• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of SSR loci and development of SSR primers in Eucalyptus

    2018-03-19 05:07:58GuoLiuYaojianXieDangquanZhangHongpengChen
    Journal of Forestry Research 2018年2期

    Guo Liu?Yaojian Xie?Dangquan Zhang?Hongpeng Chen

    Introduction

    Simple sequence repeats(SSRs),or microsatellites,are arrays of short motifs 1–6 base pairs long.They are abundantly and uniformly distributed throughoutthe eukaryotic genome and inherited codominantly.They can provide multiple allelic,highly informative content,with good reproducibility and are easy to manipulate(Tautz 1989;Powell et al.1996;Gupta and Varshney 2000).The number of repetitions in SSRs varies greatly,and they are rich in polymorphisms.Because they can be assayed relatively quickly with low technical dif fi culty and cost,SSR markers have found wide application in genetic analyses ofEucalyptusspecies and genotypes,including for fi ngerprinting,genetic mapping,genetic diversity assessment,genetic structure analyses and molecular marker assisted selection(MAS)(Bradbury et al.2013;Zhang et al.2013;Liu and Xie 2012;Maria et al.2011;Zhou 2011;Kengavanar et al.2011;Shanmugapriya et al.2011;He 2010;Wang 2009).

    SSR markers are generally classi fi ed into two categories:genomic SSRs(gSSR)and expressed sequence tag SSRs,(EST-SSRs or eSSRs).Genomic SSRs are based on the genome sequences,and EST-SSRs exist in the expressed gene sequences(Xu et al.2014;Zhang et al.2011).EST-SSRs have a higher transferability among closely related species(Varshney et al.2005),and the methods for their development are relatively simple and of lower cost in comparison to genomic SSRs.The latter come from the noncoding sequences in the genome,and they have higher degrees of polymorphism.With the dis coveriesofcontrolfunctions ofsome ‘noncoding sequences’,gSSRs have signi fi cant potential to be linked to genomic sequences in fl uencing phenotypic traits of importance.

    At present,the public database GenBank(http://www.ncbi.nlm.nih.gov/genbank/)has published a large number ofEucalyptusgenomes,EST sequences ofEucalyptus,and the complete genome sequence ofEucalyptus grandis(http://www.phytozome.net/cgi-bin/gbrowse/eucalyptus/)(Myburg et al.2014;DOE 2008).This database provides direct access to genome sequences and EST sequences that can be used to developEucalyptusSSR markers.Over the past 20 years,many articles about development of SSR markers ofEucalyptushave been published worldwide.For example,Steane et al.(2001)developed 12E.globulusmicrosatellite loci for fi ngerprinting and future studies in genome mapping,gene fl ow and genetic diversity;Wang(2009)developed 185 pairs of EST-SSR primers to construct genetic maps inEucalyptus;He(2010)developed 206 EST-SSR markers and used 90 genomic-SSR markers to evaluate genetic variation among 20 different genotypes ofEucalyptus;Zhou(2011)developed 295 EST-SSR markers based on pool-cloning sequencing of PCR products;and Kengavanar et al.(2011)developed 179 orthologous genic SSR markers inE.camaldulensis.

    In contrast,comprehensive studies about developing genomic SSRs and EST SSRs have rarely been published.Yang et al.(2011)developed 37 pairs of SSR primers based on an EST library and 95 pairs based on a genomic library;Zhang et al.(2011)explored genetic differences between genomic SSRs and EST SSRs in 15 species ofPoplarwith 48 pairs of genomic SSR primers and 48 pairs of EST SSR primers;Ding et al.(2015)explored genetic differences between genomic SSR and EST SSR in 12 species ofStylosanthesusing 20 pairs of genomic SSR primers and 20 pairs of EST SSR primers;and Wen et al.(2010)developed 20 genomic SSRs and 36 EST SSRs to analyze the genetic diversity among 45Jatropha curcasaccessions.

    The research reported here was aimed at developing genomic SSRs and EST SSRs ofEucalyptusby detecting and analyzing SSR and EST sequences in the genomes ofEucalyptusspecies and screening the effectiveness of primers.PhyML3.0 software was then used to construct a maximum likelihood phylogentic tree for six accessions of eucalypts,represented by fi ve species of the genusEucalyptusand one of the genusCorymbia.The results will provide resources and theoretical foundations for evaluating the genetic diversity and phylogenetics of eucalypts by SSR markers.

    Materials and methods

    Plant material and DNA isolation

    DNA samples were obtained from fi ve species ofEucalyptussubgenusSymphyomyrtusand one species ofCorymbia(Table 1).The taxonomy of samples was based on the classi fi cations of Pryor and Johnson(1971)and Hill and Johnson(1995).

    TotalgenomicDNAwasextractedfromfreshleaveswith DNeasy Plant Mini Kit(QIAGEN,Germany).The quantity of DNA was checked on 1.5%agrose gels and determined using a Nanodrop nucleic acid-protein analyzer.The DNA templates constituted a genomic DNA pool,obtained by combining the DNA from the fi ve accessions ofEucalyptusspecies and oneCorymbiaspecies.

