• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Photosynthetic acclimation to long-term high temperature and soil drought stress in two spruce species(Picea crassifolia and P.wilsonii)used for afforestation

    2018-03-19 05:08:12XiaoweiZhangLitongChenJingruWangMinghaoWangShuliYangChangmingZhao
    Journal of Forestry Research 2018年2期

    Xiaowei Zhang?Litong Chen?Jingru Wang?Minghao Wang?Shuli Yang?Changming Zhao

    Introduction

    Water availability and temperature are considered to be the main variables limiting photosynthesis,affecting growth and survival of plants(Niu et al.2008;Ghannoum and Way 2011;Gago et al.2013).Photosynthesis is sensitive to environmental variables which will be profoundly affected by future climate change,including elevated air temperatures and decreased water availability(Luo 2007;Gunderson et al.2010;Lin et al.2012;Ashraf and Harris 2013).Meanwhile,the ability of plants to modify photosynthesis in response to high temperatures and/or drought stress has been shown to be species-speci fi c resulting from different photosynthetic acclimation potentials(Way and Oren 2010;Ashraf and Harris 2013;Way and Yamori 2014).Therefore,the potential for photosynthetic acclimation to new growing conditions plays a central role in the effects of climate change on plant growth and survival(Smith and Dukes 2013;Sendall et al.2015).

    Photosynthetic acclimation can alter the short-term abiotic factor-response functions of photosynthesis associated with maintaining leaf gas exchanges under different growing conditions(Smith and Dukes 2013;Zhang et al.2015;Aspinwall et al.2016).For example,thermal acclimation of photosynthesis hasresulted in a shift in optimum temperature(Topt)and/or a change in sensitivity,revealed,for example,by a change in the shape of the temperature response curves(see Berry and Bjo rkman 1980;Hikosaka et al.2006;Way and Yamori 2014;Sendall et al.2015).Furthermore,the potential for plants to maintain photosynthetic capacity when wateravailability decreases depends on the sensitivity of leaf gas exchange to drought(Limousin et al.2013).However,plants have at least three different strategies for maintaining photosynthesis in response to changing temperatures or water availability.First,photosynthetic capacity is closely linked to stomatal conductance(Cond)(Flexas and Medrano 2002;Hikosaka et al.2006;German and Roberto 2013).Long-term elevated air temperatures or drought may alter the sensitivity of stomatal apertures,thus limiting photosynthesis(Zhang et al.2001;Reddy et al.2004;Gao et al.2009;Greer and Weedon 2012).Second,elevated temperatures or drought may lead to changes in leaf anatomy and density,for example,changing the leaf mass per area(LMA)to affect the mesophyll conductance of CO2(Poorter et al.2009;Yamori et al.2009;Vasseur et al.2012;Heroult et al.2013;Drake et al.2015).These two strategies could in fl uence water loss and constrain CO2exchange from leaves.The third,photosynthesis also be limited through biochemical processes which was temperature and water availability dependent(Way and Sage 2008;Lin et al.2012;Limousin et al.2013;Aspinwall et al.2016).In fact,the biochemical processes may be related to photosynthetic attributes such as the amount and/or ef fi ciency of enzymes and photosystem II(PSII)activity.Nitrogen content per mass(Nmass)is an important feature of photosynthetic apparatus,indicative of the relative proportion of enzymes in photosynthetic processes(Yamori et al.2009;Aspinwall et al.2016).In addition,the maximum quantum yield of PSII(Fv/Fm)is a reliable diagnostic indicator of photosynthetic activity(Reddy et al.2004;Gao et al.2009;Ma et al.2010;Wang et al.2014).

    Picea crassifoliaKom.andP.wilsoniiMast.are two endemic species in Western China which often form a dominant component in coniferous forests(Farjón 2001;Fu et al.1999;Zhao et al.2008).Due to their signi fi cant commercial and ecological value,P.crassifoliaandP.wilsoniiare widely used for afforestation in Northern China.For example,in Qinghai Province alone,there are 14,000 ha of planted spruce forest,accounting for~5.4‰of the total spruce forest areas(Han et al.2015).However,current climate models suggest increasing temperatures(raising about 10°C by 2100)and droughts in these regions(Zou et al.2005;IPCC 2013).Coniferous forests may be particularly sensitive to climate change,which may result in changes in carbon exchange and a serious threat to survival(Zhang et al.2015;Aspinwall et al.2016;Kroner and Way 2016).Therefore,the objectives of our study were to examine the effects of long-term high temperatures and drought on photosynthesis of these two important conifers and to determine which was likely to be of more bene fi t to future forest stability in Northern China.

    Materials and methods

    Plant materials and growing conditions

    Seeds of each species were collected within their natural range(Picea crassifoliaKom:30.3–37.8°N,126.5–130.5°E,Alt.:2400–3600 m above sea level(a.s.l.);P.wilsoniiMast:33.7–40.8°N,101.6–116.8°E,Alt.:1400–2800 m a.s.l.).In 2005,seeds were germinated and grown indoors at Yuzhong campus,Lanzhou University(35°56′37′N,104°09′05′E,Alt.:1750 m a.s.l.Temperatures ranged during the growing season from 7.7 to 25.8°C)for one year;the seedlings received ample water and light.Seedlings were then transplanted into 24 cm(upper diameter)×16 cm(basal diameter)× 17 cm(depth)pots fi lled with a homogeneous mixture consisting of equal volumes of peat and perlite.One pot was designed three seedlings.All pots were periodically watered to fi eld capacity(FC)according to Ma et al.(2010).On June 15,2009(dayt1),25 pots of each species of uniform growth(c.20 cm tallP.crassifoliaand c.25 cm tallP.wilsonii)were selected and divided into two groups:one for the water stress experiment,the other for the high temperature experiment.Control pots( fi ve of each species)were used for both experimentsandgrownat25/15°C and80% FC conditions.

    Experiment 1:Drought experiment

    Each fi ve pots of each species were randomly divided into low[80% of maximum fi eld capacity(FC)],mild(60%FC),moderate(40%FC)and severe(20%FC)water stress treatments.Water stress levels continued until October 16,2009,and maintained at these levels by weighing the pots every two days.Pots were assigned a random position in an arti fi cial intelligent greenhouse with growth temperatures controlled at 25/15°C day/night[moderate temperature(MT)]by a temperature control system.All seedlings were grown under 12 h photoperiods with light levels of 300–400 μmol photon m-2s-1at seedling height by artifi cial light sources for automatic control.Unfortunately,allP.wilsoniiseedlings grown at 20%FC died during the experimental period.Seedlings of both species in the remaining 35 pots were alive at the end of this experiment(October 15,2009;dayt2).

