• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spatial patterns nitrogen transfer models of ectomycorrhizal networks in a Mongolian scotch pine plantation

    2018-03-19 05:08:08YanbinLiuHongmeiChenPuMou
    Journal of Forestry Research 2018年2期

    Yanbin Liu?Hongmei Chen?Pu Mou

    Introduction

    Mycorrhizal mycelial networks link plants to facilitate fungal colonization and/or the transfer of compounds among plants(Leake et al.2004;Heijden and Horton 2009;Barto et al.2011;Simard et al.2012;Albarracín et al.2013).Two types of common mycorrhizal networks(CMNs)have been identi fi ed based on the type of mycorrhizae involved:arbuscular endomycorrhizal(AM)network and ectomycorrhizal mycorrhizal(EM)network(Selosse et al.2006).EM networks are mostly studied on their functions of providing a variety of services to plants and ecosystems including nutrient uptake and transfer(He et al.2003,2005,2007;Moyer-Henry et al.2006;Corre?a et al.2008),seedling support(McGuire 2007;Teste et al.2009),prevention of nutrient leaching(Heijden and Horton 2009),internal cycling of nutrients(Callesen et al.2013),and plantcompetition (Booth 2004;Barto etal.2011,2012).

    Many temperate and mediterranean woody species form EM networks with basidiomycete and ascomycete fungi(Selosse et al.2006).Using network analysis,Bahram et al.(2014)concluded that certain ectomycorrhizal communities displayed modularity and attributed to partner selectivity and consequent context dependent.They also showed that the EMs exhibited non-nested or anti-nested patterns,contrasting to other mutualistic interactions.

    Nitrogen is often transferred among plants through EM networks(Selosse et al.2006;Teste et al.2009).Recent studies have focused on nitrogen uptake and transfer from N2- fi xing donors to non-N2- fi xing receivers to demonstrate mutualistic functions among plants via mycorrhizal networks(He et al.2005,2007;Moyer-Henry et al.2006).However,the net N transfer in EM networks and the spatial distribution of EM networks were not found to be ef fi cient in most of the studies.

    There are few tools to evaluate ectomycorrhizal roles in N transfer in situ.Analyses of natural abundance N isotope ratios(15N:14N expressed as δ15N relative to standard),as an integrator of N transfer,can provide a glimpse into mycorrhizal functional ecology within soil pro fi les and across biomes(Dawson et al.2002;Fry 2006;Nave et al.2013;Hobbie et al.2014;Pena and Polle 2014;Mayor et al.2015a,b).In this study,we examined N transfer among trees via the EM network using a stable isotope15N approach in a monoculture tree plantation and characterized the spatial patterns of the EM networks to increase our understanding of the structure and function of EM networks in ecosystems,which may lead to a deeper understanding of ecological stability and evolution and thus new theoretical approaches to improve conservation practices for the management of the Earth’s ecosystems.

    We injected15N solution into the soil at selected locations and periodically sampled the leaves of the trees deviating from the injection locations.We tested the following hypotheses by analyzing changes and variation in15N concentrations in leaves:(1)EM networks in this plantation were structured such that they transfer N homogeneously if leaf15N concentration varies in a similar manner;otherwise,local EM networks would be con fi rmed and functionally differ.(2)EM networks transfer N at high ef fi ciency if there is a strong distance-dependent reduction in leaf15N.

    Materials and methods

    Study site

    The study was conducted in a Mongolian Scotch pine(Pinus sylvestrisvar.mongolicaLitv.)plantation in the Xiaoxing’anling Mountain,nearWuying Township,Yichun City, Heilongjiang Province, China(48°06′11.54′N,129°15′03.58′E).This area is mountainous with mild slopes and lower-elevation reliefs.The mean annual precipitation is 637.0 mm (1958–2006,49 a)(Cheng et al.2010),mostly concentrated as rainfall during the growing season(June to August),and winter snow depth can be up to 113.8 mm.The snow comprises about 17.9% of the annul precipitation.The monthly mean temperature ranges from-23.5 °C in January to 20.3 °C in July.The lowest temperature was-44.9°C in 1970,and the highest was 37.5°C in 2010.The average annual frostfree period lasts 111 days.The regional vegetation is a temperate mixed conifer–hardwood forest dominated by Korean pine(Pinus koreiensisSieb.et Zucc.),Korean spruce (PiceakoraiensisNakai),needle fi r(Abies nephrolepisMaxim.),white birch(Betula platyphyllaSuk.),Manchurian ash(Fraxinus mandschuricaRupr.),Chinese corktree(Phellodendron amurenseRupr.)and Chinese walnut(Juglans mandshuricaMaxim.).The local soil is dark-brown with rich organic matter concentrations,equivalent to Hap-Boric Luvisols in the US soil taxonomy.

    The plantation was the result of forestation in an 18-ha construction pit abundant of coarse sand and small gravel.In 2007,the site was covered with 15 cm thick local forest top soil,and 3-yr-old seedlings of Mongolian Scotch pine were planted with spacing of 2×3 m.On average,the plant-available N in the top soil was 100±5 mg kg-1.At the time of the study,the trees were 2–3 m tall,7–8 years old with DBH of 4–6 cm.The canopy was not closed yet.Understory vegetation was scattered with low total cover,which included forbs,native perennial grasses,mainlyArtemisiaspp.,Carexspp.,andAchilleaspp.,and 98% of pine roots occurred in the top 30 cm of soil.

    The top soil(0–30 cm surface layer)throughout the experimental site was full of dense white rhizomorphs,mainlySuillus luteus(L.:Fr.)Grey.based on sporocarp inventory and DNA sequencing(Liu’s unpublished data),Gomphidius rutilus(Schaeff.:Fr.)Land.Et Nannf.,Laccaria laccata(Scop.:Fr.)Berk.et Br.andLycoperdon pyriformeSchaeff.:Pers.scattered in the fi eld at low abundance.Some other saprophytic fungi,includingHygrophorus conicus(Fr.)Fr.,H.agathosmus(Fr.)Epicr.,Marasmius androsaceus(L.:Fr.)Fr.,Phallus tenuis(Fisch.)D.Ktze.,andCoprinus parouillardiQuél.were also observed.