    SSR mining and primer design

    A total of 45,557 sequences ofEucalyptuswere obtained from GenBank(http://www.ncbi.nlm.nih.gov/genbank/),including 28,691 genome sequences and 16,566 EST sequences ofEucalyptus.These sequences were checked to remove redundancies,and then assembled and clustered using DNAStar 7.1 software(http://www.dnastar.com/).Next,the sequences were searched for the presence of SSR repeats using SSRHunter 1.03 software(http://en.bio-soft.net/dna/SSRHunter.html).For SSR identi fi cation,a criterion of a minimum length of 18 bases was adopted.

    PCR primer pairs fl anking the SSR repeats were designed using softwarePrimer5.0 (http://www.pre mierbiosoft.com/).For designing PCR primers,the length ranged from 18-to 25-mer,and the optimum annealing temperature ranged from 50 to 60°C,the optimum GC content was 40–60%,and the rest of the parameters were set at default values.And these primers were checked with Oligo 6.0 software(http://oligo.net/).The primers were then synthesized by Invitrogen Trading(Shanghai).

    SSR analysis

    The SSRs were classi fi ed based on the length of the SSR motifs in their sequences.The different repeats of the SSR motifs and the frequencies of SSR motifs were used to analyse the characteristics of the SSRs.The types of SSR motifs were analysed to evaluate the speci fi city of SSRs inEucalyptus.

    SSR screening

    To obtain SSR-PCR products with higher speci fi cities and more stable rates,the SSR-PCR conditions for primer screening were optimized by adjusting Mg2+concentration and the annealing temperature(Tm).The PCR system and PCR program used followed methodologies described by Li et al.(2010):Mg2+concentration was set to 1.5,2.0,2.5 mmol L-1,and annealing temperature(Tm)were set to 50,56 and 60°C.After the optimum Mg2+concentration and annealing temperature were determined,effective primers that yielded good PCR results were reserved at each round,and ineffective primers that did not yield ideal products were discarded.

    PCR was performed in a volume of 20 μL,containing genomic DNA(about 100 ng),0.1 μM of each primer,TaqDNA polymerase(2 U),0.2 mM of each dNTP,MgCl2(1.5,2.0 or 2.5 mM).The PCR pro fi le consisted of denaturing the template DNA at 94°C for 4 min.,followed by 35 cycles,each at 94 °C for 30 s,50,56 or 60 °C for 30 s,and 72 °C for 1 min,followed by 72 °C for 10 min.The PCR products were separated by electrophoresis in 1.5%agarose.

    Table 1 Information on Eucalyptus and Corymbia species used in this study

    Statistical analyses

    Data for length of SSRs,the numbers of repeats,the frequencies of SSRs,and the SSRs types,were collated and statistics analyzed using Excel 2010 software(Microsoft,WA,USA).

    Phylogenetic analyses

    Phylogenetic analyses to examine the genetic relationships of the fi veEucalyptusand oneCorymbiaspecies were conducted using maximum likelihood and 1000 times bootstrapping was used to statistically support the groups using PhyML 3.0 software.The SSR-PCR sequences of six species were presented using the tree- fi gure drawing tool FigTree version 3.0 from the output fi le of PhyML 3.0.Information on the morphological features ofEucalyptusin China is from Qi(2002)and was compared with the results of phylogenetic analyses.

    Results

    Characterization of SSRs in Eucalyptus genome sequences and EST sequences of Eucalyptus

    Statistics on the 45,257 DNA sequences fromEucalyptusdownloaded from GenBank are presented in Table 2.The genomic sequences included 13,373 fromE.camaldulensis,1206 fromE.globulus,5751 fromE.grandis,7803 fromE.gunnii,265 fromE.nitensand 293 fromE.urophylla.The EST sequences included 588 fromE.globulusand 16,008 fromE.grandis.After removing redundancies,14,121 contigs were obtained and 1785 effective sequences detected that contained SSRs,accounting for 12.6% of the total contigs.The effectiveEucalyptussequences obtained consisted of820 EST sequencesand 965 genome sequences.

    The frequencies of different nucleotide repeat motifs in the SSRs contained within theEucalyptusDNA sequences obtained from the GenBank database are shown in Fig.1.Frequencies of motifs varied greatly;dinucleotide SSRs were the most common(44.5% of total),followed by trinucleotide SSRs(32.9%).The proportion of tetranucleotide and pentanucleotide SSRs were relatively low(3.2 and 2.8% of total,respectively).

    In the analysis conducted with SSRHunter software,435 SSR repeat motifs were found among the 2292 SSRs obtained.Of these SSR repeat motifs,12 were dinucleotides,50 were trinucleotides,51 were tetranucleotides,54 were pentanucleotides and 268 were hexanucleotides.

    Among the repeat motifs,CT/GA,TC/AG repeat motifs were the most common of the di-nucleotide types,occurring in 21.3 and 20.7% of SSRs,respectively.The same repeat motifs also accounted for 94.3% of all the dinucleotide repeat motifs obtained.In contrast,CG/GC repeat motifs accounted for only 0.4% of the dinucleotide repeat motifs.The CGG/GCC,CCG/CGG repeat motifs were the highest frequency trinucleotide repeat motifs,and occurred in 4.3%,3.9% of the SSRs,respectively.

