• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimal and synchronized germination of Robinia pseudoacacia,Acacia dealbata and other woody Fabaceae using a handheld rotary tool:concomitant reduction of physical and physiological seed dormancy

    2018-03-19 05:07:59NuriaPedrolCarolinaPuigAntoniopezNogueiraMarPardoMurasLuGonzlezPabloSouzaAlonso
    Journal of Forestry Research 2018年2期

    Nuria Pedrol ?Carolina G.Puig ?Antonio López-Nogueira ?María Pardo-Muras ?Luís González?Pablo Souza-Alonso

    Introduction

    Seed germination takes place when conditions for establishing a new plant generation are suitable.Prior to germination and to complete this process,a widespread‘block’in the plant kingdom,seed dormancy,determines the developing processes(Finch-Savage and Leubner-Metzger 2006).This plays a key role in plant evolution since a dormant seed will not germinate in a speci fi ed period of time under any combination of physical environmental factors.Hence,seeds may survive dormant for many years and germinate only when ideal conditions exist(Wali 1999).This process can be viewed as an evolved dispersion strategy with a temporal pattern.

    Dormancy and germination depend on seed structures,especially those surrounding the embryo,and factors affecting the embryo growth potential(Koornneef et al.2002).The seed external cover in angiosperms shows high diversities,including a wide range of adaptations to face adverse environmental conditions.The function of the seed coat is to protect the embryo and endosperm from desiccation,mechanical injury,unfavourable temperatures and attacks by bacteria,fungi and insects(Kelly et al.1992).Seeds are prevented from completing germination because the embryo is constrained by its surrounding structure,a phenomenon classi fi ed by Bewley(1997)ascoat enhanced dormancy,separating this from theembryo dormancy[classi fi cation of seed dormancy types may be reviewed in Baskin and Baskin(2004)].Embryo dormancy is characterized by a physiological inhibition of embryo growth and primordia protrusion,whereas in coat dormancy,the obstruction is conferred by the covering layers.Both embryo and coat dormancies are components of physiological dormancy and their sum and interaction determine the degree of‘whole-seed’physiological dormancy(Finch-Savage and Leubner-Metzger 2006).

    The transition from dormancy to germination is a critical control point leading to the initiation of vegetative growth.Physiological processes that overcome seed dormancy include alterations in abscisic acid(ABA)and gibberellin(GA)synthesis and signalling,and appear to be similar among different species(Bentsink et al.2010;Linkies et al.2010).Speci fi cally,the net result of the dormant state seems to be highly reliant on general ABA/GA ratios(Finch-Savage and Leubner-Metzger 2006).

    Outside the seed,many environmental factors control germination and dormancy such as light,temperature and the duration of storage(after ripening)(Koornneef et al.2002)but temperature is widely accepted as one of the major factors controlling the degree of dormancy(Baskin and Baskin 2004).Germination has a wide range of responses to environmental conditions and a range of conditions exists in which seeds from the same species germinate and others do not(Mayer and Poljakoff-Mayber 1982).

    The Fabaceae is one of the largest families of plants with a worldwide distribution and has a major relevance in agriculture and agroforestry.Legumes are key components in ecosystem processes because of their association withRhizobiumbacteria,the main source of N2(nitrogen gas)fi xation in soils.They are also very useful for their role as N suppliers in agriculture but also for the restoration of degraded areas(Bradshaw 1997;Chaer et al.2011).This economically important family includes genera of nonedible woody legumes used worldwide as ornamental trees and shrubs(Acacia,Delonix,Gleditsia,Laburnum,MimosaandRobinia),industrially farmed for dyes(Indigofera)and gums(Acacia),and for timber production(Acacia,Castanospermum,DalbergiaandRobinia).

    A hard seed coat impermeable to water is a typical feature of several species belonging to this taxonomic group,a valuable attribute for plant survival under adverse conditions(Teketay 1996;Smy kal et al.2014).Moreover,under natural conditions some leguminous species exploit their sprouting ability,decreasing their dependency on sexual reproduction in different degrees.Consequently,their germination percentages are usually lower than those of species which only reproduce sexually(Tárrega et al.1992).In nature,seed scari fi cation generally appears as one of the main processes favouring legume germination(Peinetti et al.1993;Watterson and Jones 2006;Twigg et al.2009),hence numerous efforts have been carried out to reproduce environmental factors triggering dormancy release,i.e.temperature(Tárrega et al.1992;Herranz et al.1998),chemical or mechanical scari fi cation(Janzen 1981;Zare etal.2011;Nongrum and Kharlukhi2013;Abudureheman et al.2014),mechanical abrasion(Vilela and Ravetta 2001),a combination of factors(Teketay 1996;Tigabu and Oden 2001;Sy et al.2001;Patane`and Gresta 2006)and even percussion(Khadduri and Harrington 2002;Mondoni et al.2013).In these cases,scari fi cation generally increased germination rates somewhat moderately.Nonetheless,current laboratory and greenhouse experimentation, fi eld trials,quality control by seed companies or in seed banks or plant nurseries for afforestation,timber and the biomass industry,as well as revegetation programs,require low-cost and highly reproducible methods to remove dormancy and to improve and synchronize germination at both small-and industrial scales.

    In recent years,there have been a few approaches using rotary tools(also calledelectric grinders)as a scari fi cation method with remarkable results(Cruz and de Carvalho 2006;Ghantous and Sandler 2012;Dapont et al.2014).In this study,we aim to ameliorate the germination rates of several woody Fabaceae species through the application of a rotary tool by comparing its effectiveness with other conventional dormancy-breaking methods.We include different genera and life forms of species of ecological and economical importance such asRobinia pseudoacaciaL.,Acacia dealbataLink,Cytisus scoparius(L.)Link,C.multi fl orus(L’Hér.)Sweet andUlex europaeusL.Finally,a mode of action for the proposed method is suggested.

    Materials and methods

    Selection of plant species

    From the Fabaceae family,some woody species having hard seed coats were selected,attesting to reported evidence of dif fi culties in obtaining adequate germination:R.pseudoacacia,A.dealbata,C.scoparius,C.multi fl orusandU.europaeus.

    Black locust(R.pseudoacacia)is native to North America and planted for wood and energy purposes globally,generating biomass yields up to 14 Mg ha-1year-1(Pleguezuelo et al.2014;Straker et al.2015).It is also widely used in afforestation and soil restoration because of its ability to fi x nitrogen,tolerate stress,and sequester carbon.Moreover,the species is able to phytoremediate hydrocarbon-contaminated sites(Tischerand Hübner 2002)and bioaccumulate trace elements(Tzvetkova and Petkova 2015).It has been studied for the antioxidant potency of its fl owers(Sarikurkcu et al.2015).Silver wattle or mimosa(A.dealbata)is native to Australia and is also globally used for afforestation purposes,being a promising energy crop with low requirements and high productivity(Grif fi n et al.2011;Kull et al.2011).Because of mass winter fl owering and attractive foliage and form,it is used as a commercial garden and landscaping species,and the oil from its fl owers is used in the perfume industry(Grif fi n et al.2011;Kull et al.2011).This species has been also appraised for the production of chemicals,biofuels and pulp(Yá?ez et al.2014;Pinto et al.2015).Otherwise,both legume species are highly invasive and are recognized as potential threats to natural ecosystems(Sheppard et al.2006;Lorenzo et al.2010;Richardson and Rejmánek 2011).

