• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The properties of fl ax fi ber reinforced wood fl our/high density polyethylene composites

    2018-03-19 05:08:46JingfaZhangHaigangWangRongxianOuQingwenWang
    Journal of Forestry Research 2018年2期

    Jingfa Zhang?Haigang Wang?Rongxian Ou?Qingwen Wang,

    Introduction

    Due to their increasing application,wood-plastic composites(WPC)have received signi fi cant attention from both applied science and industry.WPC is widely utilized in decking,trays,fencing,windows and playground equipment due to several advantages over wood or plastic alone(Jiang and Kamdem 2004;Markarian 2002).However,applications of WPC for structural construction are still restricted due to its weak mechanical performance resulting from the inherent incompatibility between hydrophilic wood and hydrophobic polyole fi n matrix(Wu et al.2014).This in turn results in low impact toughness and creep strain(Lai et al.2003).

    In order to enhance the mechanical and physical performance of WPC,different physical processing methods(Rong et al.2001;Ou et al.2014;Ferreira et al.2014),as well as chemical modi fi cations(Wei et al.2013;Bledzki et al.2015;Dong et al.2014)have been utilized to treat wood fl our(Facca et al.2007;Aggarwal et al.2013).However,all current methods have shortcomings,such as complicated operation,high cost,or pollution,constraining their commercial development.Adding reinforcement was always an effective method to improve the mechanical properties of the resulting composites.Hybridization of wood fi ber with high-strength fi bers is suspected to significantly improve the mechanical properties of resulting composites.Reinforcing fi bers,such as carbon fi ber,glass fi ber,basalt fi ber,and synthetic fi ber are widely used(Rahmat and Hubert 2011;Zhao et al.2015;Yuan et al.2013).Adding glass fi ber has been reported to enhance fl exure properties and impact strength of WF/PE composites(Thwe and Liao 2002;Zolfaghari et al.2013;Jiang et al.2003).Incorporation of basalt fi ber produced similar results(Chen et al.2013).The addition of a small amount(2–3%)of Kevlar fi ber has been shown to simultaneously improve the strength and toughness of WF/PE composites(Ou et al.2010).In addition,carbon fi bers have been used in WPC,resulting in signi fi cant improvements of mechanical properties(Zhou et al.2014).However,all of these fi bers are derived from non-renewable resources and all of them are mixed with wood fl our or plastic prior to pelleting.

    With increasing environmental consciousness,the use of natural cellulosic- fi ber (NC-Fiber) as reinforcement increased with a special emphasis on the use of hemp.Mechanical properties of different NC-Fibers(hemp,jute,kenaf and paper fi ber)indicate that they have the potential to substitute glass fi ber as a reinforcement in a speci fi c state(Wambua et al.2003;Yang et al.2015).Hemp fi ber has been widely used in a reinforced plastics matrix(Bledzki et al.2015;Corrales et al.2007).Recently,hemp has been added into WPC,resulting in improved tensile properties of wood fl our/kenaf fi ber/polypropylene hybrid composites compared to composites without kenaf fi bers(Mirbagheri et al.2007).

    Flax fi ber(FF)is a natural plant fi ber with high strength due to high cellulose content(Zhang and Yu 2003).The global production of FF was 311,000 tons in 2014(Chyxx.com 2016).Most of the FF is usually used in the textile industry.Although the cost of FF is higher than wood- fl our,it is less expensive than the cost of synthetic materials and is increasingly used in WPC.

    This study was designed to determine the reinforcing effects of fl ax fi bers( fl ax is widely planted in northeastern China)and the properties of the resulting WPC,while the biomass material content remained the same.Subsequent to mixture extrusion,the fi bers were mixed with the WF/PE particles to lessen the damage to the fi bers.Mechanical properties,dynamic mechanical properties,creep resistance,and rheological behavior of the composites were analyzed.Interfacial adhesion and fl ax features were characterized via scanning electron microscopy.

    Materials and methods

    Materials

    Flax fi bers with an average diameter of 20 μm were commercially obtained and cut into lengths of 5–10 mm.The fl ax is grown in Heilongjiang province,China.HDPE pellets(5000 S)with a density of 0.954 g cm-3and a melt fl ow index of 0.7 g 10 min-1were purchased from Daqing Petrochemical Co.,Daqing,China.Wood fl our(WF)measuring 40–80 mesh wassupplied by the Harbin Yongxu Company.Poplar is used for the wood fl our and is grown in Heilongjiang.Maleic anhydride grafted polyethylene(MAPE)was supplied by the Shanghai Sunny New Technology Development Co.,Ltd.,with a MA grafting ratio of 0.9 wt%and a melt fl ow index of 2 g 10 min-1(190°C).

    Sample preparation

    In order to avoid fi ber damaging during pelletizing,FF was added into the WF/PE composite subsequent to the twinscrew granulation process.This is different from most previous preparing processes of fi ber reinforced WPC and was as follows:(1)WF and FF were dried at 103°C for 24 h and then stored in a sealed container for later use;(2)WF,HDPE and MAPE were mixed using a speci fi c ratio(Table 1)in a high-speed mixer for a total of 5 min;(3)subsequently transferred to a twin-screw extruder to produce WF/PE pellet particles.The temperature of the extruder ranged from 145 to 170°C,increasing by increments of 5°C,with a rotation speed of 50 rpm;(4)particles and FF were then blended in the high-speed mixer for 20 min and then extruded,resulting in a FF/WF/PE composite sheetwith a cross sectionaldimension of 40 mm×4 mm.The processing temperature for extrusion was 160 °C during the melting period and 170 °C during the die zone.Rotation speed of the single-screw was 20 rpm.