    Table 2 Statistics for SSRs generated from Eucalyptus species

    Among the genome sequences and EST sequences ofEucalyptus,the repeat numbers varied from 3 to 50.Repeat numbers of 3–9 were predominant in the SSRs,totalling 1382 or 60.3% of the total SSRs.Repeat numbers of 10–20 accounted for 768 or 33.5% of the total number of SSRs,repeat numbers of 21–30 accounted for 130 or 5.7% of SSRs,whilst repeat number of 31–40 and more than 40 were accounted for just 10(0.4%)and 2(0.1%)of the SSRs,respectively(Fig.2).From the SSR repeat motifs analyzed,532 or 52.1% of the di-nucleotide repeat motifs occurred between repeat numbers of 10–15.Of the other repeat motifs,most were concentrated in among the 3–9 motif repeats,including 691 or 91.5% of trinucleotide repeat motifs,72 or 98.6%tetranucleotide repeat motifs,65 or 100% of pentanucleotide repeat motifs and 376 or 99.5% of hexanucleotide repeat motifs.

    Fig.1 Frequencies of different nucleotide repeat motifs in the SSRs

    The characterization of SSRs in genome sequences and EST sequences ofEucalyptusare presented in Table 3.Dinucleotide repeat motifs occurred at higher frequency in the genome sequences(48 repeat motifs),than in EST sequences(20 repeat motifs)ofEucalyptus.In contrast,the frequency of trinucleotide repeat motifs was higher in theEucalyptusgenome sequences(29 repeat motifs)than in the EST sequences(13 repeat motifs),as were the frequencies of both tetranucleotide and hexanucleotide repeat motifs.

    Fig.2 Frequency distributions of SSR repeats

    The number of SSRs in repeat motifs of different nucleotide lengths seemed to be negatively correlated with the length of the repeat motifs;the SSRs with longer lengths of nucleotide repeat motifs had lower frequencies ofnucleotide repeatmotifs inEucalyptusgenome sequences.However,the frequencies of tri-nucleotide repeat motifs were higher than other nucleotide repeat motifs in EST sequences ofEucalyptus.

    In Table 4,the 970 SSRs found in theEucalyptusEST sequences accounted ig for 42.3% of the total SSRs,and 1322SSRswerefoundintheEucalyptusgenome sequences,accounting for 57.7% of the total SSRs.The number of dinucleotide,tetranucleotide and pentanucleotide repeat motifs found in theEucalyptusgenome sequencesexceededthenumberfoundintheEST sequences ofEucalyptus.In contrast,more tri-and hexanucleotide repeat motifs were found inEucalyptusEST sequences than inEucalyptusgenome sequences.Dinucleotide repeat motifs were predominant inEucalyptusgenome sequences,accounting for 54.8% of total SSRs,and the frequency of trinucleotide repeat motifs was highestamong the EST sequences ofEucalyptus,accounting for 42.5% of the total SSRs.

    Table 3 Information on SSR motifs in Eucalyptus

    Table 4 Characterization of SSRs in Eucalyptus genome sequences and EST sequences of Eucalyptus

    SSR primer design

    After primer design and veri fi cation,a total of 395 SSR primers were synthesized for use in subsequent analyses.These included 150 pairs of EST-SSR(eSSR)primers,of which nine pairs were designed using EST sequences ofE.globulus,and 141 pairs were designed using EST sequences ofE.grandis.The 245 pairs of genomic-SSR(gSSR)designed included 168 pairs,which were designed using genome sequences ofE.grandis,13 pairs designed using genome sequences ofE.globulus,17 pairs designed using genome sequences ofE.camaldulensis,36 pairs designed using genome sequences ofE.gunnii,and 11 pairs designed using genome sequences ofE.urophylla.The length of primers varied from 18 to 22 bp,and the length of target fragments varied from 200 to 500 bp.Selection details for these SSR primers are presented in Table 5.

    Screening for effective SSR primers of Eucalyptus

    The DNA templates were from a mixed genomic DNA pool obtained by combining the DNA from the fi veEucalyptusand oneCorymbiaspecies sampled(see Table 1).After nine rounds of screening by optimizing the PCR conditions,340 pairs of primers successfully ampli fi ed the target fragments with a success ratio up to 86.1%;136 pairs of effective primers were screened from 150 pairs of eSSR primers,with a success ratio of 90.7%;204 pairs of effective primers were screened from 245 pairs of gSSR primers,with a success ratio of 83.3%.Some of the results from screening partial eSSR and gSSR primers are shown in Figs.3 and 4 respectively.

    Results from primer screening are presented in Table 6.From among the nine rounds of primer screening,an annealing temperature of 56°C with 2.0 or 2.5 mmol L-1Mg2+of provided the highest success ratios.The maximum eSSR primer success ratio was 56.0%,achieved with an annealing temperature of 56°C and 2.5 mmol L-1Mg2+,while the maximum gSSR primer success ratio was 51.4%,which was achieved at the same annealing temperature but with 2.0 mmol L-1Mg2+.