    Scotch broom(C.scoparius)is widely distributed across Europe while white broom(C.multi fl orus)is endemic to the Iberian Peninsula.Gorse(U.europaeus)is a shrub native to the western coast of continental Europe and to the British Isles and a characteristic component of acid heathland vegetation.Lectins puri fi ed fromU.europaeusseeds are key tools for cancer research(Rüdiger and Gabius 2001)and the species has been satisfactorily evaluated as a possible source of xylans(Ligero et al.2011).In their native ranges,U.europaeusandC.scopariushave been traditionally used as a source of protein in animal food,and are highly valued for the rehabilitation of degraded soils(Pérez-Fernández et al.2016).Further,because of their worldwide use as ornamentals,these shrubby legumes have become critical invasive plants(Richardson and Hill.1998;Sheppard etal.2002;Richardson and Rejmánek 2011),and thus have received increased attention as sources of inexpensive biomass(Pérez et al.2014).For our experiments, fi eld collected seeds ofC.scoparius,C.multi fl orus,andU.europaeuswere purchased from the Zulueta Corporación(Navarra,Spain)whereas seeds ofR.pseudoacaciaandA.dealbatawere purchased from Semillas Montaraz,S.A.(Madrid,Spain),and stored at 4°C until used.

    Experimental design

    Seeds were subject to standardad hoctreatments to break dormancy and improve germination.Before the experiment,they were surface sterilized in 1% sodium hypochlorite for 5 min.to avoid surface fungi,and then thoroughly rinsed in distilled water.Seeds of the shrub species were subjected to three different physical treatments with reported ef fi cacy(Abdallah et al.1989;Tárrega et al.1992):the fi rst one consisted of soaking the seeds in boiling distilled water(100°C)for 5 min.In the second and third treatments,seeds were subjected to dry heat in an oven at 100 °C for 5 min.,or at 120 °C for 3 min.,respectively.Seeds of the tree species followed the supplier-recommended protocol,being immersed in boiling water and then quickly introduced to an ice bath.Moreover,seeds ofR.pseudoacaciawere previously soaked in distilled water for 48 h.In addition,seeds of all species were subjected to ourad hocmechanical treatment performed using a handheld rotary tool Ryobi?HT20VS(hereafter HRT),equipped with a sanding shank accessory of 13 mm×13 mm and an 80-grit sanding band.Seeds were deposited into a 100 mL glass beaker fi lled to one cm(Fig.1),and then subjected to the abrasive effect of the HRT(input power 100 W,no-load speed 6000 rpm)for 5 min.

    For each treatment and species,twenty- fi ve seeds were placed in 9 cm Petri dishes with fi lter paper moistened with 5 mL of distilled water.Petri dishes were sealed with Para fi lm?to prevent evaporation and randomly placed in a growth chamber at 19 °C(±1 °C)in the dark,19 °C being the optimum germination temperature for many woody legumes(ISTA 1999).A total of 5 replicates per treatment and species were prepared.For each species, fi ve extra dishes containing the same number of untreated seeds were used as a control treatment.Germination(radicle protrusion of 1 mm,Mayer and Poljakoff-Mayber 1982)was recorded daily until no further visible radical emergence was observed.After 15 days,the total germination(Gt)percentage was calculated.Additionally,germination indices based on primary data were calculated(álvarez-Iglesias et al.2014)to determine the germination kinetics:speed of germination(S),speed of accumulated germination(AS),and the coef fi cient of the rate of germination(CRG),following Chiapusio et al.(1997)and De Bertoldi et al.(2009).

    Fig.1 a Handheld rotary tool(HRT);b glass beaker fi lled with seeds and visual protocol of scari fi cation;c detail of the rotary head of the HRT equipped with the sanding shank accessory and the 80 grit sanding band

    Statistics

    Replicated experiments were disposed in a completely randomized design.Data were fi rst tested for normality by the Kolmogorov–Smirnov test and homogeneity of variances by Levene’s test.For each species,germination percentages(Gt)and germination indices were statistically analyzed by one-way ANOVA and LSD test for post hoc multiple comparisons when variances were homogeneous.In the case of heteroscedasticity,variance was analyzed by Kruskall–WallisHtest and Tamhane’sT2for post hoc multiple comparisons.All analyses were carried out using the IBM SPSS Statistics 19.0 software package(IBM SPSS Inc.,Chicago,IL,USA).

    Results

    The rotation of the HRT head over 5 min.produced a gradual warming due to the friction of the sanding band and the movement of the seeds.Temperatures measured inside the beaker rose from room temperature to 50°C(±5 °C).

    Figure 2a shows the results of scari fi cation on the seeds of the shrub species.Only the HRT treatment was able to increase signi fi cantly the germination rates in comparison with the control.In theCytisusspecies,the application of HRT produced a conspicuous increase in Gtof 273%(P≤0.001)forC.scopariusand 175%(P≤0.001)forC.multi fl orus.No other method was effective to improve germination.Moreover,dry heat at 120°C completely impeded seed germination of the three shrub species,whereas germination was inhibited by boiling water to different degrees.

    The results for the tree seeds are summarized in Fig.2b.Despite recommended scari fi cation methods were effective onR.pseudoacaciaandA.dealbata,the use of HRT achieved the best results,thus accomplishing Gtvalues over 90%(Fig.2b)for both species.Noteworthy,HRT enhanced seed germination ofA.dealbatafrom 3 to 98%(P≤0.001).

    The complementary germination indices S,AS,CRG were calculated for rates above zero(Table 1),as their values are null when germination does not occur.Very similar results were obtained from S and AS indices,whereas CRG gave poorer information.The application of HRT was the only treatment that signi fi cantly increased the germination ofC.scoparius,C.multi fl orusandU.europaeus,whereas conventional treatments that allowed germination slowed down the germination speed.In the case ofR.pseudoacaciaandA.dealbata,both conventional and HRT treatments accelerated germination signi fi cantly.

    Fig.2 Effects of different scari fi cation methods on seed germination of fi ve woody Fabaceae species:a shrubs and b trees.Asterisks indicate signi fi cant differences among treatments at***P≤0.001,**P ≤ 0.01,and*P ≤ 0.05(ANOVA or Kruskall–Wallis H).For each species,bars labelled with distinct letters are signi fi cantly different(P ≤ 0.05,LSD or Tamhane’s T2 test).Error bars represent SD.HRT,handheld rotary tool

    Discussion

    The rotary tool has been successfully evaluated by Cruz and de Carvalho(2006)and Dapont et al.(2014)for species ofSchizolobium,and forCuscutaspp.(Ghantous and Sandler 2012).To the best of our knowledge,this is the fi rst time that a handheld rotary tool has been used to disrupt dormancy inR.pseudoacacia,A.dealbata,C.scoparius,C.multi fl orusandU.europaeus.