    15N application,leaf sampling and measurements

    In August 2011,four plots(20×20 m)were randomly selected,which were far enough away from each other and separated by cement tracks.As a result,they did not interfere with each other.At the center of each plot,125 ml 5 at.% 0.15 mol/Lsolution wasinjected within a 2.5-cm radius.To avoid slope and precipitation interference,four sample lines expanded from plot center to four directions and were as perpendicular as possible according to the seedling pattern,slope and orientation.Each sample line was 14–15 m and contained 5–6 pines.In total,we sampled 20 pines,21 pines,20 pines and 20 pines in four respective plots.

    At 0,2,6,30 and 215 days after15N application,we sampled needles(current year)of each pine along a transect line.Needles were immediately sealed in Ziplock plastic bags and stored in cool boxes until taken to the lab.Needles were oven-dried at 65°C for 48 h,ground and sieved through a 0.2 mm sieve.

    Needle δ15N values and N concentration(in%)were measured on 10±1 mg of each sample at the Stable Isotope Laboratory in the Chinese Academy of Forestry(Beijing,China)with an elemental analyzer(Flash EA1112 HT,Thermo Fisher Scienti fi c,USA)coupled with a gas isotope ratio mass spectrometer(DELTA V Advantage,Thermo Fisher Scienti fi c).δ15N(‰)were calculated as:δ15N(‰)=[(Rsample/Rstandard)-1]× 1000,whereRis the ratio of15N/14N of the sample and standard(Knowles and Blackburn 1993).

    Statistical analyses

    Data from four plots were pooled together and divided into fi ve groups according to the distance of the sampled tree from the15N application point,i.e.,1–3,>3–5,>5–7,>7–9,and >9–11 m.All data were analyzed with a Kolomogrov–Smirnov goodness of fi t test and Levine’s test to examine their normality and homogeneity of variance.When the data were not normally distributed,data were transformed to meet the requirements.A one-way ANOVA was used to compare means N and15N concentrations among different groups,and Turkey’s honestly signi fi cant difference(HSD)test was used to test for differences among group means if ANOVA results were signi fi cant(P<0.05).If the data,even after transformation,did not satisfy the requirement of normality and homescedasticitic tests,Kruskal–Wallis test was used to compare the fi ve group means.To assess the relationship between groups of variables,Spearman’s rank correlation test was performed on all data.We used linear regression models to examine the relationship between N and15N concentrations of the needles and the relationship between the needle15N concentrations and the distance away from the injection points.Time interval and excess meant the needle N and15N concentrations of the same tree from the day 0 to day 2,day 2 to day 6,and day 6 to day 30,and day 30 to day 215.We wanted to determine any changes in needle N and15N concentrations among time intervals.All statistical analyses were performed using SPSS(v.21;SPSS,Inc.,IBM,Armonk,NY,USA)and Origin(OriginPro v.9.1.0,OriginLab Corp.,Northampton,MA,USA)for Windows,and all differences were considered signi fi cant atP<0.05.

    Results

    Needle N concentration and15N/14N ratio pattern

    NeedleNconcentrationand15N/14Nratiorangedfrom1.07to 2.77%,and from 0.36648 to 0.37669,respectively.ANOVA resultsdidnottestforsigni fi cantdifferencesamongthemeans ofneedleNconcentrationsorneedle15N/14Nratioamongthe four plots(P%N=0.06,=0.88).The needle N and15N/14Nratio(n=227)increasedsigni fi cantlyafter30 days,up to 31 and 0.42%,respectively(Fig.1a,c).The needle N concentration was highest on day 30 after the treatment and the15N/14N ratio was highest on day 215.The needle N concentrationsincreasedby20,18,31and23%onday2,6,30 and 215 after treatment,respectively.The15N/14N ratio increased by 0.09,0.17,0.35 and 0.42%,on day 2,6,30 and 215 after treatment,respectively.The needle N concentration excess,aswellas15N/14Nratioexcesssigni fi cantlydecreased over time(Fig.1b,d).

    Variations and correlations between needle N concentration and15N/14N ratio

    Needle N concentration and15N/14N ratio were not positively correlated through time (R2=0.40,n=5,P=0.156;Fig.2a).Needle N concentration excess and15N/14N ratio excess were positively correlated across different time intervals(R2=0.89,n=4,P<0.05;Fig.2b).

    Needle15N/14N spatiotemporal pattern

    Needle15N/14N ratio increased with time,but was not signi fi cantly correlated with distance(Figs.1c,3).There was weak trend of decreasing15N/14N ratio with increasing distance at day 0,day 6 and 30,but the ratio increased with increasing distance at day 2.

    Fig.1 Changes in pine needle N and15N concentrations in a Mongolian Scotch pine plantation:a N concentration,b time interval N concentration change,c15N/14N ratio,d time interval15N/14N ratio change.Values are%and at.%excess(n=227–232)with SE bars.Values with different letters indicate signi fi cant differences among means according to Tukey’s honestly signi fi cant difference tests(P<0.05)

    Fig.2 Relationship between N concentration and15N/14N ratio of pine needle in a Mongolian Scotch pine plantation.a N concentration and15N/14N ratio over time,b N concentration excess and15N/14N ratio excess at different time intervals.Values are mean excess(n=4–5)with SE bars

    Variations and correlations between needle N%,δ 15N and15N/14N contents in distance

    At 1–3 m,pine needle δ15N was negatively correlated with that at 5–7,7–9 and 9–11 m;at 3–5 m,δ15N was also negatively correlated with that at 5–7,7–9,and 9–11 m,then they were not correlated.At 5–7 m,pine needle δ15N was a few signi fi cant positively correlated with that at 7–9 m,and that at 7–9 m with that at 9–11 m(P<0.05)(Table 1A).At 3–5 m,pineneedleNcontentwasnegativelycorrelatedwith 1–3 and 7–9 m,N at 9–11 and 7–9 m was negatively correlated;and the rest were positive correlations,then they were not correlated(Table 1B).For needle15N/14N content,signi fi cant positive correlations were found among all the distance groups(Kruskal–Wallis ANOVA,P<0.001 orP<0.01),but not between groups(one-way ANOVA,NS);forδ15NandN,thecorrelationwassigni fi cantamonggroups(one-way ANOVA,P<0.001 orP<0.01),some within the group were signi fi cant(δ15N of 1–3 and 3–5 m atP<0.001;%N of 5–7 m atP<0.01),some intragroup correlations were not(Table 2).