    Experiment 2:High temperature experiment

    The remaining pots( fi ve pots)of each species were placed in another greenhouse with growth temperatures controlled at 35/25°C[high temperature(HT)].All seedlings were raised under 12 h photoperiods with light levels of 300–400 μmol photon m-2s-1at seedling height.In both greenhouses,the CO2concentration was maintained at~380 μmol mol-1and relative humidity at 50 ± 5%.Seedlings in the high temperature treatment were watered suf fi ciently to avoid any effects caused by extreme water de fi cit.The experimental period continued until October 15,2009(dayt2).

    Gas exchange and chlorophyll fl uorescence measurements

    Leaf-level gas exchange(Pn,CondandTr)measurements were made with a portable open-path gas exchange system and a conifer chamber(Li-6400 and 6400-07,LI-COR Biosciences,Inc.)on fully expanded current year-old twigs for each experiment.Three to fi ve seedlings per treatment and species were randomly selected between 10:00–13:30 h during sunny weather,when the temperatures were 25 or 35°C,depending on each growth conditions. During photosynthetic measurements, CO2concentration was maintained at 380 μmol mol-1using portable CO2/air mixture tanks with output controlled by a LI-6400-01 CO2injector(LI-COR Biosciences,Inc.).Light levels were maintained at approximately 800 μmol m-2-s-1(saturated light level)at measurement height provided by an external light source.In addition,photosynthetic temperature curves of seedlings in each temperature treatment at 5 °C intervals from 40 to 15 °C were recorded.To ensure that the whole plant was exposed to the desired temperature settings,temperatures were controlled by changing air temperatures of the growth chamber,and micro-changing with the Li-6400 temperature control model.When measurements at one temperature were complete,thechambertemperatureconditionswere adjusted.Seedlings were allowed to equilibrate to chamber conditions for a minimum of 30 min before measuring the same twigs again.All measurements were completed in one day.After measurements had been taken,needles were cut and leaf areas were determined with a LI-3000A portable area meter(LI-COR Biosciences,Inc.)to calculate gas exchange parameters on an area basis.The measured needles were dried at 65°C for 72 h and dry mass determined(LM;Precisa XT120A,Precisa Instruments.Ltd.,Switzerland).TheseLMandLAvalues were used to calculate leaf mass per area(LMA).

    When gas exchange measurements were taken,the maximum quantum yield ofphotosystem II(PSII)was measured for leaves adapted to dark conditions during an acclimatization period of 30 min.Chlorophyll fl uorescencemeasurementswere taken with a portable pulse amplitude modulated fl uorometer FMS-2(Hansatech,King’s Lynn,Norfolk,UK).At least fi ve replicates from each treatment were taken.

    Leaf nitrogen measurements

    We measured the concentration of nitrogen(N)using samples used for gas exchange measurements.Dried samples were fi nely ground with a mortar and pestle,and sent to the Analytical Testing Center,Lanzhou University for analysis using a CHN analyzer(Vario EL,Elementar,Germany).

    Modeling of photosynthetic temperature curves

    Photosynthesis data from temperature response curves were used to determine temperature-dependence and fi tted to the following quadratic equation(Gunderson et al.2010;Niu et al.2008;Sendall et al.2015):

    wherePTrepresents the mean net photosynthetic rate at temperatureTin°C;andPoptis the photosynthetic rate at the optimum temperature(Topt).Parameterbdescribes the spread of the parabola(Battaglia et al.1996).For a givenAoptandTopt,parameterbis smaller and the photosynthetic temperature parabola ‘broader’if photosynthesis is less sensitive to short-term temperature changes.

    Long-term sensitivity of photosynthesis to temperature

    We also calculated an index to quantify the degree of thermal acclimation ofPnin response to HT(Way and Oren 2010)based on the following:

    The index of photosynthesis(Acclimpn)for each species was equal to the ratio ofPnin HT leaves(35°C)to MT leaves(25°C).As an index for the degree of acclimation,ifAcclimpnis close to 1.0,this indicates that temperature acclimation exhibited is high(Way and Oren 2010;Yamori et al.2009).

    Statistical analysis

    Quadratic fi tting was used to estimate temperature response functions for photosynthetic rates(15–40 °C).The experiment was arranged in a completely randomized design with 3–5 replicates.Differences in all traits were determined by analysis of variance(one-way and General Linear Model,Proc GLM)and Tukey’s test for multiple comparisons.All data are presented as mean±SE.Differences were considered signi fi cant atp<0.05.Statistical analysis was performed using SPSS 16.0(SPSS Inc.,Chicago,IL,USA).

    Results

    Effects of long-term drought stress on photosynthesis

    As available soil water decreased,Pn,Cond,andTrdecreased signi fi cantly in both species(Table 1).In the low water treatment,Pn,Cond,andTrinP.wilsoniiwere higher than inP.crassifolia,particularly in the case of the latter two variables(p<0.05,Table 1).In contrast,P.crassifoliahad signi fi cantly higher values ofPn,CondandTrunder mild and moderate water conditions,leading to a relatively greater decrease ofPn,CondandTrinP.wilsoniiwith increasing water stress(Table 1).Furthermore,there were signi fi cant interactions between species and water treatments forPn,CondandTr,suggesting that photosynthetic response to water stress was different in the two species(Table 2).

    The maximum quantum yield of photosystem II(Fv/Fm)was not signi fi cantly different betweenP.crassifoliaandP.wilsoniiunder the low water treatment.However,as drought stress increased,Fv/FmforP.crassifoliaonly decreased signi fi cantly in the moderate treatment,whileFv/FmforP.wilsoniidecreased signi fi cantly in both mild and medium treatments.Meanwhile,the value ofFv/FminP.wilsoniiwas lower than inP.crassifoliafor mild and moderate treatments(Fig.1;Table 2).Hence,P.wilsoniialso appeared more sensitive to drought stress for this character.

    Compared with the low water treatment,increasing soil water stress generated a signi fi cant reduction in the value ofNmassfor bothPiceaspecies,with the exception ofP.wilsoniiin the mild treatment.Meanwhile,the variations inNmassbetween species were only apparent in the low water treatment(Fig.2).Therefore,Nmassdiffered,depending on both the watering treatments and species(Table 2).However,LMAfor both species was not signi fi cantly changed in either treatment(data not shown),while the values ofLMAforP.crassifoliawere obviously larger than those forP.wilsonii(see Table 3).

    Effects of long-term high temperatures on photosynthesis

    We designed the second experiment to test the effects of temperature as a major limiting factor.As in the low water treatment above,Pn,CondandTrinP.wilsoniimeasured at 25°C(MT)were signi fi cantly higher than inP.crassifolia.After long-term 35°C(HT)treatment,PnandCondforP.crassifoliawere signi fi cantly higher than forP.wilsonii,whereasTrmeasured forP.crassifoliawas signi fi cantly lowerwithconsequencesforarelativelygreaterreductioninPnforP.wilsonii(Fig.3).Hence,the value ofAcclimpnforP.crassifoliawas about 0.75,higher than forP.wilsonii(Fig.4).Meanwhile,there were signi fi cant differences in temperature,species and their interaction(Table 4).