    As expected,germination rates of the selected species were low in the absence of any scari fi cation treatment.Shrub species showed a signi fi cant dependence on dormancy,with germination rates lower than 50%under all conventional treatments.Contrary to expectations,methods from the literature did not improve germination rates.High temperatures have been suggested as promoters of germination in selected species since seasonal fi res are a common phenomenon in Mediterranean-type ecosystems(Tárrega et al.1992;Sheppard et al.2006).Tárrega et al.(1992)obtained increased seed germination rates after the application of thermal treatments onC.scopariusseeds.Herranz et al.(1998),working with theCytisusgenus,found signi fi cant enhanced germination under mechanical or thermal scari fi cation treatments.A?orbe et al.(1990)also found positive effects of seed coat abrasion onC.multi fl orusgermination.In general,mechanical and thermal scari fi cation produced different effects on seed coat structures in species with hard coated seeds,causing differences in germination rates(Thanos et al.1992).Differential treatment effects could be linked with intraspeci fi c variations.In distinct ecotypes within the same species,natural variations in key regulatory genes resulting from selection during adaptation to speci fi c environments(among other cues and responses)may be operating,producing different degrees of dormancy(Finch-Savage and Leubner-Metzger 2006).Hanley(2009)found variable temperature responses byC.scopariusseeds dependant on their origin.Nonetheless,in our study we did not fi nd positive effects in comparison with controls after high temperature exposure;to the contrary,seed germination was inhibited at 120°C.Other authors have reported serious damage to seeds ofCytisussubjected to intense thermal shocks(Herranz et al.1998;Rivas et al.2006),whereas the lethal nature of temperatures over 100°C has been described forU.europaeus(Pereiras et al.1985).

    Table 1 Effects of different scari fi cation methods on the germination indices of fi ve woody legume species compared to control

    Besides dry heat,boiling water damagedC.scopariusseeds,impeding germination.Moreover,germination inC.multi fl orusandU.europaeuswas not signi fi cantly promoted by hot water compared to the controls.Previously,Herranz et al.(1998),working on theCytisusgenus found no signi fi cantdifferencesin germination afterseed immersion in boiling water,whereas Abdallah et al.(1989)reported an enhancement in the total germination ofC.scopariusseeds.Other authors indicated abnormal growth of herbaceous legumes after immersion in hot water(Mondoni et al.2013).Otherwise,R.pseudoacaciaandA.dealbataseed germinations were signi fi cantly enhanced after boiling water treatment,according to previous fi ndings(Toda and Ishikawa 1951;Doran 1986).Within the genusAcacia,different species have previously shown variable responses to the application of different scari fication methods,including boiling water,but also other techniques such as sulfuric acid and mechanical scari fi cation;in all cases,germination was enhanced in treated seeds(Ghassali et al.2012).Seeds ofAcaciashow poor germination in the absence of scari fi cation but have good tolerance to different treatments.Germination promoted by such a wide range of scari fi cation methods can in nature be translated as further opportunities to establish their seedlings(Watterson and Jones 2006).

    The treatment imposed by the HRT,in comparison with conventional methods,was highly effective to overcome the‘block’imposed by seed dormancy in the evaluated species.In our opinion,the effectiveness of the HRT is due to the combined action of rapid mechanical abrasion and a gentle dry thermal scari fi cation.As the fi rst step of a proposed combined mode of action,sandpaper movement would diminish coat thickness,reducing mechanical constraints of the water-resistant cuticle(Dapont et al.2014),allowing the imbibition or absorption by the dry seed,the onset of gas exchange,and subsequently facilitate radicle protrusion.Secondly,the change of temperatures might affect both dormancy and germination.Temperature increases have been proposed to directly affect embryo development(i.e.,hypocotyl elongation),probably acting on breaking dormancy through alterations in ABA/GA synthesis and signalling pathway(Baskin and Baskin 2004;Stavang et al.2009;Smy kaletal.2014).Inourcase,thegentleandgradual rise in temperatures could have increased seed sensitivity to light(during the HRT treatment)and water(during imbibition),thus inducing improved germination.

    It is worth emphasizing that our generalized and remarkable increase in germination percentages,together with the acceleration and standardization of emergence,are uncommon in scari fi cation treatments involving different genera and life forms.As a proposed mode of action of the HRT,we suggest a synergistic effect of mechanical scarifi cation and temperature in breaking seed dormancy and promoting radical emergence.Finch-Savage and Leubner-Metzger(2006),using a classi fi cation system based on the internal morphology of the embryo and endosperm in mature angiosperm seeds,assigned a combined dormancy—physical combined with physiological embryo dormancy—to members of the family Fabaceae.Thus,our method of scari fi cation with the HRT could have operated by concomitantly breaking the physical and physiological dormancy of the treated seeds.In our lab,the HRT failed to overcome deep seed dormancy inAilanthus altissimaandCrataegus monogyna,both belonging to phylogenetic groups lacking in combinational dormancy(Finch-Savage and Leubner-Metzger 2006).

    A third factor is the effect of the centrifugal movement of seeds produced by the rotary head and their impact on the beaker wall.Some studies have indicated that percussion may be successfully used to ameliorate germination rates in legumes(Khadduri and Harrington 2002;Mondoni et al.2013).Amyloplasts—plastids that are responsible for the storage of starch—have been proposed to act as susceptors that sense mechanical vibrations inArabidopsis thaliana,increasing the rate of seed germination through the action of ethylene(Uchida and Yamamoto 2002).

    Due to the obvious methodological constraints,classic scari fi cation methods such as the use of razor blades or sandpaperareconsideredhighlytime-consumingtreatments and not feasible for large quantities of seeds(Mondoni et al.2013).In response,the use of the HRT may save time and effort since a signi fi cant volume of seeds may be treated simultaneously.Nevertheless,a de fi nition of scari fi cation conditionsisrequiredsince,inspiteofthepositiveeffectson germination,damage to a major fraction of seeds may be in fl icted(Abdallah et al.1989).Ghassali et al.(2012)reported that the ef fi ciency of the HRT diminished as seed numbers increased.For a given type of dormancy(physical or combinational),the adequate number of seeds to scarify would depend on plant species,seed size and shape,and probably time of storage.The mandatory time of scari fi cation with different handheld rotary tools must be previously evaluated to avoid damage to the seed pool,especially when the number of available seed is limited.In our lab,optimal scari fi cation times for selected species,including the highly valued timber speciesAcacia melanoxylonR.Br.were evaluated with the HRT Dremel?3000(3000-15).Optimal germination rates forA.dealbataandA.melanoxylonwere obtained at 10,000–14,000 rpm for 10 min,applied in intervals of 3,3 and 4 min to avoid overheating.Otherwise,5 min was suf fi cient to achieve maximum Gtvalues forU.europaeusandC.scoparius.Asavisualtest,mostseedcoats showed yellow incisions of similar size after the different HRT treatments.These scari fi ed seeds were afterwards used in pot assays to evaluate the competitive abilities in multi speci fic mixtures(Pedrol et al.in prep.).Germinated seeds were viable and produced vigorous seedlings.Modi fi cations for temperature control could be possibly introduced to the commercial laboratory-scale seed scari fi ers in order to successfullyovercomecombinationaldormancyincertainhardcoated legume seeds.

