• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Measurement of lumber moisture content based on PCA and GSSVM

    2018-03-19 05:08:50JiaweiZhangWenlongSongBinJiangMingbaoLi
    Journal of Forestry Research 2018年2期

    Jiawei Zhang?Wenlong Song?Bin Jiang?Mingbao Li

    Introduction

    Lumber moisture content(LMC)is an important measured variable in the wood drying process.Its precision directly affects the drying quality,the cost,and the drying time of the wood(Martinovic et al.2001;Klaric and Pervan 2012).Many of the important properties of wood depend considerably on moisture content which can vary widely depending on environment and history(Zhang et al.2003).

    Although the LMC is a signi fi cant indicator of the drying control system,normally it is too dif fi cult to build the moisture content model to control the wood drying process precisely due to that wood drying system shows characteristics of large time delay,strong coupling and nonlinear(Awadalla et al.2004;Zhang et al.2006;Skuratov 2008;Isaksson and Thelandersson 2013).The wood drying moisture content prediction model could provide the precise and real-time moisture content data for optimizing the drying process and have considerable meaning for improving the drying control level.

    To improve the measuring accuracy and reliability of LMC,the optimal support vector machine(SVM)algorithm was put forward for regression analysis LMC.Environmental parameters such as air temperature and relative humidity,were considered,the data of which were extracted with the principle component analysis(PCA)method.The regression and prediction of SVM was optimized based on the grid search(GS)technique.Groups of data were sampled and analyzed,and simulation comparison of forecasting performance shows that the main component data were extracted to speed up the convergence rate of the optimum algorithm.The GS-SVM gives a better performance in solving the LMC measuring and forecasting problem.Therefore,exploring the scienti fi c and effective way is not only of research signi fi cance and of practical value for analyzing the data of moisture content changes in the course of drying,but it also will help operators reasonably adjust the drying course and improve the level of the drying process.

    SVM,originally developed by Vapnik,is a powerful tool of statistical learning for solving problems in nonlinear classi fi cation,function estimation and density estimation(Rakotomamonjy 2007;Diosan et al.2010;Pouteau and Collin 2013).SVM is based on a risk minimization principle,which means that the empirical risk and con fi dence range is considerable;therefore,the output of the model is an optimal solution(Nelson et al.2008;Roy and Bhattacharya 2010;Tarjoman et al.2013).SVM has been extensively studied and has shown remarkable success in many applications,including soft sensors,multi-sensor,and data fusion.SVM could solve the problems of partial minimum and over learning in neural networks due to extrapolation generalization capability in the case of small samples.Considering that the penalty factor c and kernel function parameter g could affect the complexity and generalization ability of the SVM model,it is necessary to choose the optimization parameter.The optimized c and g was found by the GS method,which could improve the learning ef fi ciency and generalization ability,and ensure the effectiveness and accuracy of the LMC prediction model(Ataei and Osanloo 2004;Fox et al.2001;Rodi 2006;Beyramysoltan et al.2013;Liu and Jia 2013).PCA was used to pretreat wood drying data as sample data had more noise in the drying process,and the SVM could not distinguish samples from being redundant,useful or not in the training process.

    Materials and methods

    Case study and data

    Cottonwood wood was chosen for the drying experiment(Zhang et al.2006).The kiln was 2.5 m×1.5 m×1.2 m and the size of each piece of lumber was 2.4 m×0.2 m×0.05 m.Before the drying experiment,the original moisture content was determined and lumber with the same moisture content was put on the same layer,and each layer was isolated by the plate to ensure the wind could get at the surface of each piece of lumber.The detection point was chosen randomly in the cottonwood lumber pile.Air temperature and relative humidity were continuously monitored by two temperature sensorsT1andT2,and two humidity sensorsE1andE2.Six LMC sensors were located sequentially at the detection point.The distance between two sensors was 10 cm.The measured pointsMC1,MC2,…,MC6were monitored automatically.Ten dimension vectors of experimental data were sampled and employed for regression analysis.Among them,T1andT2,E1andE2,MC1,MC2,…,MC6,that is 9 dimensions were used as the independent variables of regression analysis andMC6as the dependent variable.

    Experimental data were sampled at the same intervals.Among them,50 samples were selected for regression analysis,in which 1–40 were used as SVM model training samples,and 41–50 for regression forecast with the tested SVM model.The comparison between the experimental data and the forecast results allowed the SVM regression forecast performance to be evaluated.

    Principle component analysis(PCA)

    PCA is one of the multivariate statistical methods which can be used to reduce input variables complexity when there is a large volume of information(Camdevyren et al.2005;Noori et al.2010a,b,c).PCA changes the input variables into principal components(PCs)that are independent and linear of input variables(Lu et al.2003).Instead of the direct use of input variables,we transform them into PCs and then they may be used as input variables.With this method,the information on input variables will be presented with minimum losses in PCs(Helena et al.2000;Noori et al.2012).Details for mastering the art of PCA are published by Noori et al.(2007).

    PCA is intended to have a better interpretation of variables(Noori et al.2009a,b,2010a,b,c).In mathematical terms,PCA involves the following steps:(1)start by coding the variablesX1,X2,…,Xpto have zero means and unit variance;(2)calculate the correlation matrix R;(3)fi nd the eigenvalues λ1,λ2,…,λpand the corresponding eigenvectorsa1,a2, …,apby solving|R-Iλ|=0.(4)discard any components that only account for a small proportion of the variation in data sets;(5)develop the factor-loading matrix and perform a Varimax rotation to infer the principal parameters(Ouyang 2005;Noori et al.2010a,b,c).