    Fig.3 Correlations between needle15N/14N ratios and distance from the injection point in a Mongolian Scotch pine plantation.The regressions at different times are:day 0,15N/14N(at.%)=0.36661+(-1.05E-5)×Distance(m),adjusted r2=0.05,P=0.22;day 2,15N/14N(at.%)=0.36685+(1.44E-5)×Distance(m),adjusted r2=0.08, P<0.05; day 6, 15N/14N (at.%)=0.36726+(-8.76E-6)×Distance(m),adjusted r2=0.15,P<0.0001;day 30, 15N/14N (at.%)=0.36766+(-2.35E-5)×Distance (m),adjusted r2=0.08,P<0.05

    Discussion

    Spatiotemporal patterns in EM networks

    EM networks are complex adaptive systems(Nave et al.2013),which have been modelled as adaptive dynamic networks of interacting parts where feedback and crossscale interactions lead to self-organization and emergent properties (Beiler etal.2010).Understanding the architecture of the EM networks in the fi eld(e.g.,the physical components,the spatial extent and their relationships)is a prerequisite to understanding how EM networks function and how they affect plant populations,communities,and dynamics in forests(Selosse et al.2006;Simard et al.2012).In this study,we showed that the stable isotope15N rapidly spread rather far away from the injection spots and appeared in the tree needles within 2 days(Fig.1)throughout the four study plots.This result indicated that effective EM networks were ubiquitous in this study plantation and might have a rather uniform distribution.Nitrogen and carbon are thought to travel through EM networks together as simple amino acids(Simard et al.2015).These molecules are transferred through the EM network rapidly,from donor plants to the fungal mycelium within 1 or 2 days and to the shoots of neighboring plants within 3 days(Wu et al.2002;Heaton et al.2012).The high dissimilarity of fungal assemblages at roots of the same genotypes at spatial distances of some meters was unexpected because the overall similarities of the fungal communities in the soil cores of the plot did not differ signi fi cantly;thereby,asymmetric competition between conspeci fi c neighbors can be avoided(Lang et al.2013).But Toju et al.(2016)reported that diverse root-associated fungi could coexist in highly compartmentalized networks within host roots and that the structure of the fungal symbiont communities could be partitioned into semi-discrete types even within a single host plant population.The largely uncorrelated relationships between the needle15N concentrations and distance to the injection points(Fig.3)indicated a rapid15N transfer with the networks.The accelerated increases of needle15N contents as thesampling period increased suggested the existence of longlasting effective EM networks in this Mongolian Scotch pine plantation(Fig.1).

    Table 1 Spearmen’s rank correlation coef fi cient(ρ)for pine needle δ 15N(‰)(A),N(%)(B),and15N/14N(at.%)(C)among distance groups in a Mongolian Scotch pine plantation

    Table 2 Effect of distance from N-loading points on needle N,δ15N and15N/14N ratios by Kruskal–Wallis ANOVA intragroup and one-way ANOVA intergroup in a Mongolian Scotch pine plantation

    Nitrogen transfer models

    He et al.(2005)showed that nitrogen transfer was enhanced by mycorrhiza formation and that transfer rates were greatest in the mycorrhizal treatment.Our results demonstrated a rapid transfer of nitrogen through the EM networks to the pine tree,but the amount of nitrogen transferred was rather small,as indicated by the increments of15N in fractions of a percentage.Does this result mean that the CMNs are not effective in nitrogen transfer?We consider that more evidence is still needed;the few studies on interplant transfer of nutrients through CMNs focused mainly on transfer from N2- fi xing plants to non fi xing ones at more local scales(He et al.2005;Moyer-Henry et al.2006).Our data might be the result of several factors:(1)A dilution effect as the element spread from the injection points;however,the weak correlations between needle15N contents and distance(Fig.3)did not support such an effect.(2)Nutrient transfer capability of CMNs may be limited;however,the needle15N content in some of the closer trees(1–3 m)was very high.Some may argue that there might be another channel to transfer15N to these trees,but we do not have data for or against this idea,and more studies are needed.(3)High turnover rates in the tree-CMN connection may disturb the N transfer function of CMN.Ectomycorrhizal hyphae turnover is estimated at 46 days,rhizomorphs at 11 months,and EM root tips from 1 year to 6 years(Bledsoe et al.2014).(4)Needles in N-loaded plots became enriched in15N,re fl ecting decreased N retention by mycorrhizal fungi and isotopic discrimination against15N during loss of N.Needles in N-limited(control)plots became depleted in15N,re fl ecting high retention of15N by mycorrhizal fungi(Ho gberg et al.2011).Stronger15N retention of ectomycorrhizal fungi resulted in a consequently transfer of15N-depleted N to their tree hosts(Ho gberg et al.1999;Hobbie and Colpaert 2003;Hobbie et al.2008;Mayor et al.2012).(5)Nitrogen immobilization from soil organisms may also affect the transfer effectiveness of N and15N.Net N transfer was much greater when N was supplied as15NH4+than15NO3-(He et al.2005).Kranabetter et al.(2015)found ammonium uptake was greatest in the spring at medium-N and rich-N sites and averaged over 190 nmol m-2s-1forTomentellaspecies, and nitrate uptake was only 8.3 nmol m-2s-1.The cation NH4+is bound to negatively charged sites on clay lattices in soil,reducing mobility and leading to reduced availability(Brady and Weil 2002).Nitrogen additions led to expected increases in foliar N/P ratios,reductions in δ15Nfungi-plantvalues,and15N enrichment of soil nitrate(Mayor et al.2015a,b).None of these potential factors could be ruled out by the unexpected results of our study,which raised more questions to examine in future research.

    Application of network theory to potential EM networks

    Network theory provides a useful framework for describing the structure,function and ecology of EM networks(Southworth et al.2005;Selosse et al.2006;Beiler et al.2015).Southworth et al.(2005)viewed trees as nodes and fungi as links(the so-called phytocentric perspective)and considered that the distribution of potential mycorrhizal links was random with a short tail,implying that all the individuals trees are more or less equal in linking fungi into a potential network.However,from a mycocentric point of view that fungi are nodes and trees are links,certain fungus may act as hubs with frequent connections to the network.Our study supports the phytocentric point;the ECM network was not patchily distributed(Tables 1,2;Figs.1 and 3),but ubiquitous and might be evenly distributed.This fi nding indicates that CMNs are random networks and that all nodes have the same probability of being attached to a link.Our data revealed CMNs were random networks,though rather indirectly,through signi fi cant interdistance correlations of needle15N contents,but insigni fi cant needle15N content differences among distance groups(Tables 1,2).Pickles et al.(2012)reported similar results.Beiler et al.(2010)found that most trees in a multicohort old-growth forest were linked in a scale-free EM network,where large trees served as hubs.Beiler et al.(2015)also found that large mature trees acted as network hubs with a signi ficantly higher node degree compared with smaller trees in Douglas- fi r forests.