    Current laboratory and greenhouse experimentation,small-scale field trials,quality control in seed companies or seed banks,plant nurseries for afforestation,the timber and biomass industry,as well as revegetation programs,demand rapid,effective,low-cost and highly reproducible methods to break seed dormancy and to improve and synchronize germination.The results we present in this paper constitute evidence of the ef fi cacy and ef fi ciency of the handheld rotary tool for the scari fi cation of hard-coated seeds of several Fabaceae belonging to different genera:Robinia pseudoacacia,Acacia dealbata,A.melanoxylon,Cytisus scoparius,C.multi fl orusandUlex europaeus.We suggest a combined mode of action of the method on these species which could operate by concomitantly breaking the physical and physiological dormancy by abrasion of the hard seed coats and a gradual and gentle temperature rise.The method and the described features may contribute to developing prototypes for overcoming combinational seed dormancy of these and other species.

    AcknowledgementsWe wish to thank the patience of Carlos Bola?o(‘our’dear Lab Technician)during artwork elaboration(and every time),and Esther Pájaro and Iria Rodríguez-Alén for their welcome hands-on assistance.

    Abdallah MM,Jones RA,El-Beltagy AS(1989)A method to overcome dormancy in Scotch broom(Cytisus scoparius).Environ Exp Bot 29(4):499–505

    Abudureheman B,Liu HL,Zhang DY,Guan K(2014)Identi fi cation of physical dormancy and dormancy release patterns in several species(Fabaceae)of the cold desert,north-west China.Seed Sci Res 24(2):133–145

    álvarez-Iglesias L,Puig CG,Garabatos A,Reigosa MJ,Pedrol N(2014)Vicia fabaaqueous extracts and plant material can suppress weeds and enhance crops.Allelopathy J 34(2):299–314

    A?orbe M,Gómez Gutiérrez JM,Pérez Fernández MA,Fernández Santos B(1990)In fl uence of temperature on seed germination ofCytisus multi fl orus(L Hér.)andCytisus oromediterraneusRiv.Mar.,in Spanish.Stvdia Oecol 7(1):85–100

    Baskin JM,Baskin CC(2004)A classi fi cation system for seed dormancy.Seed Sci Res 14(1):1–16

    Bentsink L,Hanson J,Hanhart CJ,Blankestijn-De Vries H,Coltrane C,Keizer P,El-Lithy M,Alonso-Blanco C,De Andrés MT,Reymond M,Van Eeuwijk F,Smeekens S,Koornneef M(2010)Natural variation for seed dormancy inArabidopsisis regulated by additive genetic and molecular pathways.Proc Natl Acad Sci 107(9):4264–4269

    Bewley JD(1997)Seed germination and dormancy.Plant Cell 9(7):1055–1066

    Bradshaw A(1997)Restoration of mine lands using natural processes.Ecol Eng 8(4):255–269

    Chaer GM,Resende AS,Campello EFC,de Faria SM,Boddey RM(2011)Nitrogen- fi xing legume tree species for the reclamation of severely degraded lands in Brazil. Tree Physiol 31(2):139–149

    Chiapusio G,Sánchez AM,Reigosa MJ,González L,Pellissier F(1997)Do germination indices adequately re fl ect allelochemical effects on the germination process? J Chem Ecol 23(11):2445–2454

    Cruz ED,de Carvalho JEU(2006)Methods of overcoming dormancy inSchizolobium amazonicumHuber ex Ducke(Leguminosae–Caesalpinioideae)seeds,in Portuguese.Rev Bras Sementes 28(3):108–115

    Dapont EC,Silva JBD,Oliveira JDD,Alves CZ,Dutra AS(2014)Methods of accelerating and standardising the emergence of seedlings inSchizolobium amazonicum.Rev Cienc Agron 45(3):598–605

    De Bertoldi C,De Leo M,Braca A,Ercoli L(2009)Bioassay-guided isolation of allelochemicals fromAvena sativaL.:allelopathic potential of fl avone C-glycosides.Chemoecology 19(3):169–176

    Doran JC(1986)Seed,nursery practice and establishment.In:Brown AG,Boland DJ,Doran JC,Martensz PN,Hall N(eds)Multipurpose Australian trees and shrubs.Lesser-known species for fuel wood and agroforestry.ACIAR,Canberra,pp 1–29

    Finch-Savage WE,Leubner-Metzger G(2006)Seed dormancy and the control of germination.New Phytol 171(3):501–523

    Ghantous KM,Sandler HA(2012)Mechanical scari fi cation of dodder seeds with handheld rotary tool.Weed Technol 26(3):485–489

    Ghassali F,Salkini AK,Petersen SL,Niane AA,Louhaichi M(2012)Germination dynamics ofAcaciaspecies under different seed treatments.Range Manag Agrofor 33(1):37–42

    Grif fi n AR,Midgley SJ,Bush D,Cunningham PJ,Rinaudo AT(2011)Global uses of Australian acacias—recent trends and future prospects.Divers Distrib 17(5):837–847

    Hanley ME(2009)Thermal shock and germination in North-West European Genisteae:implications for heathland management and invasive weed controlusing fi re.ApplVeg Sci 12(3):385–390

    Herranz JM,Ferrandis P,Martínez Sánchez JJ(1998)In fl uence of heat on seed germination of seven Mediterranean Leguminosae species.Plant Ecol 136(1):95–103

    ISTA,International Seed Testing Association(1999)International rules for seed testing.Seed Sci Technol 27(Suppl.):1–333

    Janzen DH(1981)Enterolobium cyclocarpumseed passage rate and survival in horses,Costa Rican pleistocene seed dispersal agents.Ecology 62(3):593–601

    Kelly KM,Van Staden J,Bell WE(1992)Seed coat structure and dormancy.Plant Growth Regul 11(3):201–209

    Khadduri NY,Harrington JT(2002)Shaken,not stirred–a percussion scari fi cation technique.Native Plants J 3(1):65–66

    Koornneef M,Bentsink L,Hilhorst H(2002)Seed dormancy and germination.Curr Opin Plant Biol 5(1):33–36

    Kull CA,Shackleton CM,Cunningham PJ,Ducatillon C,Dufour-Dror JM,Esler KJ,Zylstra MJ(2011)Adoption,use and perception of Australian acacias around the world.Divers Distrib 17(5):822–836

    Ligero P,de Vega A,van der Kolk JC,van Dam JEG(2011)Gorse(Ulex europ?us)as a possible source of xylans by hydrothermal treatment.Ind Crops Prod 33(1):205–210