    Phylogenetic analysis using SSR-PCR sequences

    To assess the genetic relationships of the six accessions( fi veEucalyptusand oneCorymbiaspecies),data from fi ve pairs of effective SSR primers that had good stability,strong signals and high polymorphisms were analysed.This analysis generated a maximum likelihood phylogenetic tree based on fi ve combined ampliconic sequences of the six species;see Fig.5.

    The results of combined-ML phylogenetic analyses revealed thatC.citriodorahad a greater genetic distance from the other fi ve species,consistent with morphological taxonomy.Based on this analysis,the kinship ofE.camaldulensisandE.pellitais somewhat closer,whileE.tereticornisandE.urophyllahad the closest genetic relationship of all the species examined.These results differed somewhat from what was expected based on the taxonomy of these species described by both Pryor and Johnson(1971)and Hill and Johnson(1995).

    Further analyses using the six pairs of SSR primers in the fi veEucalyptusspecies(the primer of gSSR-GU023 had no ampliconic sequence inC.citriodora)examined the genetic relationships among only species of subgenusSymphyomyrtus(Fig.6).The combined ML phylogenetic tree of these species shows thatE.pellita,E.camaldulensisandE.grandishad a relatively close genetic relationship,while the shortest genetic distance with this group of fi ve species was betweenE.tereticornisandE.urophylla.This latter result concurs with the combined ML phylogenetic tree developed from data using the fi ve pairs of SSR primers for the six eucalypt species(Fig.5).

    Table 5 Basic information for fi ve pairs of SSR primers

    Discussion

    Characterization of SSRs in Eucalyptus

    Among 14,141 contigs assembled from 45,257 genome and EST sequences ofEucalyptus,1785 SSRs(12.6%)were detected.This frequency is consistent with results obtained by Ellis and Burke(2007)and Yasodha et al.(2008)who obtained frequencies of 12.3 and 12.9%respectively.However,He(2010)reported a somewhat higher frequency of SSRs,25.3%,in EST sequences ofEucalyptus,and Zhou(2011)reported a frequency of SSRs of 21.7%in 36,029 unigenes assembled from EST sequences ofEucalyptus.Similarly,Rabello et al.(2005)and Ceresini et al.(2005)reported frequencies of SSRs inEucalyptusof 25.5 and 25.6%,respectively.

    Dinucleotide repeat motifs are generally the most common types of repeat motifs in dicotyledons,and trinucleotide repeat motifs are most common in graminaceous plants(Biet et al.1999).In this current study,dinucleotide and trinucleotide repeat motifs were found to be the most frequent inEucalyptus, accounting for 44.4 and 32.8%,respectively,ofthe totalrepeatmotifs.The tetranucleotide and pentanucleotide repeat motifs

    accounted for only 3.2 and 2.8%,respectively.These results agreed closely with those of He(2010),Li(2010)and Zhou(2011),who also examined frequencies of SSRs in EST sequences ofEucalyptus.

    Table 6 Results of primer screening

    Fig.3 Fast screening result of partial eSSR primers.Lanes 1,2,3,4,7,8,10,11,12,14,15,16,18,20 lane have bands that indicate successfully screens of primers

    Fig.4 Fast screening result of partial gSSR primers.Lanes 2,5,6,9,11,13,15,17,18,20 have bands that indicate successful screens of primers

    Fig.5 Combined ML phylogenetic analysis of Eucalyptus(including 1 Corymbia species)using 5 combined sequences.Numbers on branch points represent the percentage of 1000 bootstraps by heuristic searching

    Fig.6 Combined ML phylogenetic analysis of the fi ve Eucalyptus species using the six combined sequences.Numbers on branch points represent the percentage of 1000 bootstraps by heuristic searching

    Previous research has shown that the formation of SSR loci might be associated with DNA replication slippage,alternation of nucleic acids and unbalanced recombination(Tóth et al.2000;Ma et al.2015).The combinations of CA,GA,and GT in SSR repeat motifs could affect DNA recombination by impacting the DNA structure(Biet et al.1999).Therefore,the composition of nucleotides in SSRs can affect the activities of life,and hence analyses of the structure of motifs and distributions of SSRs can be of great importance.In this current study,the repeat motifs of AG/TC and GA/CT accounted for the vast majority(94.3%)of dinucleotide repeat motifs,and CCG/CGG repeat motifs were the most common(16.4%)trinucleotide repeat motifs.These results are in perfect agreement with the results of other studies inEucalyptus(Zhou 2011;Yasodha et al.2008).

    EST-SSR primers come from the expressed gene conservative region(Ding et al.2015).Numerous studies have shown that polymorphisms in EST-SSR primers are lower than in genomic SSR primers(Qi et al.2009),that EST sequences tend to be more conservative than genome sequences,and that EST-SSR primers are better than genomic SSR primers in transferability across species(Qi et al.2009;Yang et al.2011;Xu et al.2014;Zhang et al.2011).In this current study,trinucleotide repeat motifs(42.5%)were more frequent than the other nucleotide repeat motifs in EST sequences ofEucalyptus,while in genomic sequences dinucleotide repeat motifs were more frequent(54.8%).This result concurs with fi ndings of Li(2010)on the content of microsatellites in EST sequences ofEucalyptus.Trinucleotide repeat motifsis where excessive enrichment might occur because the genetic code only allows triplet repeats to have mutations.