    Mechanical tests

    Specimens measuring 80 mm×13 mm×4 mm were cut from the FF/WF/PE sheet and tested under three-point bending using a universal mechanical machine with a 50 KN load cell(CMT5504,The MTS(China)Co.,Ltd.),according to ASTM D790-2004.A cross head speed of 2.0 mm min-1was used and fi ve replicates used for each formulation.

    Dumbbell-shaped tensile specimens measuring 165 mm×13 mm×4 mm were tested in accordance with ASTM D638-2004 using the same universal mechanical machine.A cross head speed of 5.0 mm min-1and a span length of 50 mm were used.Five parallel samples were tested.

    Unnotched charpy impact testing was conducted on standard samples with nominal dimensions of 80 mm×10 mm×4 mm using an impact instrument(CJ5,Chengde Testing Machine Co.,Ltd.China)inaccordance with ISO 179-2000.There were ten parallel samples in each group.

    Table 1 Formulations of the composites for extruding

    Dynamic mechanical analysis

    Dynamic mechanical properties of the composites were analyzed via a dynamic mechanical analyzer(DMA Q800,TA Instruments,New Castle,USA).Tests were performed using the single cantilever strain controlled mode with oscillating amplitude of 50 μm and a frequency of 1 Hz.The temperature ranged from-40 to 130°C at increasing intervals of 3°C min-1.Three specimens with dimensions of 35 mm×12 mm×3 mm were tested.

    Creep measurement

    The 24 h creep test of the composite sample 100 mm×17 mm×4 mm was performed using a RD-100 electronic creep testing instrument(Changchun Ke Xin Experimental Instrument Co.,Ltd,China)at 23°C.The span was 64 mm and the loading force 30 N(approximately 15% of the maximum load).

    Torque rheology

    Rheological behavior was evaluated using the Haake torque rheometer(Polylab OS,Thermo Scienti fi c,Germany)equipped with two counter rotating rotors.WF/PE particles and FF were quickly forced into the mixing chamber when the rotors began to rotate.The test was run at 175°C and 50 rpm for a total of 10 min and with a constant degree of fi lling of 70%.Three parallel samples were tested.

    Scanning electron microscopy(SEM)

    Cryo-fractured surfaces were produced by breaking of the FF/WF/PE composites under liquid nitrogen conditions and subsequent sputter coating with gold.The fractured surfaces were analyzed with a scanning electron microscope(FEI QUNGTA200,USA)at an accelerating voltage of 10 kV.

    Fig.1 Effects of FF content on fl exure and tensile properties of WF/FF/PE composites:a fl exural strength and modulus,b tensile strength and modulus.The error shows the standard deviation from the average value

    Results and discussion

    Mechanical properties of composites

    Fig.2 The un-notched impact strength of FF/WF/PE composites.Ten specimens were tested for each FF content.The error bars show the standard deviation from the average value

    Compared to WF/PE,the fl exural strength and modulus of WF/FF/PE-9 increased by 14.6 and 51.4%,respectively(Fig.1a).However,the results started to decrease for values above 9%FF content.Numerous small cracks would generate when the composite was subjected to external loads.With increasing force,these cracks extended until the material was damaged.However,FF crosses a crack and prevents further expansion.At material failure,FF bears the majority of the force.With further loading,increasing FF would be pulled out or off,consuming a large amount of energy.Therefore,adding FF into WF/PE composites increases the fl exural strength of WF/FF/PE.The modulus of FF was higher than that of WF(Cao et al.2014),resulting in the improvent of fl exual modulus.In addition,synergistic enhancement of physical interaction among WF,FF and PE was detected,limiting their respective deformation.The interaction hindered polyethylene molecular chain slippage.Consequently,the fl exual strength and modulus improved.However,FF may bunch up with increasing content.This was the reason for decreasing fl exural strength and modulus of FF/WF/PE-12.Increasing the content of fl ax fi ber resulted in an increase in both tensile strength and modulus of the resulting composites of 4.3 and 13.6%,respectively(Fig.1b).Compared to fl exural strength and modulus,the tensile strength showed no obvious changes.This is due to FF being too short to generate suf fi cient interfacial shear strength to bear the force.Most of the FF was arranged along the extrusion direction and therefore,the tensile force would easily extend along the interface.The improvement of tensile performance was suboptimal.

    Fig.3 The Storage modulus(G′)and loss modulus(G′)of FF/WF/HDPE composites.The curve was an average of three parallel samples.WF wood fl our;FF fl ax fi ber;PE polyethylene

    The unnotched impact strengths of the composites increased considerably when fl ax fi ber was added.The results of the impact strength study are depicted in Fig.2.With fl ax fi ber loading of 12 wt%,an increase of 26.5%in unnotched impact strength was obtained.

    The unnotched impact strength of composites is affected by crack initiation and propagation energy.When fl ax fi ber was loaded,the impact strength improved due to the loading being transferred to the FF by the shear forces between FF and the matrix.Therefore,FF bore the impact force until the fi bers were either pulled off or out.At the same time,wood fl our and fl ax fi bers twined with each other.Based on the crazing cut and fi ber crack resistance theory(Jia et al.2007)WPC produces numerous small cracks during early damage due to external forces.FF stretched across the cracks,thus arresting developing cracks.Consequently,adding fl ax fi bersigni fi cantly improved the impact properties of WPC.