    Linkies A,Graeber K,Knight C,Leubner-Metzger G(2010)The evolution of seeds.New Phytol 186(4):817–831

    Lorenzo P,González L,Reigosa MJ(2010)The genusAcaciaas invader:the characteristic case ofAcacia dealbataLink in Europe.Ann For Sci 67(1):1–11

    Mayer AM,Poljakoff-Mayber A(1982)The germination of seeds.Pergamon,London

    Mondoni A,Tazzari ER,Zubani L,Orsenigo S,Rossi G(2013)Percussion as an effective seed treatment for herbaceous legumes(Fabaceae):implications for habitat restoration and agriculture.Seed Sci Technol 41(2):175–187

    Nongrum A,Kharlukhi L(2013)Effect of seed treatment for laboratory germination ofAlbiziachinensis.J ForRes 24(4):709–713

    Patane`C,Gresta F(2006)Germination ofAstragalus hamosusandMedicago orbicularisas affected by seed-coat dormancy breaking techniques.J Arid Environ 67(1):165–173

    Peinetti R,Pereyra M,Kin A,Sosa A(1993)Effects of cattle ingestion on viability and germination rate of caldén(Prosopis caldenia)seeds.J Range Manag 46(6):483–486

    Pereiras J,Puentes MA,Casal M(1985)Effect of high temperatures on gorse(Ulex europaeusL.)seed germination/Efecto de las altas temperaturas sobre la germinación de las semillas del tojo(Ulex europaeusL.),in Spanish.Stvdia Oecol 6:125–133

    Pérez S,Renedo CJ,Ortiz A,Delgado F,Fernández I(2014)Energy potential of native shrub species in northern Spain.Renew Energy 62:79–83

    Pérez-Fernández MA,Calvo-Magro E,Valentine A(2016)Bene fi ts of the symbiotic association of shrubby legumes for the rehabilitation of degraded soils under Mediterranean climatic conditions.Land Degrad Dev 27(2):395–405

    Pinto PC,Oliveira C,Costa CA,Gaspar A,Faria T,Ataíde J,Rodrigues AE(2015)Kraft deligni fi cation of energy crops in view of pulp production and lignin valorization.Ind Crops Prod 71:153–162

    PleguezueloCRR,ZuazoVHD,BieldersC,BocanegraJAJ,PereaTorres F,Martínez JRF(2014)Bioenergy farming using woody crops.A review.Agron Sustain Dev 35(1):95–119

    Richardson RG,Hill RL(1998)The biology of Australian weeds 34.Ulex europaeusL.Plant Prot Q 13(2):46–58

    Richardson DM,Rejmánek M(2011)Trees and shrubs as invasive alien species—a global review.Divers Distrib 17(5):788–809

    Rivas M,Reyes O,Casal M(2006)In fl uence of heat and smoke treatments on the germination of six leguminous shrubby species.Int J Wildland Fire 15(1):73–80

    Rüdiger H,Gabius HJ(2001)Plant lectins:occurrence,biochemistry,functions and applications.Glycoconj J 18(8):589–613

    Sarikurkcu C,Kocak MS,Tepe B,Uren MC(2015)An alternative antioxidative and enzyme inhibitory agent from Turkey:Robinia pseudoacaciaL.Ind Crops Prod 78:110–115

    Sheppard AW,Hodge P,Paynter Q,Rees M(2002)Factors affecting invasion and persistence of broomCytisus scopariusin Australia.J Appl Ecol 39(5):721–734

    Sheppard AW,Shaw RH,Sforza R(2006)Top 20 environmental weeds for classical biological control in Europe:a review of opportunities,regulations and other barriers to adoption.Weed Res 46(2):93–117

    Smy kal P,Vernoud V,Blair MW,Soukup A,Thompson RD(2014)The role of the testa during development and in establishment of dormancy of the legume seed.Front Plant Sci 5:1–19

    Stavang JA,Gallego-BartoloméJ,Gómez MD,Yoshida S,Asami T,Olsen JE,García-Martínez JL,AlabadíD,Blázquez MA(2009)Hormonal regulation of temperature—induced growth inArabidopsis.Plant J 60(4):589–601

    Straker KC,Quinn LD,Voigt TB,Lee DK,Kling GJ(2015)Black locust as a bionergy feedstock:a review.BioEnergy Res 8(3):1117–1135

    Sy A,Grouzis M,Danthu P(2001)Seed germination of seven Sahelian legume species.J Arid Environ 49(4):875–882

    Tárrega R,Calvo L,Trabaud L(1992)Effect of high temperatures on seedgermination oftwowoody Leguminosae.Vegetatio 102(2):139–147

    Teketay D(1996)Germination ecology of twelve indigenous and eight exotic multipurpose leguminous species from Ethiopia.For Ecol Manag 80(1):209–223

    Thanos CA,Georghiou K,Kadis C,Pantazi C(1992)Cistaceae:a plant family with hard seeds.Isr J Bot 41(4–6):251–263

    Tigabu M,Oden PC(2001)Effect of scari fi cation,gibberellic acid and temperature on seed germination of two multipurposeAlbiziaspecies from Ethiopia.Seed Sci Technol 29(1):11–20

    Tischer S,Hübner T(2002)Model trials for phytoremediation of hydrocarbon-contaminated sites by the use of different plant species.Int J Phytorem 4(3):187–203

    Toda R,Ishikawa H(1951)Hasting the germination ofRobiniaseeds by the use of boiling water.J Jpn For Soc 33(9):312

    Twigg LE,Lowe TJ,Taylor CM,Calver MC,Martin GR,Stevenson C,How R(2009)The potential of seed—eating birds to spread viable seeds of weeds and other undesirable plants.Austral Ecol 34(7):805–820

    Tzvetkova N,Petkova K(2015)Bioaccumulation of heavy metals by the leaves ofRobinia pseudoacaciaas a bioindicator tree in industrial zones.J Environ Biol 36(1):59–63

    Uchida A,Yamamoto KT(2002)Effects of mechanical vibration on seed germination ofArabidopsis thaliana(L.)Heynh.Plant Cell Physiol 43(6):647–651

    Vilela AE,Ravetta DA(2001)The effect of seed scari fi cation and soil-media on germination,growth,storage,and survival of seedlings of fi ve species ofProsopisL.(Mimosaceae).J Arid Environ 48(2):171–184

    Wali MK(1999)Ecological succession and the rehabilitation of disturbed terrestrial ecosystems.Plant Soil 213(1–2):195–220

    Watterson NA,Jones JA(2006)Flood and debris fl ow interactions with roads promote the invasion of exotic plants along steep mountain streams, western Oregon. Geomorphology 78(1):107–123

    Yá?ez R,Gómez B,Martínez M,Gullón B,Alonso JL(2014)Valorization of an invasive woody species,Acacia dealbata,by means of Ionic liquid pretreatment and enzymatic hydrolysis.J Chem Technol Biotechnol 89(9):1337–1343

    Zare S,Tavili A,Darini MJ(2011)Effects of different treatments on seed germination and breaking seed dormancy ofProsopis koelzianaandProsopis juli fl ora.J For Res 22(1):35–38