    Conclusions

    In natural ecosystem,resource transfers through EM networks are highly complex,the networked fungi and plants interact to govern the magnitude,direction,fate and consequences of resource transfers,which have important consequences for plant communities and may in fl uence plant establishment or growth,intra-and interspeci fi c competition or facilitation,and stand dynamics and succession(Nara 2006;Simard et al.2012,2015;Koide et al.2014).Tracing studies based on15N external labelling and15N natural abundance techniques consistently have found that the direction and magnitude of N transfer is from N2-fi xing,N-fertilized or N-enriched source plants to non-N2fi xing,unfertilized or N-depleted sink plants(He et al.2005,2007;Moyer-Henry et al.2006);however,the net N transfer in EM networks and the spatial distribution of EM networks were not found to be deterministic in most of the studies.We used stable isotope15N labeling method to study the EM networks in a monoculture pine plantation and characterize the spatial patterns of the networks and N transfer among the trees via the network.We concluded that EM networks were ubiquitous and uniformly distributed in the Mongolian pine plantation,the N transfer ef fi ciency was very high and N fractionation was found.Deeply understanding the N transfer model and spatial pattern is important not only analyzing N dynamics and distribution in N-limited ecosystems,but also the role of N in regulating N and C transfers through networks.Because the potential bene fi ts of N transfer mediated by EM networks are great in agricultural and forest systems,more research is warranted on this type of N transfer in the fi eld.

    Albarracín MV,Six J,Houlton BZ,Bledsoe CS(2013)A nitrogen fertilization fi eld study of carbon-13 and nitrogen-15 transfers in ectomycorrhizas ofPinus sabiniana.Oecologia 173:1439–1450

    Bahram M,Harend H,Tedersoo L(2014)Network perspectives of ectomycorrhizal associations.Fungal Ecol 7:70–77

    Barto EK,Monika H,Frank M,Mohney BK,Weidenhamer JD,Rillig MC(2011)The fungal fast lane:common mycorrhizal networks extend bioactive zones of allelochemicals in soils.PLoS ONE 6:e27195

    Barto EK,Weidenhamer JD,Cipollini D,Rillig MC(2012)Fungal superhighways:do common mycorrhizal networks enhance below ground communication?Trends Plant Sci 17:633–637

    Beiler KJ,Durall DM,Simard SW,Maxwell SA,Kretzer AM(2010)Architecture of the wood-wide web:Rhizopogon spp.genets link multiple Douglas- fi r cohorts.New Phytol 185:543–553

    Beiler KJ,Simard SW,Durall DM(2015)Topology of tree–mycorrhizal fungus interaction networks in xeric and mesic Douglas- fir forests.J Ecol 103:616–628

    Bledsoe C,Allen MF,Southworth D(2014)Beyond Mutualism:Complex Mycorrhizal Interactions.In:Lüttge U,Beyschlag W,Cushman J(eds)Progress in Botany,vol 75.Springer,Berlin,pp 311–334

    Booth MG(2004)Mycorrhizal networks mediate overstorey-understorey competition in a temperate forest.Ecol Lett 7:538–546

    Brady NC,Weil RR(2002)The nature and properties of soils,13th edn.Prentice Hall,Upper Saddle River

    Callesen I,Nilsson L,Schmidt I,Vesterdal L,Ambus P,Christiansen J,Ho gbergP Gundersen P(2013)The natural abundance of15N in litter and soil pro fi les under six temperate tree species:N cycling depends on tree species traits and site fertility.Plant Soil 368:375–392

    Cheng CX,Li J,Sun PF(2010)Analyses of the climate change tendency and abrupt climate change in Wuying,Xiaoxing’an Mountain in recent 49 years.Heilongjiang Meteotol 4:9–12

    Corre?a A,Strasser RJ,Martins-Louc??o MA(2008)Response of plants to ectomycorrhizae in N-limited conditions:which factors determine its variation?Mycorrhiza 18:413–427

    Dawson TE,Mambelli S,Plamboeck AH,Templer PH,Tu KP(2002)Stable isotopesin plantecology.Annu Rev EcolSyst 33:507–559

    Fry B(2006)Stable isotope ecology.Springer,New York

    He XH,Critchley C,Bledsoe CS(2003)Nitrogen transfer within and between plants through common mycorrhizal networks(CMNs).Crit Rev Plant Sci 22:531–567

    He XH,Critchley C,Ng H,Bledsoe CS(2005)Nodulated N2- fi xingCasuarina cunninghamianais the sink for net N transfer from non-N2- fi xingEucalyptus maculatavia an ectomycorrhizal

    fungusPisolithussp.usingsupplied as

    ammonium nitrate.New Phytol 167:897–912

    He XH,Horwath WR,Zasoski RJ,Aanderud Z,Bledsoe CS(2007)Nitrogen sink strength of ectomycorrhizal morphotypes ofQuercus douglasii,Q.garryana,andQ.agrifoliaseedlings grown in a northern California oak woodland.Mycorrhiza 18:33–41

    Heaton LLM,López E,Maini PK,Fricker MD,Jones NS(2012)Advection,diffusion and delivery over a network.Phys Rev E Stat Nonlinear Soft Matter Phys 86:021905–021905

    Heijden MGAVD,Horton TR(2009)Socialism in soil?The importance of mycorrhizal fungal networks for facilitation in natural ecosystems.J Ecol 97:1139–1150

    Hobbie EA,Colpaert JV(2003)Nitrogen availability and colonization by mycorrhizal fungi correlate with nitrogen isotope patterns in plants.New Phytol 157:115–126

    Hobbie E,Colpaert J,White M,Ouimette A,Macko S(2008)Nitrogen form,availability,and mycorrhizal colonization affect biomass and nitrogen isotope patterns inPinus sylvestris.Plant Soil 310:121–136

    Hobbie EA,van Diepen LTA,Lilleskov EA,Ouimette AP,Finzi AC,Hofmockel KS(2014)Fungal functioning in a pine forest:evidence from a15N-labeled global change experiment.New Phytol 201:1431–1439