    Analyses of the data on the maximum repetition of SSRs in this study revealed that the repetition of di-,tri-,tetraand hexanucleotide repeat motifs was greater in genome sequences than in EST sequences ofEucalyptus.Pentanucleotide repeat motifs were an exception,as the repetitions of these in EST sequences equaled that in genomic sequences.The average repetitions of di-,tri-,tetra-and pentanucleotide repeat motifs in genomic sequences were higher than in EST sequences ofEucalyptus,but the average repetitions of hexanucleotide repeat motifs in genomic sequences was equal to that in EST sequences ofEucalyptus.These results clearly indicate that the length and polymorphism of SSRs in genomic sequences were superior to those in EST sequences ofEucalyptus.

    In molecular genetics,development and utilization of molecular markers to diagnose and detect DNA polymorphisms and analyze genetic diversity have valuable applications in understanding genetic relationships,accelerating breeding and facilitating genetic improvement(Zhou 2011).SSR molecular marker technology is based on PCR,and for this,the operability of the assembly sequences must be considered in the design of primers(Yang et al.2011).The research of Temnykh et al.(2001)showed that when the SSRs of lengths greater than or equal to 20 bp tend to have a higher degree polymorphism,SSRs of lengths between 12 and 20 bp tend to have a medium degree of polymorphism,and SSRs of lengths less than 12 bp tend to have extremely low degree of polymorphism.To ensure a high degree of polymorphism in SSR primers in this current study,selection criteria for SSRs included a minimum length of 18 bp.The lengths of the 395 SSR primers used in this current study were 18–22 bp,and the lengths of their target sequences were 200–500 bp.Those lengths can guarantee the quantity of target sequences and the fi delity of SSR primers,both sides of SSR loci must have a certain length of sequences,and it would be more convenient to select the parameters of SSR primers,as an appropriate primer length,GC content,annealing temperature,and target sequence length(Temnykh et al.2001;Picoult-Newberg et al.1999).

    The screening of SSR primers

    To evaluate the effectiveness of SSR primers ofEucalyptus,we screened 150 pairs of eSSR primers and 245 pairs of gSSR primers.After nine rounds of screening to optimize PCR conditions,340 pairs of primers were screened and found to be effective primers.Among the 340 pairs of primers,136 pairs were eSSR primers,and 204 pairs were gSSR primers;the overall success ratio was 86.1%.This result demonstrated that the SSR primers had good transferability and that one SSR marker could probably be shared among species with a close genetic relationship.This conclusion is agrees with results reported by Cupertino et al.(2011)who found that genomic SSR and EST SSR had no signi fi cant differences among 112 hybrid taxa ofEucalyptus.Ellis and Burke(2007)reported that the length of SSRs and their stability varied between different species and between different SSR loci within the one species.Ellis showed that gSSRs had higher polymorphism than eSSRs,and the transferability of gSSRs was worse than eSSRs.In this current study,the success ratio of screening for eSSRs(90.7%)was somewhat higher than thatforgSSRs (83.3%);a resultthatmightbe attributable to the EST sequences accounting for 57.7% of the genome sequences in this study.

    Conclusion

    By detecting the SSRs in both genome and EST sequences ofEucalyptus,this study obtained 970 SSRs in EST sequences and 1322 SSRs in genome sequences.The software Primer 5.0 designed 150 pairs of eSSR primers and 245 pairs of gSSR primers.PCR reaction used a pool of genomic DNA,obtained from sixEucalyptusspecies,as a DNA template.PCR conditions were optimized and used to obtain 136 pairs of eSSR primers and 204 pairs of gSSR primers from the screening of 395 pairs of SSR primers,providing screening success ratios of 90.7 and 83.3%,respectively.The 340 pairs of SSR primers developed in the study along with insights on SSRs provide important resources for future studies on genetic diversity,phylogenetics and other genetic aspects inEucalyptus.

    The classi fi cation ofEucalyptusby Pryor and Johnson(1971)and Hill and Johnson(1995)acknowledgesC.citriodoraas belonging to a separate genus,Corymbia,and thatE.tereticornis,E.grandis,E.urophylla,E.camaldulensisandE.pellitabelonged to the genusEucalyptus.Their classi fi cations also placeE.tereticornisandE.camaldulensisinto the subgeneric taxon known as sectionExsertaria,whilstE.grandis,E.urophyllaandE.pellitaare placed into sectionLatoangulatae.Within these sections,they placedE.grandisinto seriesSalignae,andE.urophyllaandE.pellitainto seriesResiniferinae.In the combined ML phylogenetic analyses in the current study,the results at the genus level were consistent with thothe classi fi cations of Pryor and Johnson(1971)and Hill and Johnson(1995).

    However,the genetic relationships among the fi veEucalyptusrevealed by analyses conducted in this current study differed somewhat from those suggested by Pryor and Johnson(1971)and Hill and Johnson(1995).The phylogenetic trees obtained in this study indicate thatE.camaldulensisandE.grandishave a close genetic relationship even though traditional taxonomy placed them in different subgeneric sections,ExsertariaandLatoangulataerespectively.And the same status applied toE.tereticornisandE.urophylla.