    久久久久久伊人网av| 高清av免费在线| 欧美人与善性xxx| 久久精品国产99精品国产亚洲性色| 边亲边吃奶的免费视频| 国产精品99久久久久久久久| 久久精品国产鲁丝片午夜精品| or卡值多少钱| 亚洲成人中文字幕在线播放| 午夜福利视频1000在线观看| 1000部很黄的大片| 赤兔流量卡办理| 蜜桃亚洲精品一区二区三区| 一区二区三区乱码不卡18| 亚洲av成人av| 国产一级毛片七仙女欲春2| 秋霞伦理黄片| 韩国高清视频一区二区三区| 中文乱码字字幕精品一区二区三区 | 人妻系列 视频| 国产国拍精品亚洲av在线观看| 一区二区三区高清视频在线| 欧美人与善性xxx| 国产精品国产三级国产专区5o | 中文在线观看免费www的网站| a级毛片免费高清观看在线播放| 国产私拍福利视频在线观看| 九九久久精品国产亚洲av麻豆| av又黄又爽大尺度在线免费看 | 国产一区二区在线观看日韩| 精品久久久久久电影网 | 长腿黑丝高跟| 少妇人妻一区二区三区视频| 日本免费在线观看一区| 乱码一卡2卡4卡精品| 麻豆av噜噜一区二区三区| 美女国产视频在线观看| 边亲边吃奶的免费视频| 欧美人与善性xxx| 久久久国产成人精品二区| 乱人视频在线观看| 国产亚洲91精品色在线| 亚洲18禁久久av| 久久久久久大精品| 欧美性猛交黑人性爽| 一边亲一边摸免费视频| 国产亚洲91精品色在线| 久久久精品欧美日韩精品| 美女内射精品一级片tv| 日韩高清综合在线| 成人鲁丝片一二三区免费| 毛片女人毛片| 国产高清国产精品国产三级 | 国产伦在线观看视频一区| 午夜精品一区二区三区免费看| 国产伦理片在线播放av一区| 久久久久久久久中文| 国语自产精品视频在线第100页| 久久欧美精品欧美久久欧美| 亚洲国产精品专区欧美| 97在线视频观看| 能在线免费看毛片的网站| 精品免费久久久久久久清纯| 国产黄a三级三级三级人| 国产精品人妻久久久影院| 日本午夜av视频| 亚洲精品日韩在线中文字幕| 欧美精品一区二区大全| 不卡视频在线观看欧美| 特大巨黑吊av在线直播| 午夜精品在线福利| 日本欧美国产在线视频| 天美传媒精品一区二区| 床上黄色一级片| 97超视频在线观看视频| 欧美日韩在线观看h| 久久欧美精品欧美久久欧美| 国产成人精品久久久久久| 黄色日韩在线| 色5月婷婷丁香| 天堂影院成人在线观看| 国产综合懂色| 亚洲久久久久久中文字幕| 一个人观看的视频www高清免费观看| 噜噜噜噜噜久久久久久91| 少妇被粗大猛烈的视频| 国产伦精品一区二区三区视频9| 蜜臀久久99精品久久宅男| 小说图片视频综合网站| 网址你懂的国产日韩在线| 女人被狂操c到高潮| 亚洲国产精品成人久久小说| 欧美性猛交╳xxx乱大交人| 爱豆传媒免费全集在线观看| 久久精品久久久久久噜噜老黄 | 蜜臀久久99精品久久宅男| 一区二区三区高清视频在线| 日韩,欧美,国产一区二区三区 | 国产不卡一卡二| 熟女电影av网| 午夜久久久久精精品| 久99久视频精品免费| 日本欧美国产在线视频| 成人性生交大片免费视频hd| 18禁裸乳无遮挡免费网站照片| 超碰av人人做人人爽久久| 18禁在线播放成人免费| 男人舔女人下体高潮全视频| 国产亚洲5aaaaa淫片| 亚洲av成人av| 日本-黄色视频高清免费观看| 免费无遮挡裸体视频| 最近最新中文字幕大全电影3| 毛片女人毛片| 男插女下体视频免费在线播放| 久久午夜福利片| 丝袜美腿在线中文| 久久精品久久精品一区二区三区| 在线免费观看的www视频| www.色视频.com| 免费看a级黄色片| 久久久午夜欧美精品| 寂寞人妻少妇视频99o| 亚洲av二区三区四区| 91精品一卡2卡3卡4卡| 国产淫语在线视频| 亚洲不卡免费看| 国产69精品久久久久777片| 三级毛片av免费| 国产精品久久久久久久久免| 欧美潮喷喷水| 岛国毛片在线播放| 国产精品1区2区在线观看.| 看十八女毛片水多多多| 日本色播在线视频| 亚洲精品国产成人久久av| 禁无遮挡网站| 嘟嘟电影网在线观看| 午夜精品一区二区三区免费看| 国产精品乱码一区二三区的特点| 亚洲中文字幕日韩| 亚洲精品日韩av片在线观看| 国产男人的电影天堂91| 深爱激情五月婷婷| 色播亚洲综合网| 国产精品一区www在线观看| 美女高潮的动态| 国产 一区 欧美 日韩| 小蜜桃在线观看免费完整版高清| 网址你懂的国产日韩在线| 日本与韩国留学比较| av免费在线看不卡| 乱人视频在线观看| 丰满少妇做爰视频| 婷婷色av中文字幕| 亚洲在久久综合| 2022亚洲国产成人精品| 26uuu在线亚洲综合色| 亚洲精品色激情综合| 精品午夜福利在线看| 久久人人爽人人爽人人片va| 国产一区二区在线av高清观看| 欧美激情在线99| 日本欧美国产在线视频| 国产乱来视频区| 超碰97精品在线观看| 国产精品电影一区二区三区| 欧美日韩一区二区视频在线观看视频在线 | 亚洲中文字幕一区二区三区有码在线看| 亚洲成人中文字幕在线播放| 日韩三级伦理在线观看| 免费观看性生交大片5| 亚洲欧美日韩高清专用| 亚洲欧美中文字幕日韩二区| 免费看av在线观看网站| 国产精品永久免费网站| 国产淫语在线视频| 精品少妇黑人巨大在线播放 | 18禁在线播放成人免费| 久久午夜福利片| 韩国av在线不卡| 一级爰片在线观看| 18+在线观看网站| 1000部很黄的大片| 亚洲国产欧洲综合997久久,| 一级毛片久久久久久久久女| 一二三四中文在线观看免费高清| 干丝袜人妻中文字幕| 欧美97在线视频| 亚洲性久久影院| 91久久精品电影网| 免费电影在线观看免费观看| 91在线精品国自产拍蜜月| 禁无遮挡网站| 亚洲欧美日韩卡通动漫| 禁无遮挡网站| 久热久热在线精品观看| 精品久久久久久久久久久久久| 国产探花在线观看一区二区| 日韩,欧美,国产一区二区三区 | 偷拍熟女少妇极品色| 久久午夜福利片| 99在线视频只有这里精品首页| 