    Ho gberg P,Ho gberg MN,Quist ME,Ekblad ALF,Na sholm T(1999)Nitrogen isotope fractionation during nitrogen uptake by ectomycorrhizal and non-mycorrhizalPinus sylvestris.New Phytol 142:569–576

    Ho gbergP,JohannissonC,YarwoodS,Callesen I,Na sholmT,Myrold DD,Ho gberg MN(2011)Recovery of ectomycorrhiza after‘nitrogen saturation’of a conifer forest.New Phytol 189:515–525

    Knowles RR,Blackburn TH(1993)Nitrogen isotope techniques.Academic Press,San Diego

    Koide RT,Fernandez C,Malcolm G(2014)Determining place and process:functional traits of ectomycorrhizal fungi that affect both community structure and ecosystem function.New Phytol 201:433–439

    Kranabetter JM,Hawkins BJ,Jones MD,Robbins S,Dyer T,Li T(2015)Species turnover(β-diversity)in ectomycorrhizal fungi linked to NH4+uptake capacity.Mol Ecol 24:5992–6005

    Lang C,Finkeldey R,Polle A(2013)Spatial patterns of ectomycorrhizal assemblages in a monospeci fi c forest in relation to host tree genotype.Front Plant Sci 4:103

    Leake JR,Johnson D,Donnelly DP,Muckle GE,Boddy L,Read DJ(2004)Networks of power and in fl uence:the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning.Can J Bot 82:1016–1045

    Mayor J,Schuur EG,Mack M,Hollingsworth T,Ba?a?th E(2012)Nitrogen isotope patterns in Alaskan black spruce re fl ect organic nitrogen sources and the activity of ectomycorrhizal fungi.Ecosystems 15:819–831

    Mayor JR,Mack MC,Schuur EAG(2015a)Decoupled stoichiometric,isotopic,and fungal responses of an ectomycorrhizal black spruce forest to nitrogen and phosphorus additions.Soil Biol Biochem 88:247–256

    Mayor J,Bahram M,Henkel T,Buegger F,Pritsch K,Tedersoo L(2015b)Ectomycorrhizal impacts on plant nitrogen nutrition:emerging isotopic patterns,latitudinal variation and hidden mechanisms.Ecol Lett 18:96–107

    McGuireKL(2007)Commonectomycorrhizalnetworksmaymaintain monodominance in a tropical rain forest.Ecology 88:567–574

    Moyer-Henry KA,Burton JW,Israel DW,Rufty TW(2006)Nitrogen transfer between plants:A15N natural abundance study with crop and weed species.Plant Soil 282:7–20

    Nara K(2006)Ectomycorrhizal networks and seedling establishment during early primary succession.New Phytol 169:169–178

    Nave LE,Nadelhoffer KJ,Moine JM,Diepen LTA,Cooch JK,Dyke NJ(2013)Nitrogen uptake by trees and mycorrhizal fungi in a successional northern temperate forest:insights from multiple isotopic methods.Ecosystems 16:590–603

    Pena R,Polle A(2014)Attributing functions to ectomycorrhizal fungal identities in assemblages for nitrogen acquisition under stress.ISME J 8:321–330

    Pickles BJ,Genney DR,Anderson IC,Alexander IJ(2012)Spatial analysis of ectomycorrhizal fungi reveals that root tip communities are structuredbycompetitive interactions.MolEcol21:5110–5123

    Selosse MA,Richard F,He XH,Simard SW(2006)Mycorrhizal networks:desliaisonsdangereuses?TrendsEcolEvol21:621–628

    Simard SW,Beiler KJ,Bingham MA,Deslippe JR,Philip LJ,Teste FP(2012)Mycorrhizal networks:mechanisms,ecology and modelling.Fungal Biol Rev 26:39–60

    Simard S,Asay A,Beiler K,Bingham M,Deslippe J,He XH,Philip L,Song YY,Teste F(2015)Resource transfer between plants through ectomycorrhizal fungal networks.In:Horton RT(ed)Mycorrhizal networks.Springer,Dordrecht,pp 133–176

    Southworth D,He XH,Swenson W,Bledsoe CS,Horwath WR(2005)Application of network theory to potential mycorrhizal networks.Mycorrhiza 15:589–595

    Teste FP,Simard SW,Durall DM,Guy RD,Jones MD,Schoonmaker AL(2009)Access to mycorrhizal networks and roots of trees:importance for seedling survival and resource transfer.Ecology 90:2808–2822

    Toju H,Yamamoto S,Tanabe AS,Hayakawa T,Ishii HS(2016)Network modules and hubs in plant-root fungal biomes.J R Soc Interface 13(116):20151097.doi:10.1098/rsif.2015.1097

    Wu BY,Nara K,Hogetsu T(2002)Spatiotemporal transfer of carbon-14-labelled photosynthate from ectomycorrhizalPinus densi fl oraseedlings to extraradical mycelia.Mycorrhiza 12:83–88