    Table 1 Comparison of gas exchange parameters between Picea crassifolia and P.wilsonii,across different soil water treatments(80% of maximal fi eld capacity(FC),60 and 40%FC).Each value represents a mean and SE.Letters after SE values distinguish between statistically different(p<0.05)values for different water treatments(A,B,C)and between different species(X,Y)

    Table 2 Effects of watering treatment,species and their interaction on fi ve indicators measured during drought treatments

    Fig.1 Maximum quantum yield of PSII(Fv/Fm)in seedlings of Picea crassifolia and P.wilsonii under different soil water conditions(80% of maximal fi eld capacity(FC),60 and 40%FC).Each value represents a mean and SE.Letters after SE values distinguish between statistically different(p<0.05)values for different water treatments(A,B)and between different species(X,Y)

    Fig.2 Effects of watering treatments on the nitrogen content per dry mass(Nmass)in seedlings of Picea crassifolia and P.wilsonii under different soil water conditions(80% of maximal fi eld capacity(FC),60 and 40%FC).Each value represents a mean and SE.Letters after SE values distinguish between statistically different(p<0.05)values for different water treatments(A,B)and between different species(X,Y)

    At 25°C(MT),all estimated parameters(b,ToptandAopt)of the photosynthetic temperature response curves inP.wilsoniiwere signi fi cantly higher than those forP.crassifolia(Table 3).Following the 35°C(HT)treatment,the shapes of the curves were obviously different between species (Fig.5).OnlyToptforP.crassifoliawas signi fi cantly greater,whilstbandAoptwere reduced forP.wilsonii.Meanwhile,Aoptat 35°C inP.crassifoliawas higher than inP.wilsonii;however,there were no significant differences inbandToptbetween species(Table 3).Interactions between temperature and species for these variables were also highly signi fi cant,indicating that temperature treatments inb,ToptandAoptwere different betweenP.crassifoliaandP.wilsonii(Table 4).

    For growth at 25°C(MT),Fv/Fmwas not signi fi cantly different between the two species.In contrast,Fv/FminP.wilsoniiwas signi fi cantly lower following the 35°C(HT)treatment for 4 months,and its value was clearly less than that forP.crassifolia(Table 3).Variations inLMAandNmasswere species-speci fi c following the 25°C(MT)treatment;LMAandNmasswere higher inP.crassifolia(Table 3).In contrast,there were no signi fi cant differences inLMAandNmassbetween species grown at 35°C(HT)(Table 3).However,there were only signi fi cant species effects with respect toLMA,while the values ofNmasswere signi fi cantly affected by temperature treatments(Table 4).

    Discussion

    Precipitation and temperature are the most important factors affecting plant growth and distribution because of their in fl uence on photosynthesis(Zhang et al.2009;Way and Oren 2010).In this study,we examined a combination of photosynthetic parameters and leaf morphological characteristics ofP.crassifoliaandP.wilsoniigrown under two temperature conditions and four water supply regimes.We found different patterns in their long-term response to temperature and drought:P.crassifoliaexhibited greater photosynthetic acclimation in both treatments as compared withP.wilsonii.

    Photosynthetic acclimation to drought

    Drought tolerance is essential for the survival and growth of many plants(Reddy et al.2004;Mao and Wang 2011).PnforP.crassifoliaandP.wilsoniidecreased with increasing drought stress(Table 1),suggesting that drought was inhibiting photosynthetic activity(Ashraf and Harris2013).Similar patterns have been observed in other plants(Ma et al.2010).However,photosynthetic responses to drought were different between the twoPiceaspecies in this study:the decrease ofPnforP.wilsoniiwas much larger than that forP.crassifolia,in mild and moderate water treatments,particularly in the mild water treatment(c.–65%;Table 1),suggesting that the photosynthesis ofP.wilsoniiwas more prone to drought limitations,whilst the photosynthesis ofP.crassifoliashowed an acclimatory response to drought.In addition,whilst the seedlings ofP.crassifoliasurvived the high stress treatment with water supplied at 20%FC,P.wilsoniiseedlings did not(seeMaterials and methods).This also suggests that high drought stress limits the growth and survival ofP.wilsonii,whileP.crassifoliais more resistant to drought,especially under extreme water de fi cit conditions.

    Table 3 Effects of growth temperature on several parameters (b,Topt,Aopt,Fv/Fm,LMA and Nmass) for Picea crassifolia and P.wilsonii

    The higherPnunder drought observed inP.crassifoliacould be explained by the conditions affecting two processes.First,water supply was reduced with increasing drought stress,progressively inducing stomatal closure(Flexas and Medrano 2002;Reddy et al.2004;Gao et al.2009;Matteo et al.2014).Therefore,photosynthetic reduction in bothPiceaspecies may be partly explained by stomatal limitation.However,P.crassifoliahad higherCondandTrthanP.wilsoniiin the mild and moderate treatments.Moreover,larger decreases inCondofP.wilsonii(decreasingc.80%)were observed in the mild water treatment relative to non-stressed seedlings.These results suggest that the leaves of eachPiceaspecies showed different sensitivities to water de fi cit(Ashraf and Harris 2013),and that leaves ofP.wilsoniiwere more sensitive to drought.Second,with increasing water stress,drought can affect biochemical processes(Way and Sage 2008;Lin et al.2012;Limousin et al.2013).Our results reveal that decreases inFv/FmforP.crassifoliawere smaller in each treatment.There was only a slight reduction under the mild water treatment(Fig.1),suggesting more stable light capture and utilization inP.crassifolialeaves(Evans 1989;Reddy et al.2004).However,there was a signi fi cant decrease inNmassin the mild water treatment.In contrast,larger deceases inFv/Fmwere observed inP.wilsonii,suggesting that increasing water stress may inhibit or damage photosynthetic process inP.wilsonii(Ma et al.2010;Ashraf and Harris 2013).At the same time,steady values ofNmassinP.wilsoniiin the mild water treatment did not compensate for a larger reduction inFv/Fm.Thus,variations inFv/Fmalso partly explain different photosynthetic acclimations to drought in bothPiceaspecies.These results suggest that the photosynthetic process ofP.crassifoliahas a higher drought tolerance than that ofP.wilsonii.