韩国av在线不卡| 又爽又黄无遮挡网站| 午夜福利成人在线免费观看| 一级爰片在线观看| 午夜精品一区二区三区免费看| av黄色大香蕉| 真实男女啪啪啪动态图| 国产免费又黄又爽又色| 搞女人的毛片| 三级经典国产精品| 国产老妇女一区| 18禁在线播放成人免费| 日本av手机在线免费观看| 午夜精品在线福利| 最近的中文字幕免费完整| 亚洲在线自拍视频| 成人欧美大片| 看十八女毛片水多多多| 亚洲av日韩在线播放| 国产精品一区二区性色av| 久久99精品国语久久久| 久久婷婷人人爽人人干人人爱| 在线免费观看的www视频| 欧美性猛交黑人性爽| 亚洲aⅴ乱码一区二区在线播放| 18禁裸乳无遮挡免费网站照片| 午夜激情福利司机影院| 一级爰片在线观看| 亚洲图色成人| 久久久欧美国产精品| 亚洲成色77777| 亚洲精品日韩在线中文字幕| 99久久精品热视频| 国产男人的电影天堂91| 插阴视频在线观看视频| 久热久热在线精品观看| 97超碰精品成人国产| 在线观看av片永久免费下载| 亚洲内射少妇av| 禁无遮挡网站| 国产大屁股一区二区在线视频| 看黄色毛片网站| 久久鲁丝午夜福利片| 午夜福利网站1000一区二区三区| 深夜a级毛片| av免费在线看不卡| 性插视频无遮挡在线免费观看| 狂野欧美白嫩少妇大欣赏| 国产又黄又爽又无遮挡在线| 人妻制服诱惑在线中文字幕| 亚洲欧美精品自产自拍| 亚洲成人精品中文字幕电影| 欧美精品国产亚洲| 一二三四中文在线观看免费高清| 久久99热6这里只有精品| 级片在线观看| 欧美人与善性xxx| 纵有疾风起免费观看全集完整版 | 国产精品国产三级国产专区5o | 久久久午夜欧美精品| 亚洲自偷自拍三级| 亚洲精品影视一区二区三区av| 秋霞在线观看毛片| 中文字幕久久专区| 全区人妻精品视频| 亚洲av.av天堂| 欧美成人a在线观看| 国产乱来视频区| 天堂网av新在线| 国产精品国产高清国产av| 久久欧美精品欧美久久欧美| 久久99精品国语久久久| 欧美性感艳星| 在线免费十八禁| 蜜桃久久精品国产亚洲av| av专区在线播放| 亚洲色图av天堂| 日本午夜av视频| 丰满乱子伦码专区| 亚洲最大成人手机在线| 精品久久久久久成人av| 日韩欧美在线乱码| 国产精品久久久久久久电影| 中文欧美无线码| 免费电影在线观看免费观看| 亚洲欧洲日产国产| 2021少妇久久久久久久久久久| 亚洲美女搞黄在线观看| 成人综合一区亚洲| 国产黄片美女视频| 黄片wwwwww| 国产爱豆传媒在线观看| 婷婷六月久久综合丁香| 午夜亚洲福利在线播放| 亚洲成人久久爱视频| 午夜精品国产一区二区电影 | 欧美日本视频| 人人妻人人澡人人爽人人夜夜 | 老师上课跳d突然被开到最大视频| 天堂中文最新版在线下载 | 亚洲av成人精品一区久久| 婷婷色麻豆天堂久久 | 岛国毛片在线播放| 国产亚洲91精品色在线| 国产美女午夜福利| 欧美变态另类bdsm刘玥| 少妇丰满av| 国产高清有码在线观看视频| 欧美高清性xxxxhd video| 成人毛片60女人毛片免费| 午夜亚洲福利在线播放| 久久久久久久久久久丰满| 国产精品1区2区在线观看.| 亚洲熟妇中文字幕五十中出| 国产真实乱freesex| 久久久久久久久久成人| 少妇被粗大猛烈的视频| 亚洲av成人av| 国产高清视频在线观看网站| 一本久久精品| 直男gayav资源| 久久精品熟女亚洲av麻豆精品 | 99热全是精品| 人人妻人人看人人澡| 91午夜精品亚洲一区二区三区| 久久久精品欧美日韩精品| 干丝袜人妻中文字幕| 欧美区成人在线视频| 日韩欧美三级三区| 老司机影院成人| 啦啦啦观看免费观看视频高清| 欧美日韩一区二区视频在线观看视频在线 | 在线观看66精品国产| 久久精品久久久久久噜噜老黄 | 亚洲av中文字字幕乱码综合| 日本黄大片高清| 免费大片18禁| 日韩欧美国产在线观看| 熟女电影av网| 国产一区二区三区av在线| 嫩草影院精品99| 久久精品夜色国产| 看黄色毛片网站| 欧美又色又爽又黄视频| 成年女人永久免费观看视频| 成人性生交大片免费视频hd| 内射极品少妇av片p| 美女国产视频在线观看| 国产精华一区二区三区| av线在线观看网站| 精品国产一区二区三区久久久樱花 | 国产精华一区二区三区| 在线播放国产精品三级| 免费观看在线日韩| 国产av不卡久久| 一本久久精品| 国产免费又黄又爽又色| 午夜福利在线观看免费完整高清在| av又黄又爽大尺度在线免费看 | 干丝袜人妻中文字幕| 欧美人与善性xxx| 国产一区二区三区av在线| 午夜福利视频1000在线观看| 国产高清三级在线| 精品不卡国产一区二区三区| 国产成人91sexporn| 一区二区三区免费毛片| 一级爰片在线观看| 亚洲av日韩在线播放| 免费看美女性在线毛片视频| 日韩一区二区三区影片| 国产伦在线观看视频一区| 亚洲国产精品sss在线观看| 激情 狠狠 欧美| 亚洲人与动物交配视频| 亚洲,欧美,日韩| 日本午夜av视频| 亚洲国产精品成人综合色| 直男gayav资源| 色网站视频免费| 久久婷婷人人爽人人干人人爱| 好男人视频免费观看在线| 日本一本二区三区精品| 亚洲精品自拍成人| 日韩成人av中文字幕在线观看| 九九爱精品视频在线观看| 国产高清不卡午夜福利| 国产一区二区在线av高清观看| 三级毛片av免费| 精品久久久久久久人妻蜜臀av| 国产极品天堂在线| 69人妻影院| 丝袜喷水一区| 永久免费av网站大全| 免费不卡的大黄色大毛片视频在线观看 | 亚洲成av人片在线播放无| 欧美日韩精品成人综合77777| 精品免费久久久久久久清纯| 亚洲av不卡在线观看| 亚洲av二区三区四区| 天堂√8在线中文| 午夜激情福利司机影院| 熟妇人妻久久中文字幕3abv| 哪个播放器可以免费观看大片| 国产精品女同一区二区软件| 老司机福利观看| 亚洲无线观看免费| 日韩人妻高清精品专区| 我要看日韩黄色一级片| 韩国高清视频一区二区三区| 