    GS method description(GS)

    The GS method belongs to a type of digital planning method which is often used to solve nonlinear optimization problems with constraints.The GS method has no special requirement in function and could search for the value of multiple target parameters.The method could eventually develop a set of optimal combination of parameters.Each optimal value would be searched in the corresponding region.The search region with the constraint conditions is divided into grids at fi xed intervals.Each grid intersection point which is a match or a mismatch condition point corresponds to a value of the objective function.Because the match condition points could be good points or bad points,all match condition points have had a comparative analysis on some principles and then the grid intersection point of the optimal objective function is obtained(Ataei and Osanloo 2004).The value of the parameters corresponding to the intersection point is the optimal parameter value in totality;c and g are two important parameters of the forecasting model which was built by SVM(Patra and Bruzzon 2014).

    Support vector machine(SVM)regression

    The basic idea of the SVM regression is to map input data into a feature space via a nonlinear map.In the feature space,a linear decision function is constructed.The SRM principle is employed in constructing the optimum decision function.SVM nonlinearly maps the inner product of the feature space to the original space via kernels.The SVM nonlinear regression algorithms are reviewed in this section.

    Given a set of training data (x1,y1),...,(xl,yl)∈Rn×R,the nonlinear function ψ(x)is employed to map original input spaceRnto higher dimensional feature spaceRk:ψ(x)= (φ(x1),φ(x2),...,φ(xl)), wherek(k?n)represents the dimension of feature space.Then an optimum decision functionf(xi)= ωφ(xi)+bis constructed in this higher dimensional feature space,where ω=(ωl,...,ωk)is a vector of weights in this feature space(Dahmani et al.2014;Huang 2009;Kuang et al.2013).Nonlinearfunction estimation in the originalspace becomes a linear function estimation in feature space.By the SRM principle,we obtain the optimization solution(Wang 2005;Noori et al.2009a,b):

    subject to

    where ξiandare slack variables and ε is the accuracy demanded for the approximation.The solution to this optimization problem is given by the saddle point of the Lagrangian(Noori et al.2015):

    (minimum with respect to elements ω,b, ξi,andand maximum with respect to Lagrange multipliersai>0,>0, βi>0,i=1,...,l). From the optimality conditions

    and,

    By(4)and(6),the optimization problem can be rewritten as:

    subject to,

    Finally,a nonlinear function is obtained as:

    The kernel functions treated by SVM are functions with linear,polynomial or Gaussian radial basis,exponential radial basis,and splines(Chen and Xie 2007;Noori et al.2011;Salvador and Chou 2014).The Gaussian radial basis function used in this study can be de fi ned as:where g is the Gaussian radial basis kernel function width.

    The advantages of the Gaussian radial basis kernel function are that it is computationally simpler than the other function types and nonlinearly maps the training data into an in fi nite dimensional space(Subasi 2013).Optimizing parameters will become complex polynomial basis function or sigmoid function because two variables need determination in polynomial basis function and sigmoid function,respectively.Thus,it can handle situations in which the relation between input and output variables is nonlinear.

    Results

    PCA for LMC data processing

    Principal component analysis is used to analyze the relationship among the nine dimension data sets of independent variables on principle components.The purpose is the guaranteed loss minimum from the original data information,under the premise of the original data attributes to mix into a group of new unrelated comprehensive indices,which is the simpli fi ed original data to improve the training precision of the SVM model and the ef fi ciency of the regression forecast.Principle component analysis schematic diagram for LMC is shown in Fig.1 which is from Matlab 7.0 simulation software.

    Experimental data are normalized and combined linearly.The original 9 dimension data sets,namely 90 measured parameters,are transferred into 3 principle components reduction sets which are rearranged according to contribution rate.The simulation results are shown as Fig.1.The most important components of the variance contribution rate is 89.7%,the second principal rate is 4.9%,and the third accounted for 2.8%.Factor analysis was performed for 9 LMC traits of 90 sampled data to select the top 3 factors whose cumulative contribution of variance accounted to 97.4%,which can describe mathematically the performance of LMC compared to physical factors.

    Fig.1 Principle component analysis schematic diagram for LMC

    SVM regression analysis based on grid searching technique(GS)

    The GS method searched the global optimal value of c and g according to the given step in a rectangular range.The concrete steps of implementation were as follows:

    (1) The search scope and step size of c and g were set in the GS method and then a two-dimensional grid was structured in coordinates systems of c and g.

    (2) The data collected from drying experiment was used as a sample set and divided into n groups.Arbitrary n-1 sets of data were chosen as training samples and the remaining set chosen as prediction sample.From the two-dimensional grid coordinate system,arbitrarily one set of parameters,which included c and g,was chosen to train n-1 sets of data and then predict 1 set of data(Cross-validation technique).The prediction error of the LMC was recorded.

    (3) Step(2)was repeated until all c and g were trained once in a two-dimensional grid.

    (4) MSE was the evaluation criterion of the prediction accuracy corresponding to each c and g.MSE,c and g constituted a three-dimensional coordinate system in which MSE was shown by contour.Ultimately,the optimal parameter value of c and g were determined when MSE obtained minimum.

    The fl owchart of LMC prediction based on GS and SVM is presented in Fig.2.

    Fig.2 The fl owchart of LMC prediction based on GS and SVM

    The original,normalized and PCA dimension reduction data were used for training and testing under the condition that the optimal parameters c and g of SVM were obtained by the grid searching technique.For the three different data sets,training and testing results were analyzed.To ensure the reliability of the contrast,grid setting parameters were kept consistent under the three training conditions.The parameters of the searching technique were set as follows:40 samples were divided into fi ve sets averaged through cross validation.The grid size was set to 0.5,namely 2-1,the parameters c and g of the optimum range were 2-8-2+8.