    99久久中文字幕三级久久日本| 搡女人真爽免费视频火全软件| 国产在线男女| 久久久久久久久中文| 一个人观看的视频www高清免费观看| 成年女人看的毛片在线观看| 国产在视频线在精品| 美女cb高潮喷水在线观看| 淫秽高清视频在线观看| 亚洲成人精品中文字幕电影| 欧美日韩一区二区视频在线观看视频在线 | 国产一区有黄有色的免费视频 | 3wmmmm亚洲av在线观看| 亚洲无线观看免费| 亚洲av电影不卡..在线观看| 亚洲国产精品成人久久小说| 日韩成人av中文字幕在线观看| 97人妻精品一区二区三区麻豆| 少妇熟女aⅴ在线视频| 尤物成人国产欧美一区二区三区| 欧美丝袜亚洲另类| 最近手机中文字幕大全| 亚洲婷婷狠狠爱综合网| 免费观看的影片在线观看| 一区二区三区乱码不卡18| videossex国产| 成人无遮挡网站| 舔av片在线| 九色成人免费人妻av| 97在线视频观看| 国产亚洲最大av| 免费大片18禁| 一个人观看的视频www高清免费观看| 久久久久久久久大av| 天堂中文最新版在线下载 | 青春草视频在线免费观看| 国产精品99久久久久久久久| 91aial.com中文字幕在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 中文字幕av成人在线电影| 最近最新中文字幕免费大全7| 免费看美女性在线毛片视频| 成年免费大片在线观看| 亚洲性久久影院| 在线观看av片永久免费下载| 亚洲最大成人av| 男插女下体视频免费在线播放| 欧美3d第一页| 成人高潮视频无遮挡免费网站| 男的添女的下面高潮视频| 五月玫瑰六月丁香| 中文乱码字字幕精品一区二区三区 | 亚洲人与动物交配视频| 麻豆一二三区av精品| 日本免费在线观看一区| 五月玫瑰六月丁香| 在现免费观看毛片| 久久精品熟女亚洲av麻豆精品 | 亚洲第一区二区三区不卡| 九九久久精品国产亚洲av麻豆| 午夜亚洲福利在线播放| 国产精品久久久久久久久免| 国产精品一区二区三区四区免费观看| 日韩欧美精品v在线| 最近视频中文字幕2019在线8| 性插视频无遮挡在线免费观看| 啦啦啦啦在线视频资源| 黄色一级大片看看| 久久婷婷人人爽人人干人人爱| 听说在线观看完整版免费高清| 最后的刺客免费高清国语| 性色avwww在线观看| 午夜精品国产一区二区电影 | 国产精品精品国产色婷婷| 国产美女午夜福利| 91精品一卡2卡3卡4卡| 国产爱豆传媒在线观看| 免费看美女性在线毛片视频| 亚洲av不卡在线观看| 国产精品乱码一区二三区的特点| 在线观看一区二区三区| 午夜老司机福利剧场| 国产亚洲av片在线观看秒播厂 | 午夜福利高清视频| 18禁在线播放成人免费| 国产精品久久电影中文字幕| 日本-黄色视频高清免费观看| 亚洲综合色惰| 简卡轻食公司| 麻豆成人av视频| 国产精品无大码| 狠狠狠狠99中文字幕| 啦啦啦啦在线视频资源| 黄色日韩在线| 又粗又硬又长又爽又黄的视频| 2021少妇久久久久久久久久久| 亚洲久久久久久中文字幕| 免费av不卡在线播放| 久久久久精品久久久久真实原创| 天美传媒精品一区二区| 高清在线视频一区二区三区 | 听说在线观看完整版免费高清| 久久精品夜色国产| 国内精品一区二区在线观看| 免费电影在线观看免费观看| 男人和女人高潮做爰伦理| 欧美97在线视频| 中文字幕av成人在线电影| av在线天堂中文字幕| 91精品国产九色| 99久久九九国产精品国产免费| 欧美日韩在线观看h| 最近中文字幕高清免费大全6| 又爽又黄无遮挡网站| 国内精品一区二区在线观看| 亚洲自偷自拍三级| 狂野欧美白嫩少妇大欣赏| kizo精华| 99久久成人亚洲精品观看| 免费av不卡在线播放| 黑人高潮一二区| av女优亚洲男人天堂| 欧美变态另类bdsm刘玥| 久久精品国产自在天天线| 久久韩国三级中文字幕| 久久久a久久爽久久v久久| 男的添女的下面高潮视频| 一级二级三级毛片免费看| 免费看日本二区| 国产成人freesex在线| 热99在线观看视频| 美女cb高潮喷水在线观看| 久久这里有精品视频免费| 欧美又色又爽又黄视频| 成人无遮挡网站| 成人综合一区亚洲| 精品人妻视频免费看| 卡戴珊不雅视频在线播放| 国产69精品久久久久777片| 欧美不卡视频在线免费观看| 又粗又硬又长又爽又黄的视频| 1024手机看黄色片| 免费看光身美女| 精品一区二区免费观看| 精品一区二区三区视频在线| 国产精品乱码一区二三区的特点| 七月丁香在线播放| 51国产日韩欧美| 欧美激情国产日韩精品一区| 亚洲18禁久久av| 国产美女午夜福利| 三级男女做爰猛烈吃奶摸视频| 26uuu在线亚洲综合色| 嫩草影院入口| 午夜免费男女啪啪视频观看| 九九久久精品国产亚洲av麻豆| 久久午夜福利片| 亚洲人成网站高清观看| 成人三级黄色视频| 久久国内精品自在自线图片| 欧美日韩国产亚洲二区| 色吧在线观看| 超碰97精品在线观看| 国产精品一区二区在线观看99 | 久久久久久久午夜电影| 嘟嘟电影网在线观看| 国产高清不卡午夜福利| 成人特级av手机在线观看| 嘟嘟电影网在线观看| 人体艺术视频欧美日本| 综合色丁香网| 国产成人精品一,二区| 91午夜精品亚洲一区二区三区| 亚洲精品国产成人久久av| 成人亚洲精品av一区二区| 国产熟女欧美一区二区| 日本爱情动作片www.