    Dynamic mechanical analysis

    Fig.4 The loss tangent(tanδ)of FF/WF/HDPE composites.WF wood fl our;FF fl ax fi ber;PE polyethylene

    The storage modulus of composites increased subsequent to adding FF(Fig.3),echoing the fl exure modulus.The storage modulus of FF/WF/PE composites decreased due to an increase in temperature and converged to a narrow range at high temperatures.The reduction of storage modulus(G′)with the temperature rise was due to matrix softening,and the G′of FF/WF/PE composites initiation of the relaxation process which is the natural character of polymers(Pothan et al.2003).The G′fi rst increased,but then decreased with increasing FF content.There are two reasons for this:on the one hand,the stiffness of FF is higher than that of WF(Cao et al.2014).Therefore,adding FF improves the modulus of composites.On the other hand,FF and WF interact and form a grid-like structure,embedded in the viscoelastic matrix(Huang and Terentjev 2012).However,as FF content increased to 12%,FF reunited,leading to a drop of the G′of FF/WF/PE.The loss modulus of the material is associated with either the viscous response or the dampening effect of the material.Figure 3 shows that the change in loss modulus(G′′)was similar to that of the storage modulus and peaked in the transition region at approximately 60°C.This relaxation peak is known as α-relaxation of HDPE,and is related to a complex multi-relaxation process associated with the molecular motion of the HDPE crystalline region.The temperature of α-relaxation increased with FF loading.However,it dropped back to initial levels when the content of FF was increased to 12 wt%.FF limited the movement of the HDPE molecules due to their three dimensional network structure(Fig.7e).However,the FF bunched up,disturbing the continuity of the matrix at relatively high contents of FF(12 wt%).

    Fig.5 Creep resistance behavior of WF/FF/PE composites.WF wood fl our;FF fl ax fi ber;PE polyethylene

    Fig.6 Effects of FF content on the mixing torque of the composites.The curve is an average of two parallel samples.WF wood fl our;FF fl ax fi ber;PE polyethylene

    The tanδ,which shows differences in the viscoelastic response of the composite,is a ratio between the loss modulus and the storage modulus.In a low temperature range,the content of FF had an obvious effect on the magnitude of tanδ(Fig.4).With increasing FF content,the FF/WF/PE showed a decreased value of tanδ as compared to WF/PE composites.This indicated that the FF/WF/PE composites had more elastic character than typical curves.

    Creep measurement

    Adding FF improved creep resistance(Fig.5)and with increasing content,the value gradually decreased.This indicates that a small amount of FF could improve creep resistance and a content of 9%FF was found to be optimal,resulting in effective creep reduction.Further increases of FF content may cause poor dispersion of FF within the matrix,a negative factor for properties such as creep value and tensile strength.Wang et al.(2015)reported that with increasing size of wood fi bers,the creep strain was reduced.This phenomenon was attributed to the large fi ber aspect ratio which can lead to improved creep resistance.Compared to WF,there were more friction forces between FF and plastic due to the larger surface area of a single FF fi ber compared to a WF particle.In addition,the interaction between FF,WF,and HDPE was enhanced with increasing FF content,restraining matrix deformation.

    Fig.7 The SEM micrographs of the fractured surfaces of WPCs(a),FF/FF/PE-3(b and c),FF/FF/PE-6(d),FF/FF/PE-9(e),and FF/FF/PE-12(f)

    Rheological properties during processing

    The balance torque and temperature of the composite melts increased with increasing FF content(Fig.6).This may be attributed to the interaction among FF,WF,and HDPE inhibiting the thermal mobility of the HDPE chains.Moreover,adding FF increased the internal friction of the composites and improved shear heat.This led to a rise in melt temperature.

    Micrographic analysis of fracture surface

    Most wood particles in the HDPE matrix were well-bonded as a result of coupling.However,the interface was noticeable(Fig.7a).Furthermore,the interface between FF and HDPE was similar to that of the WF/PE composites(Fig.7b).Figure 7c indicates that fi ber pullout was the dominant mode of failure for the WF/FF/PE composites.In a general way,the failure modes of fi ber-reinforced polymers included interface de-bonding, fi ber fracture, fi brillation,and buckling under different test conditions(Yue and Padmanabhab 1999).

    With increasing FF content,the complicated con fi guration ofFF becomesincreasingly bene fi cialto the mechanical interlocking among FF,wood- fl our,and the resin matrix forming a three-dimensional network structure(Fig.7e).This can lead to a more ef fi cient stress transfer between the FF and matrix,thereby producing a composite with superior strength and toughness as compared to that of WPCs.Figure 7f shows FF agglomeration present in the composite when the content was as high as 12%.This furtherdestroyed the continuity ofthe matrix and decreased the fl exural and tensile strength(Fig.1).

    Conclusions

    The incorporation of FF as a reinforcement material plays a vital role in WF/PE composites,improving mechanical properties and dynamic modulus without changing the content of biomass fi bers.This has mainly been attributed to the high strength of the fl ax fi ber and its excellent compatibility with both wood- fl our and HDPE matrix.Adding fl ax fi bers can improve toughness and creep resistance of WPC.However,the processing performance of WF/FF/PE declined.