    Model training and regression testing for original data

    With the original data,the parameters were optimized by the grid search technique is shown as Fig.3.The range of log2c is represented by X axis and Y axis.The variation of mean square error is shown by the Z axis.The parameters c and g are optimized from the beginning of 2-8.MSE is gradually converged from the red numerical area,and the optimization process is fi nished until c and g reach 28,which is shown with the blue numerical area.Mean square error is CVmse=0.0009 with the cross validation and the optimal parameter c=32,g=0.0039 for SVM

    GS-SVM regression and predicted curve is shown in Fig.4.X axis means independent variables of sampled data,Y axis is the estimating value of LMC.From the train set regression prediction by SVM,‘○’is the true value ofMC6used as training data. ‘□’represents 1–40MC6predicting value estimated from 450 sampled points of 9 dimension data sets.From the test set regression predict,we conclude that ‘◇’is the true value ofMC6used as testing data.‘*’represents 41–50MC6predicting values estimated from 50 sampled points of 1 dimension data sets.Mean square error is mse=0.0002 and curve goodness of fi t isr2=0.9988 with the training model.Mean square error is mse=0.0105 and curve goodness of fi t isr2=0.9296 with the regression testing.The computation time of entire operation process was 4.13 s.

    Model training and regression testing for PCA data

    With the original data,the parameters are optimized by the PCA-GS(principle components analysis method combining grid search technique)is shown in Fig.5.The range of log2c is represented by the X axial and the Y axial.The variation of mean square error is shown by the Z axial.The parameters c and g are optimized from the beginning of 2-8.MSE is gradually converged from the red numerical area,and optimization process is fi nished when c and g reach 28,shown with blue numerical area.Convergence speed is increased with the data preprocessed by PCA.Mean square error is CVmse=0.0008 with the cross validation and the optimalparameterc=11.3137,g=0.0884 for SVM.

    PCA-GS-SVM regression and predict curve is shown in Fig.6.X axis means independent variables,Y axis is the estimating value of LMC.From the train set regression predict by SVM, ‘○’is the true value ofMC6used as training data.‘□’represents 1–40MC6predicting value which is estimated from 120 sampled points of 3 dimension principle components.From the test set regression predict by SVM,we conclude that ‘◇’is the true value ofMC6used as testing data.‘*’represents 41–50MC6predicting value estimated from PCA data.Mean square error is mse=0.0001,curve goodness of fi t isr2=0.9994 with the training model.Mean square error is mse=0.0039,curve goodness of fi t isr2=0.9214 with the regression testing.The computation time of the whole operation process was 3.09 s.

    The simulation results shown as the previous four diagrams are analyzed comparably.We conclude that the convergence speed of the grid searching method increases under the condition that the experimental data are preprocessed by the principle components analysis method.Again,the performance of curve fi tting is superior to that without PCA.

    Comprehensive analysis on error performance index

    In order to validate training error and prediction deviation,the three indexes,mean square error(MSE),curve goodness-of- fi t(r2),and consumption time(t),are a measure of predictive ability for discrete data space.Among them,TmseandTr2represent training error and training curve goodness-of- fi t,respectively.PmseandPr2indicate the prediction error and goodness-of- fi t forecasting curve.

    Table 1 is the error index analysis on GS-SVM with the sampled data sourced from the original experiment datawith PCA dimension reductions.Comparing and analyzing the data processing in Table 1 shows that SVM forecasting precision is improved and algorithm running time is shortened with PCA dimension reduction.

    Fig.3 Three-dimensional simulation diagram on GS(Grid searching technique)

    Fig.4 GS-SVM regression and predicted curve.a Train set regression predict by SVM,b test set regression predict by SVM

    TmseandTr2represent training error and training curve goodness-of- fi t,respectively.PmseandPr2indicate the prediction error and goodness-of- fi t forecasting curve.

    The error analysis indexes(Table 1)is SVM modeling based on the sampled data processed by grid searching technique.Although GS disadvantages are lower ef fi ciency and longer running time for the exhaustion method as the basic principle,it can fi nd global optimal parameters exactly.The simulation results show that GS-SVM modeling has higher ef fi ciency with the premise of SVM forecasting accuracy.

    Discussion

    We used relative parameters from experiment data to establish multidimensional data collection according to the high correlation between lumber moisture content and medium temperature and moisture in the course of drying.To solve the problem that the large difference of each feature quantity’s data level in fl uences the regression analysis function,the method of data feature normalization is proposed to pretreat the data so as to unify each feature quantity’s lumber dryness multidimensional data and improve the regression analysis function of the lumber moisture content.This paper proposes PCA from dimensionality reduction for the feature extraction for the normalized lumber dryness data.It results in the optimization for multidimensional data,the improvement of the quality of data and utilization rate regression and also the improvement of analysis ef fi ciency of lumber moisture content.

    SVM has the characteristic of solving the problems of nonlinearity,high dimensionality,and uncertainty.Because of lumber dryness parameter collection is redundant and uncertain this paper establishes lumber moisture content regression model based on support vector machine for thedata of lumber moisture content,temperature,and moisture to predict.While doing regression predictions with SVM,the values of penalty parameter c and kernel function parameter g will directly in fl uence the regression prediction function of the support vector machine.This paper utilizes grid search intelligent algorithm to optimize c and g.

    Fig.5 Three-dimensional simulation diagram on PCA-GS

    Fig.6 PCA-GS-SVM regression and predict curve.a Train set regression predict by SVM,b test set regression predict by SVM

    Table 1 Error index analysis on GS-SVM

    Conclusion

    There is often a complex nonlinear relationship between LMC and environmental factors in the drying process.To solve this problem,a novel intelligent computation method based on PCA and GS-SVM was proposed.To decrease data redundancy,dimension reduction was realized by the PCA method by which the sampled multi-dimension data are optimized.The optimum parameters of SVM global optimization is obtained from GS.From the experimental data and simulation results,GS-SVM with principle component analysis gives a better performance in solving the interference problem from the environmental factors during the LMC accuracy measurement.