    Table 4 Effects of growth temperature,species and their interaction on 10 measured indicators under the two temperature treatments

    Fig.5 Temperature(Tleaf)responses of leaf photosynthetic rates(Pn)in Picea crassifolia(a)and P.wilsonii(b)under the MT and HT treatments.Data are presented as mean±SE

    Photosynthetic acclimation to high temperatures

    Grown at elevated temperatures,Pnmeasured at 35°C decreased in bothPiceaspecies compared to seedlings grown at 25°C,indicating that photosynthesis of these twoPiceaspecies did not completely acclimatize to elevated temperatures(Berry and Bjo rkman 1980).However,theAcclimPnforP.crassifoliawas higher than that forP.wilsonii(Fig.4),suggesting that thermal acclimation of photosynthesis inP.crassifoliais more effective than inP.wilsonii(Yamori et al.2009;Way and Oren 2010).P.crassifoliahas an inherently lower photosynthetic sensitivity to short-term temperature fl uctuations(e.g.parameterbin Table 3 and Fig.5;see Battaglia et al.1996;Niu et al.2008;Gunderson et al.2010;Sendall et al.2015).Photosynthesis ofP.wilsoniiwas more sensitive to short-term temperature fl uctuations(Table 3;Fig.5)and therefore the thermal sensitivity of photosynthesis inP.wilsoniiwas limited.Meanwhile,there was an upward shift in theToptofP.crassifoliathat reduced high temperature stress;this was not observed inP.wilsonii(Gunderson et al.2010;Way and Yamori 2014;Sendall et al.2015).Therefore,the photosynthetic process ofP.crassifoliahas a higher thermal tolerance than that ofP.wilsonii.

    The regulation ofPnis related to changing stomatal conductance,leaf development,and biochemical processes during prolonged exposure to high temperatures(Way and Sage 2008;Lin et al.2012;Heroult et al.2013).Changes in stomatal conductance(Cond)could reducePnirrespective of biochemical effects(Hamerlynck and Knapp 1996;Zhang et al.2001;Hikosaka et al.2006;Greer and Weedon 2012).High temperatures are associated with increasing leaf-to-air vapor pressures leading to increasing drought stress.Potentially plants could limitCondto reduceTr(Day 2000).Our results show that decreasedCondforP.wilsoniilimitedTrat elevated temperatures(Fig.3),indicating increased heat-induced physiological drought stress forP.wilsoniieven though water de fi cits were avoided by providing abundant water during the experimental period(German and Roberto 2013).In contrast,increasedTrinP.crassifoliameant thatP.crassifoliaplants were exposed to thermal stress as a result of increasing water loss from leaves even when there was abundant soil moisture(Fig.3c).Hence,variations inCondbetween temperature treatments were important in explaining treatment differences inPn(German and Roberto 2013).On the other hand,LMAwas identical between temperature treatments for the two species(Tables 3,4),suggesting that high temperatures did not affect leaf structure and density.Leaf developmental processes are therefore unlikely to explain temperature treatment differences inPn.In addition,biochemical processes may partly explain the smaller proportional decreases inPnat high temperatures.Our results showed thatFv/Fmwas only signi fi cantly reduced by high temperatures inP.wilsonii,indicating that high temperature inhibits or damages the photosynthetic apparatus inP.wilsoniileaves.Hence,increasingNmassinP.wilsoniimay be assumed to repair chlorophyll and thylakoids(Evans 1989;Hikosaka et al.2006;Hikosaka and Shigeno 2009;Wang et al.2014).This was not compensated for by greater photosynthetic range.These results suggest that thermal acclimation of photosynthesis inP.crassifoliais more effective than inP.wilsonii(Fig.4).

    Conclusions

    Overall,our results suggest that stress caused by drought and high temperatures reduce thePnof the seedlings of bothPiceaspecies.However,P.crassifoliaexhibited higherphotosyntheticacclimation to both increasing drought and temperature thanP.wilsonii.In addition,we recorded higherCondandFv/FmforP.crassifoliawith increasing drought and temperature,indicating that these were responsible for the improved acclimation compared toP.wilsonii.Moreover,the photosynthetic apparatus inP.crassifolialeaves exhibited an inherently lower temperature-sensitivity and higher thermostability(see parameterb).Further,severe drought stress(20%FC)killedP.wilsonii.In conclusion,our results indicate thatP.wilsoniiis more susceptible to drought and high temperatures;P.crassifoliais more appropriate to plant to survive future climate increases and to sequester carbon.

    AcknowledgementsWe thank Dr.David Blackwell for correcting the English in the fi nal manuscript.

    Ashraf M,Harris PJC(2013)Photosynthesis under stressful environments:an overview.Photosynthetica 51(2):163–190

    Aspinwall MJ,Drake JE,Campany C,Va?rhammar A,Ghannoum O,Tissue DT,Reich PB,Tjoelker MG(2016)Convergent acclimation of leaf photosynthesis and respiration to prevailing ambient temperatures under current and warmer climates in Eucalyptus tereticornis.New Phytol.doi:10.1111/nph.14035

    Battaglia M,Beadle C,Loughhead S(1996)Photosynthetic temperature responses ofEucalyptus globulusandEucalyptus nitens.Tree Physiol 16:81–89

    Berry J,Bjo rkman O(1980)Photosynthetic response and adaptation to temperature in higher plants.Ann Rev Plant Physiol 31:491–543

    Day ME(2000)In fl uence of temperature and leaf-to-air vapor pressure de fi cit on net photosynthesis and stomatal conductance in red spruce(Picea rubens).Tree Physiol 20:57–63

    Drake JE,Aspinwall MJ,Pfautsch S,Rymer PD,Reich PB,Smith RA,Crous K,Tissue DT,Ghannoum O,Tjoelker MG(2015)The capacity to cope with climate warming declines from temperate to tropical latitudes in two widely distributed Eucalyptus species.Global Change Bio 21:459–472

    Evans JR(1989)Photosynthesis and nitrogen relationships in leaves of C3plants.Oecologia 78:9–19

    Farjón A(2001)World checklist and bibliography of conifers.Royal Botanic Gardens,Kew,London,p 107

    Flexas J,Medrano H(2002)Drought-inhibition of photosynthesis in C3plants:stomatal and non-stomatal limitations revisited.Ann Bot 89:183–189

    Fu L,Li N,Mill RR(1999)Picea.In:Wu ZY,Raven PH(eds)Flora of China.Science Press and Missouri Botanical Garden Press,Beijing,pp 25–32

    Gago J,Coopman RE,Cabrera HM,Hermida C,Molins A,Conesa MA,Galmes J,Ribas-Carbo M,Flexas J(2013)Photosynthesis limitations in three fern species.Physiol Plant 149:599–611

    Gao DH,Gao Q,Xu HY,Ma F,Zhao CM,Liu JQ(2009)Physiological responses to gradual drought stress in the diploid hybridPinus densataand its two parental species.Trees 23:717–728

    German VG,Roberto ACS(2013)Photosynthetic responses to temperature of two tropical rainforest tree species from Costa Rica.Tree 27(5):1261–1270

    Ghannoum O,Way DA(2011)On the role of ecological adaptation and geographic distribution in the response of trees to climate change.Tree Physiol 3:1273–1276

    Greer DH,Weedon MM(2012)Modelling photosynthetic responses to temperature of grapevine(Vitis viniferacv.Semillon)leaves on vinesgrown in a hotclimate.PlantCellEnviron 35:1050–1064