    In the analysis of the morphological features of six eucalypt species,the features of young leaves and mature leaves ofE.pellitawere similar to those ofE.camaldulensis:3–4 pairs of young leaves opposite,ovoid to lanceolate,and mature leaves alternate,lanceolate.Species in sectionLatoangulataehave mature leaves,upper and lower sides concolorous;juvenile leaves on seedlings are sessile.Zhang et al.(2010)analyzed the genetic diversity of four species ofEucalyptusand illustrated that genetic similarity ofE.camaldulensisandE.grandiswas greater,in agreement with the phylogenetic trees in the present study.Thus,the reliability of classi fi cation schemes based on foliar features or petiole features need further study.

    AcknowledgementsThis research was funded by the Special Fund for Forestry Scienti fi c Research in the Public Interest(201504204).The authors are indebted to numerous persons who provided help for this study,in particular Roger Arnold,Luo Jianzhong,Wu Zhihua,and the forestry administration of Leizhou and South China Experimental Nursery who providedEucalyptussamples for this study.

    Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License(http://crea tivecommons.org/licenses/by/4.0/),which permits unrestricted use,distribution,and reproduction in any medium,provided you give appropriate credit to the original author(s)and the source,provide a link to the Creative Commons license,and indicate if changes were made.

    Biet E,Sun J,Dutreix M(1999)Conserved sequence preference in DNA binding among recombination proteins:an effect of ssDNA secondary structure.Nucleic Acids Res 27:596–600

    Bradbury D,Smithson A,Krauss SL(2013)Signatures of diversifying selection at EST-SSR loci and association with climate in naturalEucalyptuspopulations.Mol Ecol 22:5112–5129

    Ceresini PC,Silva CLSP,Missio RF,Souza EC,Fischer CN,Guillherme IR,Gregorio I,Silva EHT,Cicarelli RMB,Silva MTA,Garcia JF,Avelar GA,Neto LRP,Marcon AR,Junior MB,Marini DC(2005)Satellypus:analysis and database of microsatellites from ESTs ofEucalyptus.Genet Mol Biol 28(3 suppl):589–600

    Cupertino FB,Leal JB,Correa RX,Gaiotto FA(2011)Genetic diversity ofEucalyptushybrids estimated by genomic and EST microsatellite markers.Biol Plant 55(2):379–382

    Ding XP,Luo XY,Shao CG,Zhang L,Wang WQ,Bai LJ(2015)Comparative analysis of genetic diversity revealed by genomic-SSR and EST-SSR markers in interspecies ofStylosanthes.Guangdong Agric Sci 14:106–113

    DOE Joint Genome Institute Announces(2008)Genome Sequencing Targets.Eucalyptus,Foxtail Millet,Red Algae,and Novel Microbial Communities Added to Growing Bioenergy and Carbon Cycling Portfolio

    Ellis JR,Burke JM(2007)EST-SSRs as a resource for population genetic analyses.Heredity 99:125–132

    Gupta PK,Varshney RK(2000)The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat.Euphytica 113(3):163–185

    He XD(2010)Heterosis onEucalyptus hybrids and molecular marker-assisted selection.Dissertation,Nanjing Forestry University,Nanjing

    Hill KD,Johnson LAS(1995)Systematic studies in theEucalyptus-7 A revision of the bloodwoods,genusCorymbia(Myratceae).Telopea 6(2/3):185–504

    Kengavanar N,Prasad SH,Navin S,Rajkumar R(2011)Novel design and deployment of orthologous genetic SSR markers inEucalyptus camaldulensisDehnh.BMC Proc 5(Suppl 7):51.doi:10.1186/1753-6561-5-S7-P51

    Li FG(2010)Linkage map construction and growth QTL detection inEucalyptus urophyllaandE.tereticornisbased on STS markers.Dissertation,Chinese Academy of Forestry,Beijing

    Li SX,Zhang XY,Wang YY,Yin TM(2010)Content and characteristics of microsatellites detected in expressed sequence tag sequences inEucalyptus.Chin Bull Bot 45(3):363–371

    Liu G,Xie YJ(2012)Application of molecular marking technologies in heredity breeding ofEucalyptus.World For Res 25(3):19–25

    Ma QY,Liao ZY,Zhang DF,Dai XG,Chen YN,Li SX(2015)Deep sequenced-based transcriptome analysis of microsatellites inPeach(Prunus persica cv.duplex) fl owers.J Nanjing For Univ(Nat Sci Ed)39(1):1–8

    Maria MR,Leopoldo S,Carla R,Fátima C,JoséA,Nuno MGB,Cristina M (2011)A case study ofEucalyptus globulusfi ngerprinting for breeding.Ann For Sci 68:701–714.doi:10.1007/s13595-011-0087-x

    Myburg AA,Grattapaglia D,Tuskan GA,Hellsten U,Hayes RD,Grimwood J,Jenkins J,Lindquist E,Tice H,Bauer D,Goodstein DM,Dubchak I,Polikov A(2014)The genome ofEucalyptus grandis.Nature 510(19):356–374.doi:10.1038/nature13308