    Ataei M,Osanloo M(2004)Using a combination of genetic algorithm and the grid search method to determine optimum cutoff grades of multiple metal deposits.Int J Surf Min Reclam Environ 18:60–78

    Awadalla HSF,El-Dib AF,Mohamad MA,Reuss M,Hussein HMS(2004)Mathematical modelling and experimental veri fi cation of wood drying process.Energy Convers Manag 45:197–207

    Beyramysoltan S,RajkóR,Abdollahi H(2013)Investigation of the equality constraint effect on the reduction of the rotational ambiguity in three-component system using a novel grid search method.Anal Chim Acta 791:25–35

    Camdevyren H,Demyr N,Kanik A,Keskyn S(2005)Use of principal component scores in multiple linear regression models for prediction of Chlorophyll-a in reservoirs.Ecol Model 181:581–589

    Chen GY,Xie WF(2007)Pattern recognition with SVM and dualtree complex wavelets.Image Vis Comput 25:960–966

    Dahmani H,Selouani S,Doghmane N,O’Shaughnessy D,Chetouani M(2014)On the relevance of using rhythmic metrics and SVM to assess dysarthric severity.Int J Biom 6:248–271

    Diosan L,Rogozan A,Pecuchet JP(2010)Learning SVM with complex multiple kernels evolved by genetic programming.Int J Artif Intell Tools 19:647–677

    Fox SB,Culha M,Sepaniak MJ(2001)Development of a grid search molecular mechanics modeling strategy to study elution behavior in cyclodextrin modi fi ed capillary electrophoresis.J Liq Chromatogr Relat Technol 24:1209–1228

    Helena B,Pardo R,Vega M,Barrado E,Fernandez JM,Fernandez L(2000)Temporal evolution of groundwater composition in an alluvial aquifer(Pisuerga river,Spain)by principal component analysis.Water Res 34:807–816

    Huang SC(2009)Integrating nonlinear graph based dimensionality reduction schemes with SVMs for credit rating forecasting.Expert Syst Appl 36:7515–7518

    Isaksson T,Thelandersson S(2013)Experimental investigation on the effect of detail design on wood moisture content in outdoor above ground applications.Build Environ 59:239–249

    Kecman V (2005)Support vector machines:an introduction.Springer,Berlin

    Klaric M,Pervan S(2012)Improving of maintenance of humidifying system in conventional wood kiln dryers.Drv Ind 63:87–94

    Kuang YC,Yu JQ,Hu YC,Wang Y(2013)Research and application of real estate document image classi fi cation based on SVMs and KNN.J Inf Comput Sci 10:6093–6100

    Liu PY,Jia KB(2013)A motion-characteristics-based unsymmetrical-cross multi-hexagon-grid search algorithm for fast motion estimation.Inf Technol J 12:3128–3133

    Lu WZ,Wang WJ,Wang XK,Xu ZB,Leung AYT(2003)Using improved neural network to analyze RSP,NOx and NO2 levels in urban air in Mong Kok,Hong Kong.Environ Monit Assess 87:235–254

    Martinovic D,Horman I,Demirdzic I(2001)Numerical and experimental analysis of a wood drying process.Wood Sci Technol 35:143–156

    Nelson JDB,Damper RI,Gunn SR,Guo B(2008)Signal theory for SVM kernel design with applications to parameter estimation and sequence kernels.Neurocomputing 72:15–22

    Noori R,Kerachian R,Khodadadi A,Shakibayinia A(2007)Assessment of importance of water quality monitoring stations using principal component and factor analyses:a case study of the Karoon River.J Water Wastewater 63:60–69

    Noori R,Abdoli MA,Ameri-Ghasrodashti A,Jalili-Ghazizade M(2009a)Prediction of municipal solid waste generation with combination of support vector machine and principal component analysis:a case study of mashhad.Environ Prog Sustain Energy 28:249–258

    Noori R,Abdoli MA,Jalili-Ghazizade M,Samifard R(2009b)Comparison of ANN and PCA based multivariate linear regression applied to predict the weekly municipal solid waste generation in Tehran.Iran J Public Health 38:74–84

    Noori R,Karbassi AR,Sabahi MS(2010a)Evaluation of PCA and Gamma test techniques on ANN operation for weekly solid waste predicting.J Environ Manag 91:767–771

    Noori R,Khakpour A,Omidvar B,Farokhnia A(2010b)Comparison of ANN and principal component analysis-multivariate linear regression models for predicting the river fl ow based on developed discrepancy ratio statistic.ExpertSystAppl 37:5856–5862

    Noori R,Sabahi MS,Karbassi AR,Baghvand A,Zadeh HT(2010c)Multivariate statistical analysis of surface water quality based on correlationsand variations in the data set.Desalination 260:129–136

    Noori R,Karbassi AR,Moghaddamnia A,Han D,Zokaei-Ashtiani MH,Farokhnia A,Gousheh MG(2011)Assessment of input variables determination on the SVM model performance using PCA,Gamma test,and forward selection techniques for monthly stream fl ow prediction.J Hydrol 401:177–189

    Noori R,Karbassi AR,Khakpour A,Shahbazbegian M,Badam HMK,Vesali-Naseh M(2012)Chemometric analysis of surface water quality data:case study of the gorganrud river basin,Iran.Environ Model Assess 17:411–420

    Noori R,Deng Z,Kiaghadi A,Kachoosangi F(2015)How reliable are ANN,ANFIS,and SVM techniques for predicting longitudinal dispersion coef fi cient in natural rivers?J Hydraul Eng 142:04015039

    Ouyang Y(2005)Evaluation of river water quality monitoring stations by principal component analysis. Water Res 39:2621–2635