    Aggarwal PK,Chauhan S,Raghu N,Karmarkar S,Shashidhar GM(2013)Mechanical properties of bio- fi bers reinforced high density polyethylene composites:effect of coupling agents and bio- fi llers.J Reinf Plast Compos 32:1722–1732

    Bledzki AK,Mamun AA,Jaszkiewicz A,Erdmann K(2015)Polypropylene biocomposites reinforced with softwood,abaca,jute,and kenaf fi bers.Ind Crop Prod 70:91–99

    Cao Y,Wang WH,Wang QW(2014)Application of mechanical model for natural fi bre reinforced polymer composites.Mater Res Innov 18:354–357

    Chen JX,Wang Y,Gu CL,Liu JX,Liu YF,Li M,Lu Y(2013)Enhancement of the mechanical properties of basalt fi ber-woodplastic composites via maleic anhydride grafted high-density polyethylene(mape)addition.Materials 6:2483–2487

    CNII(2016)The analysis of the regional distribution and production of fl ax fi ber and fi ber bundle in the world in 2014,China.http://www.chyxx.com/industry/201602/388177.html

    Corrales F,Vilaseca F,Llop M,Girones J,Mendez JA,Mutje P(2007)Chemical modi fi cation of jute fi bers for the production of green-composites.J Hazard Mater 144:730–735

    Dong AX,Yu YY,Yuan JG,Wang Q,Fan XR(2014)Hydrophobic modi fi cation of jute fi ber used for composite reinforcement via laccase-mediated grafting.Appl Surf Sci 301:418–427

    Facca AG,Kortschot MT,Yan N(2007)Predicting the tensile strength of natural fi bre reinforced thermoplastics.Compos Sci Technol 67:2454–2466

    Ferreira MS,Sartori MN,Oliveira RR,Guven O,Moura EA(2014)Short vegetal- fi ber reinforced HDPE—A study of electron-beam radiation treatment effects on mechanical and morphological properties.Appl Surf Sci 310:325–330

    Huang YY,Terentjev EM(2012)Dispersion of carbon nanotubes:mixing,sonication,stabilization,and composite properties.Polymers 4:275–295

    Jia Z,Jiang B,Cheng GX,Yang XB(2007)Research progress of fi bers reinforced cement based composites.Mater Adminicle 8:65–68

    Jiang HH,Kamdem DP(2004)Development of poly(vinyl chloride)/wood composites.A literature review.J Vinyl Addit Technol 10:59–69

    Jiang HH,Pascal Kamdem D,Bezubic B,Ruede P(2003)Mechanical properties of poly(vinyl chloride)/wood fl our/glass fi ber hybrid composites.J Vinyl Addit Technol 9:138–145

    Lai SM,Yeh FC,Wang Y,Chan HC,Shen HF(2003)Comparative study of maleated polyole fi ns as compatibilizers for polyethylene/wood fl our composites.J Appl Polym Sci 87:487–496

    Markarian J(2002)Additive developments aid growth in woodplastic composites.Plast Addit Compd 4:18–21

    Mirbagheri J,Tajvidi M,Hermanson JC,Ghasemi I(2007)ensile properties of wood fl our/kenaf fi ber polypropylene hybrid composites.J Appl Polym Sci 105:3054–3059

    Ou RX,Zhao H,Sui SJ,Song YM,Wang QW(2010)Reinforcing effects of kevlar fi ber on the mechanical properties of woodfl our/high-density-polyethylene composites.Compos A Appl Sci Manuf 41:1272–1278

    Ou RX,Xie YJ,Wang QW,Sui SJ,Wolcott MP(2014)Effects of ionic liquid on the rheological properties of wood fl our/high density polyethylene composites.Compos Part a Appl Sci Manuf 61:134–140

    Pothan LA,Oommen Z,Thomas S(2003)Dynamic mechanical analysis of banana fi ber reinforced polyester composites.Compos Sci Technol 63:283–293

    Rahmat M,Hubert P(2011)Carbon nanotube–polymer interactions in nanocomposites:a review.Compos Sci Technol 72:72–84

    Rong MZ,Zhang MQ,Liu Y,Yang GC,Zeng HM(2001)The effect of fi ber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites.Compos SciTechnol 61:1437–1447

    Thwe MM,Liao K(2002)Effects of environmental aging on the mechanical properties of bamboo–glass fi ber reinforced polymer matrix hybrid composites.Compos A Appl Sci Manuf 33:43–52

    Wambua P,Ivens J,Verpoest I(2003)Natural fi bres:can they replace glassin fi bre reinforced plastics.ComposSciTechnol 63:1259–1264

    Wang WH,Huang HB,Du HH,Wang H(2015)Effects of fi ber size on short-term creep behavior of wood fi ber/HDPE composites.Polym Eng Sci 55:693–700

    Wei LQ,McDonald AG,Freitag C,Morrell JJ(2013)Effects of wood fi ber esteri fi cation on properties,weatherability and biodurability of wood plastic composites.Polym Degrad Stab 98:1348–1361

    Wu QL,Chi K,Wu YQ,Lee S(2014)Mechanical,thermal expansion,and fl ammability properties of co-extruded wood polymer composites with basalt fi ber reinforced shells.Mater Des 60:334–342

    Yang XH,Zhang XQ,Wang WH,Huang HB,Sui SJ(2015)Properties of paper mill sludge–wood fi ber–HDPE composites after exposure to xenon-arc weathering.J For Res 26(2):509–515

    Yuan FP,Ou RX,Xi?e YJ,Wang QW(2013)Reinforcing effects of modi fi ed Kevlar fi ber on the mechanical properties of wood fl our/polypropylene composites.J For Res 24:149–153

    Yue CY,Padmanabhab K(1999)Interfacial studies on surface modi fi ed kevlar fi bre/epoxy matrix composites.Compos B Eng 30:205–217