    Gunderson CA,O’Hara KH,Campion CM,Walker AV,Edwards NT(2010)Thermal plasticity of photosynthesis:the role of acclimation in forest responses to a warming climate.Global Change Biol 16:2272–2286

    Hamerlynck E,Knapp AK(1996)Photosynthetic and stomatal responses to high temperature and light in two oaks at the western limit of their range.Tree Physiol 16:557–565

    Han FZ,Yang BY,Fan GY,Xia WJ,Ma XD(2015)Identi fi cation of 11 species of bark beetles and their galleries in natural coniferous forests in Qinghai province.For PestDis 34(6):11–16(Abstract in English)

    Heroult A,Lin YS,Bourne A,Medlyn BE,Ellsworth DS(2013)Optimal stomatal conductance in relation to photosynthesis in climatically contrastingEucalyptusspecies under drought.Plant Cell Environ 36:262–274

    Hikosaka K,Shigeno A(2009)The role of Rubisco and cell walls in the interspeci fi c variation in photosynthetic capacity.Oecologia 160:443–451

    Hikosaka K,Ishikawa K,Borjigidai A,Muller O,Onoda Y(2006)Temperature acclimation of photosynthesis: mechanisms involved in the changes in temperature dependence of photosynthetic rate.J Exp Bot 57:291–302

    IPCC(2013)Climate change 2013:the physical science basis.Cambridge University Press,Cambridge,p 1535

    Kroner Y,Way DA(2016)Carbon fl uxes acclimate more strongly to elevated growth temperatures than elevated CO2concentrations in a northern conifer.Global Change Bio 22:2913–2928

    Limousin JM,Bickford CP,Dickman LT,Pangle RE,Hudson PJ,Boutz AL,Gehres N,Osuna JL,Pockman WT,McDowell NG(2013)Regulation and acclimation of leaf gas-exchange in a pi?on-juniper woodland exposed to three different precipitation regimes.Plant Cell Environ 36:1812–1825

    Lin YS,Medlyn BE,Ellsworth DS(2012)Temperature responses of leaf net photosynthesis:the role of component processes.Tree Physiol 32:219–231

    Luo Y(2007)Terrestrial carbon-cycle feedback to climate warming.Annu Rev Ecol Evol S 38:683–712

    Ma F,Zhao CM,Milne RI,Ji MF,Chen LT,Liu JQ(2010)Enhanced drought-tolerance in thehomoploid hybrid speciesPinus densata:implication for its habitat divergence from two progenitors.New Phytol 185:204–216

    Mao JF,Wang XR(2011)Distinct niche divergence characterizes the homoploid hybrid speciation ofPinus densataon the Tibetan Plateau.Am Nat 177(4):424–439

    Matteo GD,Perini L,Atzori P,Angelis PD,Mei T,Bertini G,Fabbio G,Mugnozza GS(2014)Change in foliar carbon isotope composition and seasonal stomatal conductance reveal adaptive traits in Mediterranean coppices affected by drought.J For Res 25(4):839–845

    Niu S,Li Z,Xia J,Han Y,Wu M,Wan S(2008)Climatic warming changes plant photosynthesis and its temperature dependence in a temperate steppe of northern China.Environ Exp Bot 63:91–101

    Poorter H,Niinemets U,Poorter L,Wright IJ,Villar R(2009)Causes and consequences of variation in leaf mass per area(LMA):a meta-analysis.New Phytol 182:565–588

    Reddy AR,Chaitanya KV,Vivekanandan M(2004)Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants.J Plant Physiol 161:1189–1202

    Sendall K,Reich PB,Zhao CM,Hou JH,Wei XR,Stefanski A,Rice K,Rich RL,Montgomery RA(2015)Acclimation of photosynthetic temperature optima of temperate and boreal tree species in response to experimental forest warming.Global Change Bio 21:1342–1357

    Smith NG,Dukes JS(2013)Plant respiration and photosynthesis in global-scale models:incorporating acclimation to temperature and CO2.Global Change Biol 19:45–63

    Vasseur F,Violle C,Enquist BJ,Granier C,Vile D(2012)A common genetic basis to the origin of the leaf economics spectrum and metabolic scaling allometry.Ecol Lett 15:1149–1157

    Wang D,Heckathorn SA,Hamilton W,Frantz J(2014)Effects of CO2on the tolerance of photosynthesis to heat stress can be affected by photosynthetic pathway and nitrogen.Am J Bot 1:34–44

    Way DA,Oren R(2010)Differential responses to changes in growth temperature between trees from different functional groups and biomes:a review and synthesis of data.Tree Physiol 30:669–688

    Way DA,Sage RF(2008)Thermal acclimation of photosynthesis in black spruce[Picea mariana(Mill.)B.S.P.].Plant Cell Environ 31:1250–1262

    Way DA,Yamori W(2014)Thermal acclimation of photosynthesis:on the importance of adjusting our de fi nitions and accounting for thermal acclimation of respiration.Photosynth Res 119:89–100

    Yamori W,Noguchi K,Hikosaka K,Terashima I(2009)Coldtolerant crop species have greater temperature homeostasis of leaf respiration and photosynthesis than cold-sensitive Species.Plant Cell Environ 50:203–215

    Zhang S,Li Q,Ma K,Cheng L(2001)Temperature-dependent gasexchange and stomatal/non-stomatal limitation to CO2assimilation ofQuercus liaotungensisunder mid-day high irradiance.Photosynthetica 39:383–393

    Zhang Q,Chen JW,Li BG,Cao KF(2009)The effect of drought on photosynthesis in two epiphytic and two terrestrial tropical fern species.Photosynthetica 47(1):128–132

    Zhang XW,Wang JR,Ji MF,Milne RI,Wang MH,Liu JQ,Shi S,Yang SL,Zhao CM(2015)Higher thermal acclimation potential of respiration but not photosynthesis in two alpinePiceataxa in contrast to two lowland congeners.PLoS ONE 10(4):e0123248

    Zhao CM,Chen LT,Ma F,Yao BQ,Liu JQ(2008)Altitudinal differences in the leaf fi tness of juvenile and mature alpine spruce trees(Picea crassifolia).Tree Physiol 28:133–141

    Zou XK,Zhai PM,Zhang Q(2005)Variations in droughts over China:1951–2003.Geophys Res Lett 32:L04707.doi:10.1029/2004GL021853