    Patra S,Bruzzon L(2014)A novel SOM-SVM-based active learning technique for remote sensing image classi fi cation.IEEE Trans Geosci Remote Sens 52:6899–6910

    Pouteau R,Collin A(2013)Spatial location and ecological content of support vectors in an SVM classi fi cation of tropical vegetation.Remote Sens Lett 4:686–695

    Rakotomamonjy A(2007)Analysis of SVM regression bounds for variable ranking.Neurocomputing 70:1489–1501

    Rodi W(2006)Grid-search event location with non-Gaussian error models.Phys Earth Planet Inter 158:55–66

    Roy K,Bhattacharya P(2010)Improvement of iris recognition performance using region-based active contours,genetic algorithms and SVMs.IntJ Pattern RecognitArtifIntell 24:1209–1236

    Salvador CM,Chou CCK(2014)Analysis of semi-volatile materials(SVM)in fi ne particulate matter.Atmos Environ 95:288–295

    Skuratov NV(2008)Intelligent wood drying control:problems and decisions.Drying Technol 26:585–589

    Subasi A(2013)Classi fi cation of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders.Comput Biol Med 43:576–586

    Tarjoman M,Fatemizadeh E,Badie K(2013)An implementation of a CBIR system based on SVM learning scheme.J Med Eng Technol 37:43–47

    Theodoros E,Tomaso P,Massimiliano P(2002)Regularization and statistical learning theory for data analysis.Comput Stat Data Anal 38:421–432

    Vapnik VN(1998)Statistical learning theory,2nd edn.Wiley,New York

    Wang L(2005)Support vector machines:theory and applications.Springer,Berlin,pp 1–48

    Zhang DY,Liu YQ,Jun C(2003)Application of single neuron adaptive PID controller during the process of timber drying.J For Res 14:244–248

    Zhang DY,Sun LP,Cao J(2006)Modeling of temperature-humidity for wood drying based on time-delay neural network.J For Res 17:141–144