    Zhang YM,Yu WD(2003)Study on the physical and chemical properties of fl ax fi bers.Plant Fiber Prod 25:130–134

    Zhao ZZ,Chen X,Wang X(2015)Deformation behavior of woven glass/epoxy composite substrate under thermo-mechanical loading.Mater Des 82:130–135

    Zhou ZF,Xu M,Yang ZZ,Li XX,Shao DW(2014)Effect of maleic anhydride grafted polyethylene on the properties of chopped carbon fi ber/wood plastic composites.J Reinf Plast Compos 33:1216–1225

    Zolfaghari A,Behravesh AH,Adli A(2013)Continuous glass fi ber reinforced wood plastic composite in extrusion process:mechanical properties.Mater Des 51:701–708

    自拍欧美九色日韩亚洲蝌蚪91| av.在线天堂| 97在线人人人人妻| 人妻系列 视频| 一本大道久久a久久精品| 看免费av毛片| 一级毛片电影观看| 国产一区亚洲一区在线观看| 久久99精品国语久久久| 久久久久久久久久久免费av| 日韩精品免费视频一区二区三区| 国产爽快片一区二区三区| 久久人人爽人人片av| 欧美日韩视频高清一区二区三区二| 欧美精品国产亚洲| 日本色播在线视频| 高清黄色对白视频在线免费看| 久久女婷五月综合色啪小说| 久久婷婷青草| 久久久国产欧美日韩av| 麻豆乱淫一区二区| 亚洲久久久国产精品| 免费少妇av软件| 18禁观看日本| 18禁观看日本| 晚上一个人看的免费电影| 午夜激情av网站| 2021少妇久久久久久久久久久| 最近中文字幕高清免费大全6| 国产高清国产精品国产三级| 成人国语在线视频| 日本wwww免费看| 精品国产乱码久久久久久小说| 在线看a的网站| 夫妻性生交免费视频一级片| 99国产精品免费福利视频| 一区福利在线观看| 国产精品久久久av美女十八| 亚洲精品一区蜜桃| 黄色 视频免费看| 在线免费观看不下载黄p国产| 久久精品国产综合久久久| 黄片播放在线免费| 国产亚洲最大av| 一本—道久久a久久精品蜜桃钙片| 日韩不卡一区二区三区视频在线| 看非洲黑人一级黄片| 国产 一区精品| 丝袜人妻中文字幕| 这个男人来自地球电影免费观看 | 精品人妻一区二区三区麻豆| 美女视频免费永久观看网站| 少妇熟女欧美另类| 又黄又粗又硬又大视频| 王馨瑶露胸无遮挡在线观看| 国产日韩一区二区三区精品不卡| 国产男人的电影天堂91| 国产成人91sexporn| 亚洲欧美成人综合另类久久久| 美女主播在线视频| 国产黄频视频在线观看| 老鸭窝网址在线观看| 国产av精品麻豆| 精品国产乱码久久久久久男人| 人体艺术视频欧美日本| 日本黄色日本黄色录像| 久久这里有精品视频免费| 午夜福利视频在线观看免费| 成年av动漫网址| 欧美 日韩 精品 国产| 亚洲精品成人av观看孕妇| 国产精品久久久久成人av| 精品少妇内射三级| 国产av国产精品国产| 一级毛片电影观看| 一级片'在线观看视频| 亚洲欧洲国产日韩| 人人妻人人澡人人看| 母亲3免费完整高清在线观看 | 欧美精品一区二区免费开放| 婷婷色麻豆天堂久久| 母亲3免费完整高清在线观看 | 日韩一卡2卡3卡4卡2021年| 黄片无遮挡物在线观看| 18在线观看网站| 久久免费观看电影| 国产成人精品久久二区二区91 | 18禁动态无遮挡网站| 女的被弄到高潮叫床怎么办| 亚洲五月色婷婷综合| 欧美精品亚洲一区二区| 女性被躁到高潮视频| 久久精品久久精品一区二区三区| 一边亲一边摸免费视频| 国产欧美日韩综合在线一区二区| 亚洲av中文av极速乱| 久久久久久久久久久久大奶| 1024视频免费在线观看| 国产成人精品无人区| 寂寞人妻少妇视频99o| 不卡视频在线观看欧美| 中文字幕人妻丝袜一区二区 | 免费黄频网站在线观看国产| 日韩制服丝袜自拍偷拍| 晚上一个人看的免费电影| 在线观看www视频免费| 国产精品免费视频内射| 秋霞在线观看毛片| 97精品久久久久久久久久精品| 一二三四在线观看免费中文在| 性色av一级| 汤姆久久久久久久影院中文字幕| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产精品香港三级国产av潘金莲 | 