    Picoult-Newberg L,Ideker TE,Pohl MG,Taylor SL,Donaldson MA,Nickerson DA,Boyce-Jacino M(1999)Mining SNPs from EST databases.Genome Res 9:167–174

    Powell W,Machray GC,Provan J(1996)Polymorphisms revealed by simple sequence repeats.Trends Plant Sci 7(1):215–222

    Pryor LD,Johnson LAS(1971)A classi fi cation of theEucalyptus.The Australian National University,Canberra,p 102

    Qi SX(2002)Eucalyptus in China,vol 2.China Forestry Publishing House,Beijing,pp 42–51

    Qi J,Wang KJ,Wu CL,Wang WX,Hao YB,Leng P(2009)Development of EST-SSR markers inJuglans regia.J Agric Biotechnol 17(5):872–876

    Rabello E,Souza AN,Saito D,Tsai SM(2005)In silico characterization of microsatellites inEucalyptusspp.:abundance,length variation and transpose on associations.Genet Mol Biol 28(3 suppl):582–588.doi:10.1590/S1415-47572005000400013

    Shanmugapriya A,Modhumita G,Sivakumar V,Yasodha R(2011)Species discrimination,population structure and linkage disequilibrium inEucalyptus camaldulensisandeucalyptus tereticornisusing SSR markers.PLoS ONE 6(12):1–8

    Steane DA,Vaillancourt RE,Russell J,Powell W,Maeshall D,Potts BM(2001)Development and characterisation of microsatellite lociinEucalyptusglobulus(Myrtaceae).Silvae Genet 50(2):89–91

    Tautz D(1989)Hyper variability of simple sequences as a general sourceforpolymorphicDNA markers.NuclAcidsRes 17(16):6463–6471

    Temnykh S,DeClerck G,Lukashova A,Lipovich L,Cartinhour S,McCouch S(2001)Computational and experimental analysis of microsatellites inRice(OryzasativaL.).Genome Res 11(8):1441–1452

    Tóth G,Gáspári Z,Jurka J(2000)Microsatellites in different eukaryotic genomes:survey and analysis.Genome Res 10(7):967–981

    Varshney RK,Graner A,Sorrells ME(2005)Genetic microsatellite markers in plants:features and applications.Trends Biotechnol 23(1):48–55

    Wang Y(2009)Development of EST-SSR markers and their application to construction of genetic maps inEucalyptus.Dissertation,Nanjing Forestry University,Nanjing

    Wen MF,Wang HY,Xia ZQ,Zou ML,Lu C,Wang WQ(2010)Developent of EST-SSR and genomic-SSR markers to assess genetic diversity inJatropha Curcas L.BMC Res Notes 42(3):1–8

    Xu Y,Chen JH,Li Y,Hong Z,Wang Y,Zhao YQ,Wang XM,Shi JS(2014)Development of EST-SSR and genomic-SSR in Chinese fi r.J Nanjing For Univ(Nat Sci Ed)38(1):9–14

    Yang H,Chen Q,Wei CL,Shi CY,Fang CB,Wan XC(2011)Analysis on SSR information inCamellia sinensistranscriptome.J Anhui Agric Univ 38(6):882–886

    Yasodha R,Sumathi R,Chezhian P,Kavitha S,Ghosh M(2008)Eucalyptusmicrosatellites mined in silico:survey and evaluation.J Genet 87(1):21–25

    Zhang DQ,Tian H,Xie YJ,Huang QY,Gu ZJ,Cao JG,Tan XF,Zeng YL,Deng SY,Fan SG (2010)Gentic diversity of fourEucalyptusspecies by ISSR.J Central South Univ For Technol 30(1):12–17

    Zhang YD,Peng C,Li ZF,Yang YL,Hu XY(2011)Genetic Diversity of Genomic-SSR and EST-SSR Markers in Interspecies ofPoplar.J Northeast For Univ 39(12):8–11

    Zhang ZY,Xiang DY,Deng ZY,Tang QL,Chen JB,Lan J(2013)Establishment of Fingerprinting for 24 Clones inEucalyptus.J Northwest For Univ 28(2):74–78

    Zhou CP(2011)Development of a new set of EST-SSR markers and their application to integrated linkage map inEucalyptus.Dissertation,Chinese Academy of Forestry,Beijing

    Zhou CP,Li FG,Weng QJ,Yu XL,Li M,Gan SM(2010)Comparison between direct sequencing and pool-cloning-based sequencing of PCR products in EST-SSR marker development inEucalyptus.Fenzi Zhiwu Yuzhong(Online)8(1):1–10.doi:10.5376/mpb.cn.2010.08.0001