    免费久久久久久久精品成人欧美视频| 如日韩欧美国产精品一区二区三区| 欧美日韩亚洲综合一区二区三区_| 波野结衣二区三区在线| 欧美av亚洲av综合av国产av | 亚洲,欧美,日韩| 蜜桃在线观看..| 80岁老熟妇乱子伦牲交| 国产日韩欧美亚洲二区| 18禁动态无遮挡网站| 欧美成人精品欧美一级黄| 妹子高潮喷水视频| 久久久久国产精品人妻一区二区| 超碰成人久久| 99久久综合免费| 色婷婷久久久亚洲欧美| 欧美人与性动交α欧美软件| 一本大道久久a久久精品| 曰老女人黄片| 国产亚洲av高清不卡| 如何舔出高潮| 18禁观看日本| videos熟女内射| 国产免费福利视频在线观看| 日本黄色日本黄色录像| 亚洲精品美女久久av网站| 五月开心婷婷网| 亚洲成人av在线免费| 你懂的网址亚洲精品在线观看| 欧美精品一区二区大全| 日韩大码丰满熟妇| 免费观看a级毛片全部| 欧美日韩视频精品一区| 又大又黄又爽视频免费| 亚洲人成电影观看| 成人手机av| 国产极品粉嫩免费观看在线| 久久久精品国产亚洲av高清涩受| 啦啦啦在线观看免费高清www| 七月丁香在线播放| 成年女人毛片免费观看观看9 | www.av在线官网国产| 国产成人精品无人区| av福利片在线| 精品第一国产精品| 国产精品嫩草影院av在线观看| 欧美亚洲日本最大视频资源| 天天躁狠狠躁夜夜躁狠狠躁| a级片在线免费高清观看视频| 日韩熟女老妇一区二区性免费视频| 亚洲一码二码三码区别大吗| 日韩制服骚丝袜av| 天美传媒精品一区二区| a级毛片黄视频| 国产精品久久久久久精品古装| 精品亚洲成国产av| 久久久欧美国产精品| 人人妻人人澡人人爽人人夜夜| 亚洲七黄色美女视频| 亚洲精品久久久久久婷婷小说| 日韩制服骚丝袜av| 国产精品免费大片| 9色porny在线观看| 午夜91福利影院| 国产精品免费视频内射| 无遮挡黄片免费观看| 人妻一区二区av| 国产成人精品久久二区二区91 | 高清不卡的av网站| 亚洲一区中文字幕在线| 日韩中文字幕欧美一区二区 | 国产精品久久久人人做人人爽| 亚洲精品美女久久av网站| 成年美女黄网站色视频大全免费| 免费高清在线观看视频在线观看| bbb黄色大片| 欧美中文综合在线视频| 久久 成人 亚洲| 欧美日韩av久久| 亚洲精品国产区一区二| 国产精品蜜桃在线观看| 精品国产一区二区三区四区第35| 黄片小视频在线播放| 国产成人精品在线电影| 亚洲av欧美aⅴ国产| 久久精品久久久久久噜噜老黄| 熟女少妇亚洲综合色aaa.| 黄色怎么调成土黄色| 热99国产精品久久久久久7| 老司机靠b影院| 青春草视频在线免费观看| 人妻一区二区av| 最近最新中文字幕大全免费视频 | 亚洲av成人精品一二三区| 多毛熟女@视频| 国精品久久久久久国模美| 国语对白做爰xxxⅹ性视频网站| 九色亚洲精品在线播放| 国产精品蜜桃在线观看| 国产一区有黄有色的免费视频| 国产毛片在线视频| 精品国产露脸久久av麻豆| 交换朋友夫妻互换小说| 色精品久久人妻99蜜桃| 青草久久国产| 国产极品粉嫩免费观看在线| 日本wwww免费看| 少妇人妻 视频| 成年女人毛片免费观看观看9 | 欧美变态另类bdsm刘玥| 黄色视频不卡| 免费女性裸体啪啪无遮挡网站| av网站免费在线观看视频| 亚洲美女黄色视频免费看| 一本—道久久a久久精品蜜桃钙片| 一本—道久久a久久精品蜜桃钙片| 成人三级做爰电影| 夫妻午夜视频| 欧美久久黑人一区二区| 中文字幕最新亚洲高清| 亚洲色图综合在线观看| 中文字幕高清在线视频| 女人爽到高潮嗷嗷叫在线视频| 日本欧美国产在线视频| 亚洲熟女毛片儿| 99久久精品国产亚洲精品| 欧美亚洲 丝袜 人妻 在线| 日韩精品有码人妻一区| 精品午夜福利在线看| 中文字幕最新亚洲高清| 久久韩国三级中文字幕| 观看美女的网站| 99久久综合免费| netflix在线观看网站| 女性被躁到高潮视频| 亚洲五月色婷婷综合| 久久久久久久大尺度免费视频| 国产精品麻豆人妻色哟哟久久| 亚洲精品一二三| 国产欧美亚洲国产| 天堂中文最新版在线下载| 天天操日日干夜夜撸| 免费人妻精品一区二区三区视频| 一本色道久久久久久精品综合| 制服人妻中文乱码| 免费在线观看视频国产中文字幕亚洲 | 亚洲,一卡二卡三卡| 丝袜美足系列| 国产亚洲av高清不卡| 自线自在国产av| 人妻 亚洲 视频| 99re6热这里在线精品视频| 在线看a的网站| 少妇被粗大猛烈的视频| 色综合欧美亚洲国产小说| av卡一久久| 国产乱来视频区| av在线老鸭窝| 男女床上黄色一级片免费看| 精品国产露脸久久av麻豆| 免费人妻精品一区二区三区视频| 18禁裸乳无遮挡动漫免费视频| 观看美女的网站| 女性被躁到高潮视频| 欧美日韩精品网址| 成年人午夜在线观看视频| 国产精品一二三区在线看| 男女午夜视频在线观看| 国产伦理片在线播放av一区| 免费观看av网站的网址| 免费人妻精品一区二区三区视频| 精品午夜福利在线看| 久久久久久久精品精品| 最近手机中文字幕大全| 下体分泌物呈黄色| 亚洲精品国产av蜜桃| 在线观看人妻少妇| 亚洲第一青青草原| 美女脱内裤让男人舔精品视频| 麻豆av在线久日| 欧美亚洲 丝袜 人妻 在线| √禁漫天堂资源中文www| 9热在线视频观看99| 青春草视频在线免费观看| 国产伦人伦偷精品视频| e午夜精品久久久久久久| av卡一久久| 蜜桃国产av成人99| 一区二区日韩欧美中文字幕| 免费观看av网站的网址| 青草久久国产| 丰满迷人的少妇在线观看| 免费日韩欧美在线观看| videos熟女内射| 色94色欧美一区二区| 午夜av观看不卡| 免费av中文字幕在线| 亚洲精品国产av成人精品| 纯流量卡能插随身wifi吗| 久久国产精品男人的天堂亚洲| 美女高潮到喷水免费观看| 天天躁夜夜躁狠狠久久av| 中文字幕色久视频| 久久国产亚洲av麻豆专区| 