女人精品久久久久毛片| 亚洲国产av影院在线观看| 亚洲 欧美一区二区三区| 大片免费播放器 马上看| 午夜老司机福利剧场| 久久午夜福利片| 亚洲综合精品二区| 亚洲精品国产av成人精品| av不卡在线播放| 婷婷色综合www| 五月天丁香电影| 亚洲欧美中文字幕日韩二区| 欧美日韩av久久| 亚洲欧美精品综合一区二区三区 | 黑人巨大精品欧美一区二区蜜桃| 晚上一个人看的免费电影| 久久精品久久久久久久性| 侵犯人妻中文字幕一二三四区| 国产黄色视频一区二区在线观看| 久久久久精品性色| 欧美日韩av久久| 亚洲精品成人av观看孕妇| 国产乱来视频区| 天堂俺去俺来也www色官网| 三级国产精品片| 黄网站色视频无遮挡免费观看| 国产精品国产三级国产专区5o| 久久精品国产a三级三级三级| 久久久久国产网址| 69精品国产乱码久久久| 国产精品欧美亚洲77777| 日韩成人av中文字幕在线观看| 另类精品久久| 熟女av电影| 视频在线观看一区二区三区| 中文精品一卡2卡3卡4更新| 黄色怎么调成土黄色| 国产精品一二三区在线看| 久久久精品免费免费高清| 欧美精品人与动牲交sv欧美| 少妇人妻久久综合中文| 久久久久久久精品精品| 欧美国产精品va在线观看不卡| 国产精品麻豆人妻色哟哟久久| 国产毛片在线视频| 狠狠婷婷综合久久久久久88av| 日本午夜av视频| 国产一区亚洲一区在线观看| 国产高清国产精品国产三级| 亚洲婷婷狠狠爱综合网| 999久久久国产精品视频| h视频一区二区三区| 亚洲欧美精品自产自拍| 中文欧美无线码| 黑人欧美特级aaaaaa片| 久久久久久久久免费视频了| 欧美日韩精品网址| 亚洲国产欧美日韩在线播放| 亚洲国产精品国产精品| 欧美97在线视频| av视频免费观看在线观看| 美女高潮到喷水免费观看| 成人免费观看视频高清| 午夜福利在线免费观看网站| 黄频高清免费视频| 亚洲一码二码三码区别大吗| 亚洲av欧美aⅴ国产| 国产福利在线免费观看视频| 久久久久久久久久久久大奶| 亚洲人成电影观看| 欧美人与性动交α欧美精品济南到 | 亚洲av在线观看美女高潮| 精品亚洲成a人片在线观看| 国产又色又爽无遮挡免| 考比视频在线观看| 亚洲,欧美精品.| 国产精品.久久久| 女性生殖器流出的白浆| 欧美日韩综合久久久久久| 成年美女黄网站色视频大全免费| 高清黄色对白视频在线免费看| 日韩av不卡免费在线播放| 欧美精品一区二区免费开放| 久久这里只有精品19| 欧美精品国产亚洲| 国产片内射在线| 91在线精品国自产拍蜜月| 精品国产国语对白av| 欧美国产精品va在线观看不卡| 国产片特级美女逼逼视频| 啦啦啦啦在线视频资源| 国产爽快片一区二区三区| 宅男免费午夜| 女性生殖器流出的白浆| 成年美女黄网站色视频大全免费| 久久久亚洲精品成人影院| 午夜av观看不卡| 国产精品秋霞免费鲁丝片| 亚洲一级一片aⅴ在线观看| 2018国产大陆天天弄谢| 一级毛片电影观看| 亚洲精品久久成人aⅴ小说| 最近中文字幕2019免费版| 黄频高清免费视频| 亚洲精品日韩在线中文字幕| 国产熟女午夜一区二区三区| 亚洲av.av天堂| 国产精品三级大全| 中文字幕av电影在线播放| 国产在视频线精品| 麻豆乱淫一区二区| 亚洲精品一区蜜桃| 午夜福利乱码中文字幕| 十八禁网站网址无遮挡| 中文字幕人妻丝袜制服| 亚洲av国产av综合av卡| 中文字幕人妻熟女乱码| 欧美日韩亚洲国产一区二区在线观看 | 亚洲国产精品国产精品| 日韩视频在线欧美| 亚洲在久久综合| 最近中文字幕2019免费版| 青草久久国产| 一级毛片 在线播放| 国产视频首页在线观看| videossex国产| 天堂俺去俺来也www色官网| 一级爰片在线观看| 久久精品国产鲁丝片午夜精品| 亚洲人成77777在线视频| 亚洲国产av新网站| 大片免费播放器 马上看| 久久精品国产鲁丝片午夜精品| 老汉色av国产亚洲站长工具| 这个男人来自地球电影免费观看 | 各种免费的搞黄视频| 日本av手机在线免费观看| 一级黄片播放器| 午夜影院在线不卡| 国产av码专区亚洲av| 亚洲av男天堂| 啦啦啦在线免费观看视频4| 免费看av在线观看网站| 80岁老熟妇乱子伦牲交| 亚洲一码二码三码区别大吗| 777米奇影视久久| 一二三四中文在线观看免费高清| 性色av一级| 国产在线视频一区二区| 在线观看免费日韩欧美大片| www.熟女人妻精品国产| 久久久久精品性色| 老女人水多毛片| 免费女性裸体啪啪无遮挡网站| 一区二区av电影网| 搡老乐熟女国产| 在线观看www视频免费| 考比视频在线观看| 久久免费观看电影| 高清av免费在线| 婷婷色综合www| 女人高潮潮喷娇喘18禁视频| 90打野战视频偷拍视频| 一区二区av电影网| 美女福利国产在线| 18禁动态无遮挡网站| 久久鲁丝午夜福利片| 久久久久精品久久久久真实原创| 亚洲成人手机| 久久精品国产a三级三级三级| videosex国产| 久久精品久久久久久噜噜老黄| av卡一久久| 久久精品国产鲁丝片午夜精品| 亚洲成人av在线免费| 久久久久精品久久久久真实原创| 国产成人免费无遮挡视频| www.