网站在线观看国产| 亚洲激情五月婷婷啪啪| 每晚都被弄得嗷嗷叫到高潮| 亚洲中文日韩欧美视频| 九草在线视频观看| 国产真人三级小视频在线观看| 亚洲精品自拍成人| 国产免费一区二区三区四区乱码| 啦啦啦中文免费视频观看日本| 新久久久久国产一级毛片| 性少妇av在线| 亚洲一区中文字幕在线| 国产福利在线免费观看视频| 亚洲欧美精品综合一区二区三区| 国产av精品麻豆| 黄色a级毛片大全视频| 欧美+亚洲+日韩+国产| 后天国语完整版免费观看| 又黄又粗又硬又大视频| 免费观看人在逋| 午夜日韩欧美国产| 国产在线观看jvid| 国产人伦9x9x在线观看| 一二三四社区在线视频社区8| 色综合欧美亚洲国产小说| tube8黄色片| 青草久久国产| 天天躁夜夜躁狠狠躁躁| 一本—道久久a久久精品蜜桃钙片| 欧美成人午夜精品| 美女大奶头黄色视频| 精品卡一卡二卡四卡免费| 久久人妻熟女aⅴ| 国产成人精品久久二区二区免费| 免费观看人在逋| av国产精品久久久久影院| 国产精品.久久久| 欧美日韩国产mv在线观看视频| 免费女性裸体啪啪无遮挡网站| 99九九在线精品视频| 久久女婷五月综合色啪小说| 9色porny在线观看| 99re6热这里在线精品视频| 男男h啪啪无遮挡| 岛国毛片在线播放| 国产精品久久久久成人av| a级毛片在线看网站| 在线观看www视频免费| 亚洲熟女精品中文字幕| 国产野战对白在线观看| xxx大片免费视频| 亚洲五月色婷婷综合| 亚洲av欧美aⅴ国产| 久久久国产一区二区| 涩涩av久久男人的天堂| 亚洲av国产av综合av卡| 精品一区二区三区四区五区乱码 | 久久性视频一级片| 两个人看的免费小视频| 久久亚洲国产成人精品v| 91精品国产国语对白视频| 9热在线视频观看99| 亚洲精品自拍成人| 国产在视频线精品| 成在线人永久免费视频| www日本在线高清视频| 香蕉丝袜av| 夜夜骑夜夜射夜夜干| 少妇被粗大的猛进出69影院| 免费在线观看黄色视频的| 嫩草影视91久久| 成年美女黄网站色视频大全免费| 一边亲一边摸免费视频| 一区二区三区激情视频| 极品人妻少妇av视频| 晚上一个人看的免费电影| 国产成人免费观看mmmm| 国产精品久久久av美女十八| 色综合欧美亚洲国产小说| 巨乳人妻的诱惑在线观看| 色综合欧美亚洲国产小说| 亚洲欧美中文字幕日韩二区| 日本a在线网址| 久久久久国产一级毛片高清牌| 欧美精品亚洲一区二区| 汤姆久久久久久久影院中文字幕| 亚洲 国产 在线| 国产成人精品在线电影| 咕卡用的链子| 久久女婷五月综合色啪小说| 天天躁夜夜躁狠狠久久av| 午夜两性在线视频| 十分钟在线观看高清视频www| 热re99久久精品国产66热6| 欧美精品一区二区大全| 麻豆乱淫一区二区| 一级,二级,三级黄色视频| 黑人巨大精品欧美一区二区蜜桃| 精品久久蜜臀av无| 国产精品香港三级国产av潘金莲 | 欧美精品av麻豆av| 久久av网站| 亚洲情色 制服丝袜| 一本一本久久a久久精品综合妖精| 久久精品久久久久久噜噜老黄| 在线观看人妻少妇| 亚洲精品自拍成人| 蜜桃国产av成人99| 精品国产乱码久久久久久小说| 一区二区三区激情视频| 精品熟女少妇八av免费久了| 在线 av 中文字幕| 永久免费av网站大全| 一级毛片电影观看| 波野结衣二区三区在线| 成人影院久久| 国产免费又黄又爽又色| 国产精品一区二区在线不卡| 成人国产一区最新在线观看 | 午夜久久久在线观看| 高清视频免费观看一区二区| 真人做人爱边吃奶动态| 看十八女毛片水多多多| 色综合欧美亚洲国产小说| 日韩 欧美 亚洲 中文字幕| 啦啦啦中文免费视频观看日本| 免费高清在线观看日韩| 一本久久精品| 中文欧美无线码| 国产日韩欧美视频二区| 男人操女人黄网站| 丝瓜视频免费看黄片| 欧美日韩视频精品一区| 蜜桃国产av成人99| 免费高清在线观看视频在线观看| av线在线观看网站| 久久久久国产一级毛片高清牌| 国产主播在线观看一区二区 | 少妇粗大呻吟视频| 中文精品一卡2卡3卡4更新| av欧美777| 中文字幕高清在线视频| 免费观看av网站的网址| 国产精品99久久99久久久不卡| 嫁个100分男人电影在线观看 | 欧美日韩视频精品一区| 国产精品熟女久久久久浪| 亚洲精品日韩在线中文字幕| 97在线人人人人妻| 成人三级做爰电影| 少妇粗大呻吟视频| 日韩大片免费观看网站| 黄色视频不卡| 免费在线观看日本一区| 女性生殖器流出的白浆| a级毛片黄视频| 亚洲人成电影观看| 午夜免费成人在线视频| 成人三级做爰电影| 夫妻性生交免费视频一级片| 日韩一区二区三区影片| 国产免费福利视频在线观看| 午夜两性在线视频| 99精品久久久久人妻精品| 亚洲伊人色综图| 人体艺术视频欧美日本| 国产亚洲欧美精品永久| 老司机深夜福利视频在线观看 | 精品一区二区三区四区五区乱码 |