超碰97精品在线观看| 亚洲国产毛片av蜜桃av| 在线精品无人区一区二区三| 国产女主播在线喷水免费视频网站| 亚洲伊人久久精品综合| 丰满迷人的少妇在线观看| 国产精品嫩草影院av在线观看| 日韩制服丝袜自拍偷拍| 不卡视频在线观看欧美| av网站免费在线观看视频| 亚洲国产av新网站| 日韩av免费高清视频| av国产精品久久久久影院| 色播在线永久视频| 777久久人妻少妇嫩草av网站| 欧美日韩av久久| 另类精品久久| 一级爰片在线观看| 欧美激情 高清一区二区三区| 人人妻人人澡人人爽人人夜夜| 亚洲一码二码三码区别大吗| 只有这里有精品99| 日日撸夜夜添| 男女边吃奶边做爰视频| 色播在线永久视频| 黄色视频在线播放观看不卡| 另类精品久久| 日日啪夜夜爽| 午夜免费男女啪啪视频观看| 欧美黑人欧美精品刺激| 九草在线视频观看| 19禁男女啪啪无遮挡网站| 欧美成人精品欧美一级黄| 亚洲国产欧美日韩在线播放| 亚洲av在线观看美女高潮| 国产日韩欧美亚洲二区| 国产精品香港三级国产av潘金莲 | 韩国av在线不卡| 欧美成人精品欧美一级黄| 国产在线一区二区三区精| 日韩电影二区| 亚洲av日韩在线播放| 菩萨蛮人人尽说江南好唐韦庄| 久久 成人 亚洲| 丝袜在线中文字幕| 欧美人与善性xxx| 一级片免费观看大全| 久久久久视频综合| 国产免费视频播放在线视频| 久久久久久久大尺度免费视频| 热99久久久久精品小说推荐| 男的添女的下面高潮视频| 国产男女内射视频| 国产精品嫩草影院av在线观看| 国产乱人偷精品视频| 久久亚洲国产成人精品v| 亚洲欧美一区二区三区黑人| 99香蕉大伊视频| 搡老乐熟女国产| av女优亚洲男人天堂| 天天躁狠狠躁夜夜躁狠狠躁| 一级毛片黄色毛片免费观看视频| 精品久久久久久电影网| 一二三四中文在线观看免费高清| 超碰97精品在线观看| 精品人妻在线不人妻| 老鸭窝网址在线观看| 欧美少妇被猛烈插入视频| 国产 精品1| 精品视频人人做人人爽| 久久99一区二区三区| 国产男人的电影天堂91| 热99国产精品久久久久久7| 国产精品香港三级国产av潘金莲 | 国产成人精品久久久久久| 日本vs欧美在线观看视频| 天天躁日日躁夜夜躁夜夜| 国产在线一区二区三区精| 亚洲成色77777| 国产麻豆69| 王馨瑶露胸无遮挡在线观看| 久久久久久人妻| 久久国产精品大桥未久av| 日日撸夜夜添| 夜夜骑夜夜射夜夜干| 一级爰片在线观看| 51午夜福利影视在线观看| 日韩大片免费观看网站| 夜夜骑夜夜射夜夜干| 成年动漫av网址| 日韩人妻精品一区2区三区| 国产精品一区二区在线不卡| 建设人人有责人人尽责人人享有的| 亚洲精品一二三| 波多野结衣一区麻豆| 一二三四中文在线观看免费高清| 国产深夜福利视频在线观看| 岛国毛片在线播放| 久久久久精品久久久久真实原创| 99久久综合免费| 国产一区有黄有色的免费视频| 日韩一本色道免费dvd| 亚洲精品国产色婷婷电影| 一区二区三区激情视频| 国产精品二区激情视频| 国产精品成人在线| 久久精品久久精品一区二区三区| 韩国精品一区二区三区| 国产高清不卡午夜福利| 2018国产大陆天天弄谢| 国产亚洲一区二区精品| av有码第一页| 免费不卡黄色视频| 亚洲精品国产av成人精品| 男女无遮挡免费网站观看| 久久99精品国语久久久| 亚洲,一卡二卡三卡| 亚洲成人免费av在线播放| 亚洲国产精品一区二区三区在线| 日本猛色少妇xxxxx猛交久久| 韩国av在线不卡| 欧美激情极品国产一区二区三区| 男的添女的下面高潮视频| 七月丁香在线播放| 美女扒开内裤让男人捅视频| 国产片内射在线| 中文字幕亚洲精品专区| 精品国产露脸久久av麻豆| 欧美国产精品一级二级三级| 亚洲国产最新在线播放| 精品一品国产午夜福利视频| 欧美亚洲 丝袜 人妻 在线| 久久久久人妻精品一区果冻| 亚洲三区欧美一区| 亚洲第一青青草原| 街头女战士在线观看网站| 国精品久久久久久国模美| 国产亚洲精品第一综合不卡| 1024视频免费在线观看| av国产精品久久久久影院| 亚洲专区中文字幕在线 | 国产视频首页在线观看| 晚上一个人看的免费电影| 你懂的网址亚洲精品在线观看| 成人影院久久| 精品亚洲乱码少妇综合久久| 精品福利永久在线观看| 欧美日韩视频高清一区二区三区二| av线在线观看网站| 最近最新中文字幕大全免费视频 | 黑人欧美特级aaaaaa片| 伊人久久大香线蕉亚洲五| 高清黄色对白视频在线免费看| 两个人看的免费小视频| 极品少妇高潮喷水抽搐| 国产女主播在线喷水免费视频网站| 久久人人爽av亚洲精品天堂| 伊人久久国产一区二区| 久久久久久久久久久久大奶| 国产成人av激情在线播放| 成年av动漫网址| 极品人妻少妇av视频| a级毛片黄视频| 国产在线免费精品| 国产亚洲欧美精品永久| 亚洲精品中文字幕在线视频| 天天添夜夜摸| 伦理电影免费视频| 精品亚洲乱码少妇综合久久| 1024视频免费在线观看| 午夜91福利影院| 久久亚洲国产成人精品v| 色婷婷av一区二区三区视频| 美女国产高潮福利片在线看| 18禁国产床啪视频网站| 最近最新中文字幕免费大全7| 少妇人妻精品综合一区二区| 亚洲成人av在线免费| 可以免费在线观看a视频的电影网站 | 亚洲美女搞黄在线观看| 国精品久久久久久国模美| tube8黄色片| 国产精品偷伦视频观看了| av不卡在线播放| 亚洲精品美女久久久久99蜜臀 | 国产精品三级大全| 亚洲av成人不卡在线观看播放网 | 日韩视频在线欧美| 91aial.com中文字幕在线观看| 国产精品嫩草影院av在线观看| 不卡视频在线观看欧美| 成人三级做爰电影| 伊人久久大香线蕉亚洲五| 欧美日韩综合久久久久久| 国产片内射在线| 亚洲成人免费av在线播放| 91国产中文字幕| 女性被躁到高潮视频| 精品人妻熟女毛片av久久网站| svipshipincom国产片| 乱人伦中国视频| 欧美亚洲 