自偷自拍.com| 精品国产乱码久久久久久男人| 搡女人真爽免费视频火全软件| 午夜老司机福利剧场| 丁香六月天网| 久久精品国产亚洲av高清一级| av又黄又爽大尺度在线免费看| 国产精品熟女久久久久浪| 亚洲精品国产av蜜桃| 波野结衣二区三区在线| 成人国产av品久久久| 黄片小视频在线播放| 国产精品 国内视频| 国产亚洲欧美精品永久| 午夜激情av网站| 亚洲精品一二三| 国产一区二区三区av在线| 综合色丁香网| 亚洲av综合色区一区| 午夜免费观看性视频| 边亲边吃奶的免费视频| 久久影院123| 我要看黄色一级片免费的| 国产精品麻豆人妻色哟哟久久| 精品国产露脸久久av麻豆| 国产精品免费大片| 一本大道久久a久久精品| 乱人伦中国视频| 久久鲁丝午夜福利片| 成人毛片a级毛片在线播放| 一级毛片 在线播放| 久久久久久久精品精品| 在线免费观看不下载黄p国产| 国产一区二区三区综合在线观看| 亚洲精品久久久久久婷婷小说| 色哟哟·www| 亚洲综合精品二区| 日本91视频免费播放| 人体艺术视频欧美日本| 精品午夜福利在线看| 激情视频va一区二区三区| 久久亚洲国产成人精品v| freevideosex欧美| 日本av手机在线免费观看| 视频在线观看一区二区三区| 久久久久国产一级毛片高清牌| 国产成人精品久久久久久| 美女xxoo啪啪120秒动态图| 精品国产乱码久久久久久小说| 日韩伦理黄色片| 午夜免费鲁丝| 晚上一个人看的免费电影| 久久久精品免费免费高清| 一级毛片黄色毛片免费观看视频| 久久精品久久久久久噜噜老黄| 最近中文字幕高清免费大全6| 亚洲av综合色区一区| 国产精品.久久久| 亚洲综合色惰| 不卡av一区二区三区| 久久人人97超碰香蕉20202| 中文字幕人妻丝袜一区二区 | av一本久久久久| 国产一区二区在线观看av| 熟女少妇亚洲综合色aaa.| 午夜福利视频精品| 妹子高潮喷水视频| av在线老鸭窝| 国产探花极品一区二区| 亚洲国产精品一区二区三区在线| 视频区图区小说| 两个人看的免费小视频| 五月天丁香电影| 亚洲伊人色综图| 久久av网站| 精品人妻偷拍中文字幕| 亚洲成国产人片在线观看| 嫩草影院入口| 女性被躁到高潮视频| 亚洲av在线观看美女高潮| 一区在线观看完整版| 人妻系列 视频| 欧美精品人与动牲交sv欧美| 久久久久网色| 纵有疾风起免费观看全集完整版| 欧美国产精品va在线观看不卡| 色网站视频免费| 美女福利国产在线| 国产白丝娇喘喷水9色精品| 校园人妻丝袜中文字幕| 亚洲精品美女久久久久99蜜臀 | 成人国语在线视频| 国产日韩欧美在线精品| 777米奇影视久久| 久久久a久久爽久久v久久| 极品人妻少妇av视频| 熟妇人妻不卡中文字幕| 亚洲av成人精品一二三区| 欧美日韩亚洲高清精品| 精品国产乱码久久久久久小说| 欧美日韩亚洲高清精品| 一区二区av电影网| 伊人久久国产一区二区| 国产成人免费观看mmmm| 波多野结衣av一区二区av| 日日撸夜夜添| 天天躁狠狠躁夜夜躁狠狠躁| 日韩中文字幕视频在线看片| 巨乳人妻的诱惑在线观看| 一本色道久久久久久精品综合| 精品人妻一区二区三区麻豆| 99久久中文字幕三级久久日本| 伊人久久国产一区二区| 国产一区亚洲一区在线观看| 精品国产一区二区三区四区第35| 2018国产大陆天天弄谢| 国产av一区二区精品久久| 日本猛色少妇xxxxx猛交久久| 久热这里只有精品99| 有码 亚洲区| h视频一区二区三区| 日韩av免费高清视频| 美女中出高潮动态图| 中文精品一卡2卡3卡4更新| 国产淫语在线视频| 欧美少妇被猛烈插入视频| 午夜福利一区二区在线看| 亚洲少妇的诱惑av| 亚洲欧美成人综合另类久久久| 天天躁夜夜躁狠狠躁躁| 日本wwww免费看| 99久久人妻综合| 菩萨蛮人人尽说江南好唐韦庄| 男女午夜视频在线观看| 爱豆传媒免费全集在线观看| 日韩电影二区| 亚洲精品国产色婷婷电影| 亚洲精华国产精华液的使用体验| 美女xxoo啪啪120秒动态图| 99re6热这里在线精品视频| 精品少妇久久久久久888优播| 老汉色av国产亚洲站长工具| 少妇猛男粗大的猛烈进出视频| 看十八女毛片水多多多| 性色avwww在线观看| 你懂的网址亚洲精品在线观看| 一本大道久久a久久精品| 久久人妻熟女aⅴ| 国产精品嫩草影院av在线观看| 美女大奶头黄色视频| 国产乱来视频区| 亚洲美女黄色视频免费看| 亚洲国产成人一精品久久久| 亚洲国产av新网站| 少妇精品久久久久久久| 成人影院久久| 1024香蕉在线观看| 久久久久久久精品精品| videosex国产| 久久精品国产综合久久久| 精品国产露脸久久av麻豆| 欧美 亚洲 国产 日韩一| 国产福利在线免费观看视频| 久久久久国产精品人妻一区二区| 91国产中文字幕| 午夜精品国产一区二区电影| 精品久久久久久电影网| 久久久久久久亚洲中文字幕| www.