    国产免费男女视频| 午夜福利在线观看吧| 色综合亚洲欧美另类图片| 深夜精品福利| 久久精品91蜜桃| 欧美日韩精品网址| 免费无遮挡裸体视频| 9热在线视频观看99| 999精品在线视频| 老司机在亚洲福利影院| 9热在线视频观看99| 亚洲专区国产一区二区| 国产欧美日韩一区二区三区在线| 香蕉久久夜色| 美女国产高潮福利片在线看| netflix在线观看网站| 色播在线永久视频| 99国产精品99久久久久| 欧美另类亚洲清纯唯美| 亚洲国产精品久久男人天堂| 黄色片一级片一级黄色片| 久久香蕉精品热| 欧美乱色亚洲激情| 国产成+人综合+亚洲专区| 国产精品亚洲美女久久久| 黄色a级毛片大全视频| 精品久久久久久成人av| 九色国产91popny在线| 国产亚洲精品综合一区在线观看 | 色老头精品视频在线观看| 黄片播放在线免费| 真人一进一出gif抽搐免费| 亚洲欧美精品综合一区二区三区| 色播在线永久视频| 777久久人妻少妇嫩草av网站| 日韩国内少妇激情av| 午夜免费鲁丝| 欧美 亚洲 国产 日韩一| 岛国在线观看网站| 久久久久国产精品人妻aⅴ院| 久久久久国产精品人妻aⅴ院| 欧美性长视频在线观看| 亚洲人成网站在线播放欧美日韩| 久久人人97超碰香蕉20202| 国产精品影院久久| 搡老岳熟女国产| 婷婷六月久久综合丁香| 国产欧美日韩一区二区三| 久久精品91无色码中文字幕| 两个人看的免费小视频| 欧美激情久久久久久爽电影 | 国产精品秋霞免费鲁丝片| 日韩欧美三级三区| 精品国产一区二区三区四区第35| 在线天堂中文资源库| 黄色视频,在线免费观看| 99riav亚洲国产免费| 99riav亚洲国产免费| 国产97色在线日韩免费| 夜夜躁狠狠躁天天躁| 麻豆一二三区av精品| 91在线观看av| 丰满的人妻完整版| 国产av一区二区精品久久| av欧美777| 成人三级黄色视频| 巨乳人妻的诱惑在线观看| 精品一品国产午夜福利视频| 99在线人妻在线中文字幕| 欧美在线一区亚洲| 青草久久国产| 国产成人影院久久av| 大码成人一级视频| 午夜日韩欧美国产| 亚洲精品在线美女| 欧美黑人精品巨大| 国产精品av久久久久免费| 久久九九热精品免费| 成人三级做爰电影| 日韩大尺度精品在线看网址 | 亚洲精品在线观看二区| 日本精品一区二区三区蜜桃| 亚洲七黄色美女视频| 中文字幕人妻熟女乱码| 亚洲国产精品久久男人天堂| 精品欧美一区二区三区在线| 十分钟在线观看高清视频www| 久久草成人影院| 日本在线视频免费播放| 欧美一级毛片孕妇| aaaaa片日本免费| 一进一出抽搐动态| 无人区码免费观看不卡| 国产成人一区二区三区免费视频网站| 老司机福利观看| 国产99久久九九免费精品| 免费一级毛片在线播放高清视频 | 变态另类丝袜制服| av视频在线观看入口| 色综合站精品国产| 国产精品爽爽va在线观看网站 | 国产三级在线视频| 中文字幕人妻丝袜一区二区| 日韩av在线大香蕉| 69精品国产乱码久久久| 法律面前人人平等表现在哪些方面| 丝袜美足系列| 久久婷婷成人综合色麻豆| 久久婷婷人人爽人人干人人爱 | 国产免费男女视频| www.自偷自拍.com| 一级黄色大片毛片| 亚洲国产精品久久男人天堂| 日日爽夜夜爽网站| 亚洲精品中文字幕在线视频| 国产免费av片在线观看野外av| а√天堂www在线а√下载| 国产色视频综合| 欧美日韩福利视频一区二区| 亚洲精品av麻豆狂野| 激情在线观看视频在线高清| 后天国语完整版免费观看| 热99re8久久精品国产| 正在播放国产对白刺激| 欧美精品亚洲一区二区| 亚洲美女黄片视频| 久久中文看片网| 日本一区二区免费在线视频| 久久久久国内视频| 桃色一区二区三区在线观看| 国内久久婷婷六月综合欲色啪| 波多野结衣巨乳人妻| 女性被躁到高潮视频| 久久久久国产精品人妻aⅴ院| 亚洲成人免费电影在线观看| 成人国产一区最新在线观看| 国产蜜桃级精品一区二区三区| 国产av精品麻豆| 午夜免费激情av| 欧美丝袜亚洲另类 | 女生性感内裤真人,穿戴方法视频| 免费女性裸体啪啪无遮挡网站| 亚洲色图 男人天堂 中文字幕| 色av中文字幕| 久久青草综合色| 两性午夜刺激爽爽歪歪视频在线观看 | 色综合站精品国产| 国产精品综合久久久久久久免费 | 久久国产乱子伦精品免费另类| 黄片小视频在线播放| 1024视频免费在线观看| 女人精品久久久久毛片| 亚洲avbb在线观看| svipshipincom国产片| 亚洲五月婷婷丁香| 精品免费久久久久久久清纯| 热99re8久久精品国产| 韩国av一区二区三区四区| 久久国产乱子伦精品免费另类| 亚洲欧美一区二区三区黑人| www.精华液| 在线观看66精品国产| 亚洲久久久国产精品| 人人妻人人澡人人看| 91九色精品人成在线观看| 国产xxxxx性猛交| 母亲3免费完整高清在线观看| 中文字幕最新亚洲高清| 老司机靠b影院| 国产三级黄色录像| 久9热在线精品视频| 亚洲男人的天堂狠狠| 一级毛片女人18水好多| 亚洲中文字幕日韩| 在线观看免费视频网站a站| 国产一区二区在线av高清观看| 亚洲国产欧美一区二区综合| 少妇的丰满在线观看| 黄色毛片三级朝国网站| 好看av亚洲va欧美ⅴa在| 悠悠久久av| 在线观看一区二区三区| 欧美日韩亚洲综合一区二区三区_| 国产成人系列免费观看| 国产高清激情床上av| 欧美激情极品国产一区二区三区| 免费搜索国产男女视频| 99久久综合精品五月天人人| 国产亚洲av高清不卡| 国产精品,欧美在线| 久久亚洲真实| 久久精品国产99精品国产亚洲性色 | 欧美激情极品国产一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 中文字幕人妻熟女乱码| 91老司机精品| 国产亚洲av高清不卡| 少妇被粗大的猛进出69影院| 一级,二级,三级黄色视频| 一级作爱视频免费观看| 我的亚洲天堂| 激情视频va一区二区三区| 