在线观看| 中文字幕制服av| 夜夜看夜夜爽夜夜摸| 色哟哟·www| 蜜桃亚洲精品一区二区三区| 美女脱内裤让男人舔精品视频| 在线免费观看的www视频| 三级毛片av免费| 国产成人freesex在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久久久久国产a免费观看| 麻豆av噜噜一区二区三区| 在线观看66精品国产| 麻豆国产97在线/欧美| 女人被狂操c到高潮| 色网站视频免费| АⅤ资源中文在线天堂| 亚洲不卡免费看| 永久免费av网站大全| 在线观看美女被高潮喷水网站| 欧美高清性xxxxhd video| 大话2 男鬼变身卡| 免费搜索国产男女视频| 18+在线观看网站| 99久久精品热视频| 非洲黑人性xxxx精品又粗又长| 麻豆成人av视频| 亚洲av.av天堂| 久久精品夜色国产| 三级男女做爰猛烈吃奶摸视频| 亚洲av免费在线观看| 国产精品国产三级国产专区5o | 亚洲欧美清纯卡通| 日韩国内少妇激情av| 国产私拍福利视频在线观看| 秋霞在线观看毛片| 日本黄大片高清| 日本av手机在线免费观看| 观看免费一级毛片| 在线观看一区二区三区| 秋霞在线观看毛片| 三级国产精品欧美在线观看| 性插视频无遮挡在线免费观看| 国产成人精品一,二区| 国产真实伦视频高清在线观看| 六月丁香七月| 欧美激情国产日韩精品一区| 日韩三级伦理在线观看| 中文字幕制服av| 国内少妇人妻偷人精品xxx网站| 超碰av人人做人人爽久久| 老女人水多毛片| 日产精品乱码卡一卡2卡三| 能在线免费看毛片的网站| 欧美高清成人免费视频www| 国产伦精品一区二区三区视频9| 1024手机看黄色片| 看免费成人av毛片| 国产一区二区亚洲精品在线观看| 亚洲久久久久久中文字幕| 91午夜精品亚洲一区二区三区| 嫩草影院新地址| 精品久久久噜噜| 亚洲成人中文字幕在线播放| 免费黄色在线免费观看| 欧美三级亚洲精品| 欧美激情在线99| 麻豆一二三区av精品| 亚洲av.av天堂| 婷婷色av中文字幕| 中文字幕av成人在线电影| 最后的刺客免费高清国语| 麻豆成人av视频| 长腿黑丝高跟| 国产精品麻豆人妻色哟哟久久 | 国产精品女同一区二区软件| 又黄又爽又刺激的免费视频.| 亚洲精品乱码久久久久久按摩| 国产黄片视频在线免费观看| 国产成人午夜福利电影在线观看| 亚洲精品乱久久久久久| 直男gayav资源| 日本免费一区二区三区高清不卡| 高清av免费在线| 美女内射精品一级片tv| 美女大奶头视频| 欧美精品国产亚洲| 嫩草影院新地址| 男人狂女人下面高潮的视频| 亚洲人成网站高清观看| 91aial.com中文字幕在线观看| 热99在线观看视频| 国产精品爽爽va在线观看网站| 久久久久九九精品影院| 国产又黄又爽又无遮挡在线| 免费观看在线日韩| 久久人人爽人人爽人人片va| 麻豆成人午夜福利视频| 国产伦精品一区二区三区四那| 高清午夜精品一区二区三区| 爱豆传媒免费全集在线观看| 禁无遮挡网站| 国产在视频线在精品| 午夜福利在线观看免费完整高清在| 国产免费一级a男人的天堂| 日韩三级伦理在线观看| av黄色大香蕉| 热99在线观看视频| 蜜桃久久精品国产亚洲av| 免费看a级黄色片| 国产精品熟女久久久久浪| 网址你懂的国产日韩在线| 乱人视频在线观看| 国产在线男女| 亚洲av福利一区| 一卡2卡三卡四卡精品乱码亚洲| 国产极品精品免费视频能看的| 免费大片18禁| 国产精品不卡视频一区二区| 男女国产视频网站| 日韩一区二区视频免费看| 七月丁香在线播放| 久久久久久久久久久丰满| 亚洲欧美日韩无卡精品| 久久精品国产亚洲网站| 午夜日本视频在线| 简卡轻食公司| 亚洲av日韩在线播放| 毛片一级片免费看久久久久| www.av在线官网国产| 男女边吃奶边做爰视频| 免费观看精品视频网站| 亚洲av福利一区| 如何舔出高潮| 亚洲欧美精品专区久久| 熟女人妻精品中文字幕| 国产高潮美女av| videossex国产| 黄色配什么色好看| 日日干狠狠操夜夜爽| 人人妻人人看人人澡| 99在线人妻在线中文字幕| 亚洲天堂国产精品一区在线| 高清日韩中文字幕在线| 亚洲精品一区蜜桃| 最新中文字幕久久久久| 99热这里只有精品一区| 亚洲欧洲国产日韩| 欧美成人午夜免费资源| 午夜a级毛片| 美女高潮的动态| 神马国产精品三级电影在线观看| 老司机影院成人| 99视频精品全部免费 在线| 日日摸夜夜添夜夜爱| 特级一级黄色大片| 搡老妇女老女人老熟妇| 亚洲欧美日韩东京热| av在线天堂中文字幕| 18+在线观看网站| 国产成人福利小说| 美女被艹到高潮喷水动态| 日韩三级伦理在线观看| 精品久久久噜噜| 亚洲av免费在线观看| 级片在线观看| 国产私拍福利视频在线观看| 国产又黄又爽又无遮挡在线| 黑人高潮一二区| 亚洲天堂国产精品一区在线| 丰满人妻一区二区三区视频av| 99热这里只有是精品在线观看| 看十八女毛片水多多多| 少妇人妻一区二区三区视频| 免费观看精品视频网站| 精品一区二区三区人妻视频| 我要看日韩黄色一级片| 成人亚洲精品av一区二区| 国产精品综合久久久久久久免费| 亚洲伊人久久精品综合 | 69人妻影院| 99久久成人亚洲精品观看| 在线观看66精品国产| 亚洲内射少妇av| a级毛色黄片| 色网站视频免费| 日本免费一区二区三区高清不卡| 久久鲁丝午夜福利片| 亚洲精品乱码久久久久久按摩| 久久久成人免费电影| 亚洲高清免费不卡视频| 精品久久久久久久久久久久久| 国产精品国产高清国产av| 色吧在线观看| 国产精品久久久久久久久免| 一级黄色大片毛片| 久久久久久久午夜电影| 久热久热在线精品观看| 欧美区成人在线视频| 精品久久国产蜜桃| 色视频www国产| 老司机影院毛片| 成年女人永久免费观看视频| 亚洲av不卡在线观看| 成人毛片60女人毛片免费| av在线播放精品| 免费人成在线观看视频色| 五月伊人婷婷丁香| 日韩亚洲欧美综合| 久久鲁丝午夜福利片| 久久人人爽人人爽人人片va| 色视频www国产| 国产午夜福利久久久久久| 免费看美女性在线毛片视频| 国产一区有黄有色的免费视频 | 日本-黄色视频高清免费观看| 午夜福利在线在线| av国产久精品久网站免费入址| 欧美一级a爱片免费观看看| 我的老师免费观看完整版| 能在线免费看毛片的网站| 欧美不卡视频在线免费观看| 在线观看美女被高潮喷水网站| 亚洲av成人精品一区久久| 草草在线视频免费看| 三级毛片av免费| 男的添女的下面高潮视频| 国产亚洲精品久久久com| 国产精品一区二区三区四区免费观看| 有码 亚洲区| 观看免费一级毛片| 少妇被粗大猛烈的视频| 秋霞在线观看毛片| 精品一区二区三区人妻视频| 