精华液| 国产又色又爽无遮挡免| 久久久久久久精品精品| 国产av精品麻豆| 男人爽女人下面视频在线观看| 久久久久久久久久久久大奶| 韩国高清视频一区二区三区| 26uuu在线亚洲综合色| 国产在线一区二区三区精| 最近最新中文字幕免费大全7| 国产免费又黄又爽又色| 精品一区在线观看国产| 99国产精品免费福利视频| 嫩草影院入口| 永久免费av网站大全| 一级a爱视频在线免费观看| 免费高清在线观看视频在线观看| 晚上一个人看的免费电影| 亚洲av.av天堂| 精品99又大又爽又粗少妇毛片| 最新的欧美精品一区二区| 欧美成人午夜精品| 最黄视频免费看| 黑人巨大精品欧美一区二区蜜桃| 最近最新中文字幕免费大全7| 一区福利在线观看| 久久久久国产一级毛片高清牌| 久久精品国产a三级三级三级| 精品一区二区免费观看| 亚洲第一av免费看| 一级毛片 在线播放| 国产欧美日韩一区二区三区在线| 国产97色在线日韩免费| 午夜免费观看性视频| 美女xxoo啪啪120秒动态图| 国产白丝娇喘喷水9色精品| 2021少妇久久久久久久久久久| 久久久久久久久久久久大奶| 欧美亚洲日本最大视频资源| 性少妇av在线| 在线观看免费视频网站a站| 欧美日韩视频高清一区二区三区二| av有码第一页| 欧美人与性动交α欧美软件| 免费高清在线观看视频在线观看| www.自偷自拍.com| 欧美精品国产亚洲| 91精品三级在线观看| 久久久久人妻精品一区果冻| 亚洲精品第二区| 成年人午夜在线观看视频| 亚洲成人手机| 18禁动态无遮挡网站| 99国产精品免费福利视频| 免费高清在线观看视频在线观看| 国产人伦9x9x在线观看 | 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲精品久久午夜乱码| 国产伦理片在线播放av一区| 中国国产av一级| 热99久久久久精品小说推荐| 色哟哟·www| 青春草视频在线免费观看| av网站在线播放免费| 日韩精品免费视频一区二区三区| 国产一区亚洲一区在线观看| 巨乳人妻的诱惑在线观看| 777米奇影视久久| 国产xxxxx性猛交| 国产一区亚洲一区在线观看| 一级爰片在线观看| 爱豆传媒免费全集在线观看| 国产精品麻豆人妻色哟哟久久| 国产精品人妻久久久影院| 一个人免费看片子| 日韩大片免费观看网站| 免费少妇av软件| 自拍欧美九色日韩亚洲蝌蚪91| 免费在线观看完整版高清| 亚洲综合精品二区| 欧美日韩成人在线一区二区| 老女人水多毛片| 搡老乐熟女国产| 久久女婷五月综合色啪小说| 丝袜脚勾引网站| 国产一区二区三区av在线| 在线观看人妻少妇| 久久热在线av| 成年美女黄网站色视频大全免费| 在线观看www视频免费| 亚洲av男天堂| 欧美老熟妇乱子伦牲交| 久久精品国产综合久久久| 国产极品天堂在线| 精品亚洲乱码少妇综合久久| 丰满迷人的少妇在线观看| 欧美日韩综合久久久久久| 免费黄色在线免费观看| 七月丁香在线播放| 99国产精品免费福利视频| 老司机影院成人| 欧美日韩视频精品一区| 久久精品熟女亚洲av麻豆精品| 亚洲 欧美一区二区三区| 久久精品国产亚洲av高清一级| 国产精品蜜桃在线观看| 中文字幕色久视频| 久久久久国产网址| 欧美日韩av久久| 久久精品久久久久久噜噜老黄| 国产av一区二区精品久久| 亚洲欧美一区二区三区久久| 18在线观看网站| tube8黄色片| av国产精品久久久久影院| 高清黄色对白视频在线免费看| 亚洲国产欧美日韩在线播放| 午夜激情久久久久久久| videosex国产| 日韩一区二区三区影片| 成年女人毛片免费观看观看9 | 久久人人爽人人片av| 最近最新中文字幕免费大全7| 91精品三级在线观看| 国产精品久久久久久精品电影小说| 欧美日韩一级在线毛片| 另类亚洲欧美激情| 中文字幕精品免费在线观看视频| 日本av免费视频播放| 精品一品国产午夜福利视频| 国产精品久久久久久av不卡| 亚洲精品自拍成人| videos熟女内射| 国产精品免费大片| 亚洲成色77777| 欧美成人午夜精品| 在线观看三级黄色| 成人亚洲精品一区在线观看| 99热全是精品| 777米奇影视久久| 成人亚洲精品一区在线观看| 韩国高清视频一区二区三区| 久久久国产一区二区| 免费高清在线观看日韩| 国产无遮挡羞羞视频在线观看| 国产男人的电影天堂91| 90打野战视频偷拍视频| 亚洲三区欧美一区| 久久久久视频综合| www.av在线官网国产| 人妻系列 视频| 国产成人精品婷婷| 日韩熟女老妇一区二区性免费视频| 黄网站色视频无遮挡免费观看| 女人精品久久久久毛片| 人妻一区二区av|