丝袜 人妻 在线| 亚洲欧美清纯卡通| 人妻一区二区av| 性少妇av在线| 日韩中文字幕欧美一区二区 | 一级片免费观看大全| 午夜福利影视在线免费观看| 欧美激情极品国产一区二区三区| 黑人猛操日本美女一级片| 亚洲国产精品国产精品| 最新的欧美精品一区二区| 中文字幕精品免费在线观看视频| 欧美人与善性xxx| av又黄又爽大尺度在线免费看| 韩国av在线不卡| 免费观看人在逋| 久久韩国三级中文字幕| 欧美老熟妇乱子伦牲交| 在线观看三级黄色| 精品亚洲乱码少妇综合久久| 国产精品无大码| 狂野欧美激情性bbbbbb| 国产熟女欧美一区二区| 亚洲精品av麻豆狂野| 1024香蕉在线观看| 国产一区亚洲一区在线观看| 天天躁夜夜躁狠狠躁躁| 超色免费av| 下体分泌物呈黄色| 丝袜美腿诱惑在线| 91老司机精品| 午夜免费观看性视频| 极品人妻少妇av视频| 亚洲成人一二三区av| 国产精品 国内视频| 人妻人人澡人人爽人人| 人妻一区二区av| 男女边吃奶边做爰视频| 新久久久久国产一级毛片| 香蕉国产在线看| 午夜激情av网站| 美女脱内裤让男人舔精品视频| 久久97久久精品| 国产成人一区二区在线| 美女扒开内裤让男人捅视频| 自线自在国产av| 成人手机av| 97精品久久久久久久久久精品| 嫩草影院入口| 久久天堂一区二区三区四区| 啦啦啦在线观看免费高清www| 亚洲国产精品国产精品| 一区在线观看完整版| 日韩一区二区三区影片| 老鸭窝网址在线观看| 又黄又粗又硬又大视频| 看十八女毛片水多多多| 人人妻人人添人人爽欧美一区卜| 久久婷婷青草| 自拍欧美九色日韩亚洲蝌蚪91| 伊人久久国产一区二区| 国产欧美日韩综合在线一区二区| 青春草国产在线视频| 电影成人av| av女优亚洲男人天堂| 制服丝袜香蕉在线| 天天躁日日躁夜夜躁夜夜| 国产在线免费精品| 久久99热这里只频精品6学生| 国产成人一区二区在线| 中国国产av一级| kizo精华| www.精华液| 秋霞伦理黄片| 国产精品免费大片| avwww免费| xxx大片免费视频| 日本91视频免费播放| 精品久久久久久电影网| 日韩制服丝袜自拍偷拍| bbb黄色大片| 天天躁夜夜躁狠狠躁躁| 99香蕉大伊视频| 欧美成人精品欧美一级黄| 国产一区二区三区av在线| 丰满饥渴人妻一区二区三| 母亲3免费完整高清在线观看| 日本欧美国产在线视频| 免费观看人在逋| 最近手机中文字幕大全| 国产精品av久久久久免费| 天天躁日日躁夜夜躁夜夜| 夫妻性生交免费视频一级片| 丝袜美足系列| 久久久国产精品麻豆| 美女福利国产在线| 国产成人精品在线电影| 男男h啪啪无遮挡| 国产成人精品在线电影| av国产久精品久网站免费入址| 亚洲人成77777在线视频| 毛片一级片免费看久久久久| 午夜福利免费观看在线| 亚洲成人手机| 人人妻人人澡人人爽人人夜夜| 色播在线永久视频| 欧美最新免费一区二区三区| 久久综合国产亚洲精品| 久久这里只有精品19| 18禁观看日本| 午夜老司机福利片| 亚洲国产精品国产精品| e午夜精品久久久久久久| 国产亚洲av片在线观看秒播厂| 日日撸夜夜添| 波多野结衣av一区二区av| 大码成人一级视频| 青春草视频在线免费观看| 高清av免费在线| 欧美黑人精品巨大| 精品一区在线观看国产| kizo精华| 久久综合国产亚洲精品| 国产毛片在线视频| 久久99热这里只频精品6学生| 亚洲精品美女久久av网站| 亚洲色图综合在线观看| 久久久国产精品麻豆| 国产免费一区二区三区四区乱码| 国产av精品麻豆| 老司机深夜福利视频在线观看 | 国产日韩欧美视频二区| 麻豆av在线久日| 久久人人爽人人片av| 在线观看免费日韩欧美大片| 免费看av在线观看网站| 欧美日韩视频精品一区| 飞空精品影院首页| 又大又黄又爽视频免费| 日韩制服丝袜自拍偷拍| 精品久久久久久电影网| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲国产欧美在线一区| 精品视频人人做人人爽| 男女国产视频网站| 尾随美女入室| 黄色毛片三级朝国网站| 大陆偷拍与自拍| 最近手机中文字幕大全| 制服丝袜香蕉在线| 一边摸一边抽搐一进一出视频| 成人毛片60女人毛片免费| 九色亚洲精品在线播放| 超色免费av| 妹子高潮喷水视频| 日韩伦理黄色片| 国产乱人偷精品视频| 十分钟在线观看高清视频www| 国产日韩欧美在线精品| 欧美中文综合在线视频| 亚洲精品一二三| 校园人妻丝袜中文字幕| av有码第一页| 日韩欧美精品免费久久| 一级毛片黄色毛片免费观看视频| av卡一久久| 黑丝袜美女国产一区| 2021少妇久久久久久久久久久| 欧美在线一区亚洲| 99热全是精品| 色精品久久人妻99蜜桃| 一区二区三区激情视频| 国产精品成人在线| 热re99久久精品国产66热6| 日本一区二区免费在线视频| 午夜福利视频在线观看免费| 一边亲一边摸免费视频| 黄片小视频在线播放| 国产成人免费无遮挡视频| 男女之事视频高清在线观看 | 国产一区二区 视频在线| 成年人免费黄色播放视频| 一区二区三区乱码不卡18| 大话2 男鬼变身卡| 97精品久久久久久久久久精品| 成人黄色视频免费在线看| 亚洲少妇的诱惑av| 亚洲精品国产一区二区精华液| 久久亚洲国产成人精品v| 亚洲精品av麻豆狂野| 肉色欧美久久久久久久蜜桃| 午夜激情av网站| 波多野结衣一区麻豆| 十八禁高潮呻吟视频| 午夜久久久在线观看| 男女床上黄色一级片免费看| 国产免费一区二区三区四区乱码| 亚洲一码二码三码区别大吗| 日韩中文字幕欧美一区二区 | 大码成人一级视频| 18禁国产床啪视频网站| 久久国产亚洲av麻豆专区| 国产成人精品久久久久久| 亚洲欧美激情在线| 视频区图区小说| 日韩精品免费视频一区二区三区| 搡老乐熟女国产| 国产成人精品福利久久| 中文字幕高清在线视频| 久久精品国产亚洲av高清一级|