一级毛片我不卡| 国产精品国产高清国产av| 成年女人永久免费观看视频| 亚洲精品456在线播放app| 97超碰精品成人国产| 哪个播放器可以免费观看大片| 欧美激情在线99| 麻豆一二三区av精品| 热99在线观看视频| 午夜激情欧美在线| 黄色一级大片看看| 国产精品av视频在线免费观看| 国产午夜精品论理片| 男女边吃奶边做爰视频| 欧美97在线视频| 色吧在线观看| 亚洲不卡免费看| 久久精品国产自在天天线| 麻豆乱淫一区二区| 免费av不卡在线播放| 日韩强制内射视频| 成人美女网站在线观看视频| 国产精品av视频在线免费观看| 亚洲四区av| 白带黄色成豆腐渣| 成人特级av手机在线观看| 高清毛片免费看| 久久久亚洲精品成人影院| 欧美激情在线99| 国产伦精品一区二区三区四那| 成人三级黄色视频| 国产麻豆成人av免费视频| 中文亚洲av片在线观看爽| 99久久无色码亚洲精品果冻| 亚洲av二区三区四区| 成人无遮挡网站| 日本黄大片高清| 午夜激情福利司机影院| 国产不卡一卡二| 又爽又黄a免费视频| 国产亚洲91精品色在线| 成人午夜精彩视频在线观看| 最近中文字幕高清免费大全6| 国产精品乱码一区二三区的特点| 观看美女的网站| 啦啦啦韩国在线观看视频| 99热网站在线观看| 午夜福利成人在线免费观看| 日韩av不卡免费在线播放| 亚洲国产色片| 国产一级毛片七仙女欲春2| 免费观看的影片在线观看| 国产精品1区2区在线观看.| 亚洲欧美日韩卡通动漫| 亚洲性久久影院| 噜噜噜噜噜久久久久久91| 精品久久久噜噜| 最近最新中文字幕免费大全7| 女人被狂操c到高潮| 只有这里有精品99| 亚洲精品乱码久久久v下载方式| 亚洲精品久久久久久婷婷小说 | 真实男女啪啪啪动态图| 久久久久久伊人网av| 日本三级黄在线观看| 男人舔女人下体高潮全视频| 亚洲精品456在线播放app| 午夜日本视频在线| 中文乱码字字幕精品一区二区三区 | 午夜福利成人在线免费观看| 国产精品福利在线免费观看| 人妻系列 视频| 亚洲精品久久久久久婷婷小说 | 国产精品野战在线观看| 九色成人免费人妻av| 国产探花在线观看一区二区| 国产精品一区二区三区四区久久| 久久久久网色| 一级av片app| 午夜日本视频在线| 亚洲国产精品成人久久小说| av在线蜜桃| 春色校园在线视频观看| 九九在线视频观看精品| 免费看美女性在线毛片视频| av专区在线播放| 亚洲av免费在线观看| 别揉我奶头 嗯啊视频| 亚洲怡红院男人天堂| 午夜精品国产一区二区电影 | 国产精品女同一区二区软件| 十八禁国产超污无遮挡网站| 亚洲精品亚洲一区二区| 中文乱码字字幕精品一区二区三区 | 最近手机中文字幕大全| 中文亚洲av片在线观看爽| 99九九线精品视频在线观看视频| 欧美变态另类bdsm刘玥| a级毛片免费高清观看在线播放| 成人美女网站在线观看视频| 黑人高潮一二区| 大又大粗又爽又黄少妇毛片口| 免费av毛片视频| 老师上课跳d突然被开到最大视频| 少妇被粗大猛烈的视频| 欧美极品一区二区三区四区| www日本黄色视频网| 特大巨黑吊av在线直播| 只有这里有精品99| 又爽又黄无遮挡网站| 黄片wwwwww| 高清毛片免费看| 亚洲av成人精品一二三区| 成人av在线播放网站| 国产欧美日韩精品一区二区| 天天一区二区日本电影三级| 少妇猛男粗大的猛烈进出视频 | 国产男人的电影天堂91| 国产日韩欧美在线精品| 日本猛色少妇xxxxx猛交久久| videos熟女内射| av免费在线看不卡| 国产免费又黄又爽又色| 一边亲一边摸免费视频| 一级毛片aaaaaa免费看小| 床上黄色一级片| 亚洲成av人片在线播放无| 美女xxoo啪啪120秒动态图| 免费看光身美女| 我要看日韩黄色一级片| 少妇熟女aⅴ在线视频| 免费观看性生交大片5| 三级男女做爰猛烈吃奶摸视频| 毛片一级片免费看久久久久| 国产伦理片在线播放av一区| 观看美女的网站| 99久久九九国产精品国产免费| 在线观看美女被高潮喷水网站| 欧美高清性xxxxhd video| 天堂av国产一区二区熟女人妻| 欧美日韩在线观看h| 国产黄色视频一区二区在线观看 | 91av网一区二区| 亚洲精品456在线播放app| 国产一区二区三区av在线| 晚上一个人看的免费电影| 久久精品夜夜夜夜夜久久蜜豆| 桃色一区二区三区在线观看| 国产极品天堂在线| 啦啦啦啦在线视频资源| 欧美日韩精品成人综合77777| 又爽又黄无遮挡网站| 男人舔女人下体高潮全视频| 只有这里有精品99| 国产综合懂色| 国产黄色小视频在线观看| 麻豆久久精品国产亚洲av| 成人亚洲精品av一区二区| 久久久久久久午夜电影| 夫妻性生交免费视频一级片| 免费在线观看成人毛片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久久久久大精品| 中文资源天堂在线| 日日摸夜夜添夜夜爱| 全区人妻精品视频| 亚洲av免费高清在线观看| 成人毛片a级毛片在线播放| 三级国产精品片| 亚洲欧美日韩无卡精品| 中文字幕制服av| 亚洲av免费在线观看| 最近视频中文字幕2019在线8| 男人狂女人下面高潮的视频| 26uuu在线亚洲综合色| 又爽又黄a免费视频| 少妇的逼好多水| 久久久久久久久久成人| 免费搜索国产男女视频| 国产色爽女视频免费观看| 综合色av麻豆| 中文在线观看免费www的网站| av免费在线看不卡| 久久这里有精品视频免费| 免费看美女性在线毛片视频| 亚洲成色77777| av卡一久久| 一个人看视频在线观看www免费| 久久99热这里只频精品6学生 | 大香蕉久久网| 日韩欧美精品免费久久| 日韩av不卡免费在线播放| 国产人妻一区二区三区在| 少妇的逼水好多| 午夜亚洲福利在线播放| 天堂网av新在线| 中国国产av一级| 国产精品99久久久久久久久| 能在线免费看毛片的网站| 亚洲成人av在线免费| 一级毛片我不卡| 一区二区三区高清视频在线| 又爽又黄无遮挡网站| 日韩欧美三级三区| 亚洲成av人片在线播放无|