国产精品国产高清国产av| 精品一区二区免费观看| 亚洲欧美日韩高清专用| 日韩,欧美,国产一区二区三区 | 亚洲综合精品二区| 丝袜喷水一区| 中文字幕av成人在线电影| 国产黄片视频在线免费观看| 真实男女啪啪啪动态图| 天堂中文最新版在线下载 | 日韩成人av中文字幕在线观看| 精品99又大又爽又粗少妇毛片| 免费看光身美女| 97超视频在线观看视频| 水蜜桃什么品种好| 国产伦理片在线播放av一区| 亚洲成人中文字幕在线播放| 欧美色视频一区免费| 日韩欧美在线乱码| 男人舔女人下体高潮全视频| 国产黄色视频一区二区在线观看 | 欧美bdsm另类| 一边摸一边抽搐一进一小说| 精品国内亚洲2022精品成人| 免费观看a级毛片全部| 好男人视频免费观看在线| 免费一级毛片在线播放高清视频| 老女人水多毛片| 又粗又爽又猛毛片免费看| 一夜夜www| 国产探花在线观看一区二区| 美女大奶头视频| 一边摸一边抽搐一进一小说| 色5月婷婷丁香| 亚洲一级一片aⅴ在线观看| 免费在线观看成人毛片| 大话2 男鬼变身卡| 搡老妇女老女人老熟妇| 国产精品麻豆人妻色哟哟久久 | 欧美激情久久久久久爽电影| 美女黄网站色视频| 亚洲欧美一区二区三区国产| 男女那种视频在线观看| av播播在线观看一区| 最近中文字幕高清免费大全6| 韩国av在线不卡| 99久久九九国产精品国产免费| 国产成人精品婷婷| 中文字幕制服av| 亚洲精品亚洲一区二区| 国产精品爽爽va在线观看网站| 免费观看精品视频网站| 人人妻人人澡欧美一区二区| 午夜免费激情av| 欧美人与善性xxx| 丰满人妻一区二区三区视频av| 99热6这里只有精品| 少妇熟女aⅴ在线视频| 99久久中文字幕三级久久日本| 色视频www国产| 1000部很黄的大片| 午夜老司机福利剧场| 亚洲成av人片在线播放无| 久久99热这里只有精品18| 国产精品一区www在线观看| 亚洲欧美日韩东京热| АⅤ资源中文在线天堂| 亚洲不卡免费看| 亚洲精品乱码久久久久久按摩| 性色avwww在线观看| 精品少妇黑人巨大在线播放 | 美女cb高潮喷水在线观看| 欧美变态另类bdsm刘玥| 久久亚洲精品不卡| 非洲黑人性xxxx精品又粗又长| 天堂中文最新版在线下载 | 能在线免费观看的黄片| 国产精品一区二区三区四区免费观看| 国产精品人妻久久久影院| 免费看日本二区| 1000部很黄的大片| 久久6这里有精品| 日韩一区二区视频免费看| 亚洲怡红院男人天堂| 亚洲一区高清亚洲精品| 精品人妻偷拍中文字幕| 日韩欧美精品免费久久| 国产精品不卡视频一区二区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 免费在线观看成人毛片| 亚洲第一区二区三区不卡| 91精品伊人久久大香线蕉| 伦精品一区二区三区| 九色成人免费人妻av| 成年av动漫网址| 国产三级中文精品| 99久久精品国产国产毛片| 欧美不卡视频在线免费观看| 一级毛片久久久久久久久女| 啦啦啦观看免费观看视频高清| 成人国产麻豆网| 免费看av在线观看网站| 又粗又爽又猛毛片免费看| 国产精华一区二区三区| 岛国毛片在线播放| 欧美一区二区国产精品久久精品| 精品久久久久久久久久久久久| 久久99精品国语久久久| 1024手机看黄色片| 欧美日韩综合久久久久久| 校园人妻丝袜中文字幕| 欧美日韩国产亚洲二区| 九色成人免费人妻av| av黄色大香蕉| 美女大奶头视频| 免费黄色在线免费观看| 日本黄大片高清| 日韩高清综合在线| 欧美激情国产日韩精品一区| 亚洲内射少妇av| 联通29元200g的流量卡| 亚洲国产欧洲综合997久久,| 欧美另类亚洲清纯唯美| 午夜福利高清视频| 春色校园在线视频观看| 日韩国内少妇激情av| 久久综合国产亚洲精品| 欧美潮喷喷水| 国产欧美另类精品又又久久亚洲欧美| 精品久久久久久成人av| 深夜a级毛片| 亚洲人成网站在线播| 久久精品夜夜夜夜夜久久蜜豆| 极品教师在线视频| 婷婷色综合大香蕉| 色尼玛亚洲综合影院| 久久99热这里只有精品18| 少妇人妻精品综合一区二区| 全区人妻精品视频| 午夜老司机福利剧场| 色网站视频免费| 禁无遮挡网站| 插逼视频在线观看| 欧美成人一区二区免费高清观看| 白带黄色成豆腐渣| 能在线免费看毛片的网站| 国产精品一区二区在线观看99 | 精品国产露脸久久av麻豆 | eeuss影院久久| 如何舔出高潮| 91av网一区二区| 99热这里只有精品一区| 亚洲精品日韩av片在线观看| 久久99热6这里只有精品| av播播在线观看一区| 嫩草影院精品99| 赤兔流量卡办理| 亚洲最大成人av| 看片在线看免费视频| 九九热线精品视视频播放| 国产激情偷乱视频一区二区| 国产亚洲最大av| 久久久久久久久中文| 乱人视频在线观看| 免费一级毛片在线播放高清视频| 欧美一区二区国产精品久久精品| kizo精华| 听说在线观看完整版免费高清| 人人妻人人看人人澡| 一边亲一边摸免费视频| 国产成人a区在线观看| 99久久中文字幕三级久久日本| 国产在视频线在精品| 免费av毛片视频| 老女人水多毛片| 国产精品一区二区三区四区久久| 天堂影院成人在线观看| 亚洲精品色激情综合| 久久久久久久亚洲中文字幕| 国产男人的电影天堂91| 精品久久久久久久人妻蜜臀av| 久久久精品欧美日韩精品| 欧美日韩国产亚洲二区| 狠狠狠狠99中文字幕| 国产精品一区二区三区四区免费观看| 两个人视频免费观看高清| 久久久久久久久久久免费av| 男女视频在线观看网站免费| 波野结衣二区三区在线| 大香蕉97超碰在线| 纵有疾风起免费观看全集完整版 | 国产三级在线视频| 非洲黑人性xxxx精品又粗又长| 2022亚洲国产成人精品| 秋霞在线观看毛片| 2021天堂中文幕一二区在线观| 免费在线观看成人毛片| 村上凉子中文字幕在线| 中文字幕制服av| 亚洲怡红院男人天堂| 真实男女啪啪啪动态图| 国产av不卡久久|