美女大奶头视频| 狠狠狠狠99中文字幕| www国产在线视频色| 搞女人的毛片| 日韩欧美国产一区二区入口| 久久久精品欧美日韩精品| 真人一进一出gif抽搐免费| 色尼玛亚洲综合影院| 欧美激情久久久久久爽电影 | 成人三级做爰电影| 国产精品电影一区二区三区| 欧美亚洲日本最大视频资源| 欧美黄色片欧美黄色片| 亚洲色图 男人天堂 中文字幕| 免费观看精品视频网站| 99国产精品一区二区三区| 一区二区三区激情视频| 久久亚洲精品不卡| 国产精品日韩av在线免费观看 | 老司机深夜福利视频在线观看| 在线观看www视频免费| 国产蜜桃级精品一区二区三区| 久久久久九九精品影院| 欧美久久黑人一区二区| 日韩中文字幕欧美一区二区| 精品乱码久久久久久99久播| 午夜免费激情av| 午夜久久久久精精品| 国产午夜福利久久久久久| 国产精品日韩av在线免费观看 | 久久狼人影院| 视频在线观看一区二区三区| 日韩欧美国产在线观看| 一进一出抽搐gif免费好疼| 亚洲成人国产一区在线观看| 欧美成狂野欧美在线观看| 国产1区2区3区精品| 国产高清视频在线播放一区| 国产精品久久久人人做人人爽| 18美女黄网站色大片免费观看| 午夜福利成人在线免费观看| 咕卡用的链子| 亚洲第一av免费看| 人成视频在线观看免费观看| 成熟少妇高潮喷水视频| 国产精品1区2区在线观看.| 最好的美女福利视频网| 18禁美女被吸乳视频| 欧美日韩福利视频一区二区| 婷婷六月久久综合丁香| 两个人视频免费观看高清| 麻豆av在线久日| 亚洲精品久久国产高清桃花| av在线播放免费不卡| 淫秽高清视频在线观看| 中亚洲国语对白在线视频| 精品久久久久久久久久免费视频| 久久香蕉精品热| 亚洲激情在线av| 中国美女看黄片| 多毛熟女@视频| 999精品在线视频| 女性生殖器流出的白浆| 国产精品秋霞免费鲁丝片| 国产亚洲精品av在线| 国产男靠女视频免费网站| 亚洲精品粉嫩美女一区| 可以在线观看的亚洲视频| 午夜日韩欧美国产| 国产野战对白在线观看| 视频在线观看一区二区三区| 国产1区2区3区精品| 波多野结衣av一区二区av| 午夜福利在线观看吧| 可以在线观看毛片的网站| 欧美成人一区二区免费高清观看 | 99久久综合精品五月天人人| 国产精品国产高清国产av| 久久中文看片网| 日本vs欧美在线观看视频| 国产精品亚洲美女久久久| av中文乱码字幕在线| 色播亚洲综合网| 我的亚洲天堂| www.自偷自拍.com| 国产一区二区在线av高清观看| 一进一出抽搐动态| 国产亚洲精品综合一区在线观看 | e午夜精品久久久久久久| 色老头精品视频在线观看| 亚洲av美国av| 精品无人区乱码1区二区| 手机成人av网站| 国产主播在线观看一区二区| 亚洲成国产人片在线观看| 日韩免费av在线播放| 高清毛片免费观看视频网站| 女同久久另类99精品国产91| 欧美成人一区二区免费高清观看 | 男人的好看免费观看在线视频 | 国产aⅴ精品一区二区三区波| 国产av在哪里看| 99在线视频只有这里精品首页| 亚洲人成网站在线播放欧美日韩| 欧美成人一区二区免费高清观看 | 亚洲成人国产一区在线观看| 亚洲五月婷婷丁香| x7x7x7水蜜桃| www日本在线高清视频| 日本精品一区二区三区蜜桃| av片东京热男人的天堂| 亚洲一区中文字幕在线| 日韩三级视频一区二区三区| 免费在线观看亚洲国产| 精品少妇一区二区三区视频日本电影| 午夜福利,免费看| 嫁个100分男人电影在线观看| 热re99久久国产66热| 在线观看一区二区三区| tocl精华| 亚洲国产精品合色在线| 啦啦啦 在线观看视频| 首页视频小说图片口味搜索| 中文亚洲av片在线观看爽| 国产精品av久久久久免费| www.熟女人妻精品国产| 午夜视频精品福利| 国产伦人伦偷精品视频| 人妻丰满熟妇av一区二区三区| 国产高清激情床上av| 少妇裸体淫交视频免费看高清 | 日本vs欧美在线观看视频| 精品国产亚洲在线| 少妇裸体淫交视频免费看高清 | 中文字幕人妻丝袜一区二区| 亚洲avbb在线观看| 亚洲专区中文字幕在线| 亚洲av第一区精品v没综合| 中文字幕久久专区| 日韩 欧美 亚洲 中文字幕| 亚洲成av人片免费观看| 国产熟女xx| 国产精品久久久人人做人人爽| 在线av久久热| 精品少妇一区二区三区视频日本电影| 精品一品国产午夜福利视频| 午夜精品久久久久久毛片777| 咕卡用的链子| 19禁男女啪啪无遮挡网站| 高清在线国产一区| 好男人电影高清在线观看| 亚洲国产欧美一区二区综合| 久久国产精品人妻蜜桃| 亚洲av成人不卡在线观看播放网| 性色av乱码一区二区三区2| 久久影院123| 国产亚洲精品第一综合不卡| 成人手机av| 欧美性长视频在线观看| 久久香蕉国产精品| 国产精品 欧美亚洲| 亚洲 国产 在线| 给我免费播放毛片高清在线观看| 超碰成人久久| 日韩三级视频一区二区三区| 正在播放国产对白刺激| 波多野结衣av一区二区av| 别揉我奶头~嗯~啊~动态视频| 无限看片的www在线观看| 久久久久久国产a免费观看| 久久午夜综合久久蜜桃| 国产一区在线观看成人免费| 国产精品美女特级片免费视频播放器 | 精品久久久精品久久久| 99国产精品免费福利视频| 色av中文字幕| 悠悠久久av| 人成视频在线观看免费观看| 成人精品一区二区免费| 国产一卡二卡三卡精品| 久久午夜亚洲精品久久| 国产亚洲精品综合一区在线观看 | 欧美中文综合在线视频| 亚洲成人久久性| 一夜夜www| av天堂久久9| 亚洲中文字幕一区二区三区有码在线看 | 久久香蕉国产精品| 伦理电影免费视频| 久久婷婷成人综合色麻豆| 少妇裸体淫交视频免费看高清 | 身体一侧抽搐| 黄频高清免费视频| 国产av一区在线观看免费| 欧美成人午夜精品| 两个人免费观看高清视频| 免费在线观看黄色视频的| 欧美激情久久久久久爽电影 | 国产成人免费无遮挡视频| 在线观看一区二区三区| 性少妇av在线| 一边摸一边抽搐一进一出视频| 一二三四社区在线视频社区8| 亚洲色图 男人天堂 中文字幕| 中文字幕久久专区| 亚洲美女黄片视频| 一进一出抽搐动态| 成人国产综合亚洲| 免费在线观看完整版高清| 精品欧美一区二区三区在线| 亚洲欧美精品综合一区二区三区| 国产主播在线观看一区二区| 在线av久久热| 老司机靠b影院| 国产精品av久久久久免费| 国产精品永久免费网站| 久久人人精品亚洲av| 亚洲av日韩精品久久久久久密| 亚洲成a人片在线一区二区| 亚洲电影在线观看av| 人人妻人人爽人人添夜夜欢视频| av福利片在线| 亚洲精品在线美女| 1024视频免费在线观看| 人妻丰满熟妇av一区二区三区| 亚洲第一av免费看| 女警被强在线播放| 国产精品免费视频内射| 久久中文字幕一级| 成人欧美大片| 国产精品一区二区三区四区久久 | 久久这里只有精品19| 亚洲专区国产一区二区| 国产av精品麻豆| 怎么达到女性高潮| 99久久久亚洲精品蜜臀av| 狠狠狠狠99中文字幕| 精品高清国产在线一区| 久久国产精品男人的天堂亚洲| 99久久国产精品久久久| 国产午夜福利久久久久久| 1024视频免费在线观看| 岛国在线观看网站| 亚洲激情在线av| 99热只有精品国产| 波多野结衣一区麻豆| 啦啦啦韩国在线观看视频| 欧美日本亚洲视频在线播放| 两个人视频免费观看高清| 女人爽到高潮嗷嗷叫在线视频| 99精品欧美一区二区三区四区| 欧美一级毛片孕妇| 精品久久久久久,| 国产麻豆69| 日本免费一区二区三区高清不卡 | 国产亚洲精品一区二区www| 色综合站精品国产| 一级毛片精品| 啦啦啦 在线观看视频| xxx96com| 午夜免费观看网址| 久久草成人影院| 好男人电影高清在线观看| tocl精华| 久久国产精品影院| 18禁国产床啪视频网站| 香蕉国产在线看| 成年版毛片免费区| 叶爱在线成人免费视频播放| 亚洲 欧美一区二区三区| 午夜a级毛片| 成人三级做爰电影| 国产精品影院久久| 如日韩欧美国产精品一区二区三区| 国产精品99久久99久久久不卡| 亚洲七黄色美女视频| 在线观看舔阴道视频| 亚洲精品美女久久久久99蜜臀| 成熟少妇高潮喷水视频| 人人妻,人人澡人人爽秒播| 国产av又大| 久久精品91蜜桃| 18美女黄网站色大片免费观看| 亚洲自偷自拍图片 自拍| 嫩草影院精品99| 亚洲中文日韩欧美视频| 人人妻,人人澡人人爽秒播| 国产不卡一卡二| 午夜老司机福利片| 天天躁夜夜躁狠狠躁躁| 精品欧美国产一区二区三| 一级黄色大片毛片| 国产成人精品无人区| 欧美不卡视频在线免费观看 | 麻豆成人av在线观看| a在线观看视频网站| 午夜两性在线视频| tocl精华| 亚洲三区欧美一区| 亚洲aⅴ乱码一区二区在线播放 | 亚洲在线自拍视频| 大型黄色视频在线免费观看| 成年人黄色毛片网站| 在线观看免费视频日本深夜| 性色av乱码一区二区三区2| 好看av亚洲va欧美ⅴa在| 亚洲av电影在线进入| 可以在线观看毛片的网站| 亚洲精品美女久久av网站| 在线播放国产精品三级| 丰满的人妻完整版| 亚洲第一电影网av| 日韩成人在线观看一区二区三区| 免费在线观看亚洲国产| 亚洲国产欧美日韩在线播放| 久久久国产成人免费| 999久久久国产精品视频| 欧美成狂野欧美在线观看| 中文亚洲av片在线观看爽| 电影成人av| 一二三四在线观看免费中文在| 欧美成人性av电影在线观看| 亚洲av片天天在线观看| 久久久久久久午夜电影| 咕卡用的链子| 久久中文字幕一级| 韩国av一区二区三区四区| 日本a在线网址| 女性被躁到高潮视频| 制服丝袜大香蕉在线| 精品高清国产在线一区| 国产精品日韩av在线免费观看 | 国产三级黄色录像| 91在线观看av| 日日干狠狠操夜夜爽| 国产精品免费视频内射| 久久久久九九精品影院| 亚洲成人久久性| 免费在线观看亚洲国产| 美女大奶头视频| 国产激情久久老熟女| av在线播放免费不卡| 法律面前人人平等表现在哪些方面| 久久婷婷人人爽人人干人人爱 | 少妇被粗大的猛进出69影院| 国产高清videossex| 午夜福利一区二区在线看| 最新美女视频免费是黄的| 天堂√8在线中文| netflix在线观看网站| 51午夜福利影视在线观看| av免费在线观看网站| 精品欧美国产一区二区三| 伊人久久大香线蕉亚洲五| 亚洲人成电影免费在线| 亚洲av成人不卡在线观看播放网| 操美女的视频在线观看| 丁香欧美五月| 首页视频小说图片口味搜索| av视频免费观看在线观看| 欧美久久黑人一区二区| 精品久久久久久久毛片微露脸| 亚洲国产精品合色在线| 大香蕉久久成人网| 国产精品影院久久| 亚洲国产中文字幕在线视频| 亚洲精品美女久久久久99蜜臀| 成人18禁在线播放| www.999成人在线观看| 高清在线国产一区| 久久久水蜜桃国产精品网| 精品卡一卡二卡四卡免费| 日韩欧美免费精品| 欧美日韩瑟瑟在线播放| 麻豆av在线久日| 妹子高潮喷水视频| 亚洲人成伊人成综合网2020| 丁香欧美五月| 亚洲精品国产色婷婷电影| 88av欧美| 91精品国产国语对白视频| 国产精品精品国产色婷婷| 亚洲第一青青草原| 精品久久久久久久久久免费视频| 国产欧美日韩精品亚洲av| 精品国产国语对白av| 制服丝袜大香蕉在线| 亚洲欧美精品综合一区二区三区| 久久午夜亚洲精品久久| 嫩草影视91久久| 欧美丝袜亚洲另类 | 国产男靠女视频免费网站| 国产亚洲欧美98| 亚洲国产看品久久| 亚洲在线自拍视频| 嫩草影院精品99| 侵犯人妻中文字幕一二三四区| 两性夫妻黄色片| 老司机靠b影院| www国产在线视频色| 他把我摸到了高潮在线观看| 中文字幕av电影在线播放| 欧美日韩乱码在线| 久久精品91蜜桃| 最新在线观看一区二区三区| 久久狼人影院| 国内精品久久久久精免费| 久久中文字幕一级| 一级a爱视频在线免费观看| 欧美人与性动交α欧美精品济南到| 涩涩av久久男人的天堂| 日本三级黄在线观看| 19禁男女啪啪无遮挡网站|