    欧美成人一区二区免费高清观看 | 欧美在线一区亚洲| 91在线观看av| 亚洲性夜色夜夜综合| 999精品在线视频| 国产精品 欧美亚洲| 男女之事视频高清在线观看| 18禁国产床啪视频网站| 色在线成人网| 国产亚洲精品久久久久久毛片| 999久久久精品免费观看国产| 18禁观看日本| 久久精品人妻少妇| 国产亚洲精品av在线| 亚洲免费av在线视频| 最近在线观看免费完整版| 亚洲九九香蕉| 波多野结衣高清作品| 午夜福利18| 不卡一级毛片| 黄片播放在线免费| 亚洲色图 男人天堂 中文字幕| 久久精品夜夜夜夜夜久久蜜豆 | 国产精品九九99| 日韩中文字幕欧美一区二区| 国产激情久久老熟女| 老鸭窝网址在线观看| 天堂√8在线中文| 女人爽到高潮嗷嗷叫在线视频| √禁漫天堂资源中文www| 日韩高清综合在线| 麻豆av在线久日| 99国产精品一区二区蜜桃av| 视频在线观看一区二区三区| 女生性感内裤真人,穿戴方法视频| 又紧又爽又黄一区二区| 怎么达到女性高潮| 级片在线观看| 狂野欧美激情性xxxx| 亚洲色图 男人天堂 中文字幕| 久久精品91无色码中文字幕| 精品国产乱码久久久久久男人| 岛国视频午夜一区免费看| 男女下面进入的视频免费午夜 | 欧美又色又爽又黄视频| 久久欧美精品欧美久久欧美| 日韩精品中文字幕看吧| 国产在线精品亚洲第一网站| 淫妇啪啪啪对白视频| 成熟少妇高潮喷水视频| 男人的好看免费观看在线视频 | 十八禁网站免费在线| 国产激情偷乱视频一区二区| 国产区一区二久久| 国产成人精品无人区| АⅤ资源中文在线天堂| 男人舔女人下体高潮全视频| 国产成人系列免费观看| 久久人人精品亚洲av| xxx96com| 18禁黄网站禁片午夜丰满| 亚洲精品中文字幕一二三四区| 久久人妻福利社区极品人妻图片| 搡老妇女老女人老熟妇| 成人免费观看视频高清| 一进一出好大好爽视频| 黄片小视频在线播放| 久久狼人影院| 亚洲欧美日韩无卡精品| 成人特级黄色片久久久久久久| 变态另类成人亚洲欧美熟女| 亚洲av五月六月丁香网| 亚洲中文字幕一区二区三区有码在线看 | 999久久久精品免费观看国产| 亚洲专区中文字幕在线| 一级a爱片免费观看的视频| 亚洲男人天堂网一区| 啦啦啦 在线观看视频| 黄频高清免费视频| 男女视频在线观看网站免费 | 久久精品成人免费网站| 精品欧美国产一区二区三| 首页视频小说图片口味搜索| 级片在线观看| 韩国av一区二区三区四区| 日本黄色视频三级网站网址| 国产精品香港三级国产av潘金莲| 男女床上黄色一级片免费看| 宅男免费午夜| 国产亚洲欧美在线一区二区| 国产亚洲精品久久久久5区| 人成视频在线观看免费观看| 久久久久国内视频| 国产熟女午夜一区二区三区| 别揉我奶头~嗯~啊~动态视频| 热99re8久久精品国产| bbb黄色大片| 国产精品亚洲av一区麻豆| 99热这里只有精品一区 | 成人永久免费在线观看视频| 精品卡一卡二卡四卡免费| 成人永久免费在线观看视频| 白带黄色成豆腐渣| 色哟哟哟哟哟哟| 久久婷婷成人综合色麻豆| 久久欧美精品欧美久久欧美| 啦啦啦免费观看视频1| 午夜免费观看网址| 国产黄a三级三级三级人| 久久中文字幕人妻熟女| 色播亚洲综合网| 久久久久国内视频| 久99久视频精品免费| 99久久国产精品久久久| 久久久久久亚洲精品国产蜜桃av| 亚洲国产中文字幕在线视频| xxx96com| 看免费av毛片| 国产精品亚洲美女久久久| 曰老女人黄片| 亚洲熟女毛片儿| av在线播放免费不卡| 听说在线观看完整版免费高清| 午夜福利视频1000在线观看| 国产av一区在线观看免费| 亚洲国产日韩欧美精品在线观看 | 精品久久蜜臀av无| 校园春色视频在线观看| 成年女人毛片免费观看观看9| 亚洲欧美精品综合久久99| bbb黄色大片| 1024手机看黄色片| 精品熟女少妇八av免费久了| 亚洲色图 男人天堂 中文字幕| 中亚洲国语对白在线视频| 免费看美女性在线毛片视频| 十八禁网站免费在线| 亚洲,欧美精品.| 一区福利在线观看| 久久久国产欧美日韩av| 国产精品综合久久久久久久免费| 久久久久久人人人人人| av免费在线观看网站| 亚洲av中文字字幕乱码综合 | 亚洲精品在线观看二区| 国产一区二区三区视频了| 欧美日韩一级在线毛片| 好男人在线观看高清免费视频 | 亚洲第一青青草原| 久久性视频一级片| 精品第一国产精品| 悠悠久久av| 色综合站精品国产| 国产视频内射| 搞女人的毛片| 亚洲第一av免费看| 69av精品久久久久久| 国产亚洲欧美精品永久| 曰老女人黄片| 18禁国产床啪视频网站| 最近最新免费中文字幕在线| 亚洲欧美激情综合另类| 色播在线永久视频| 波多野结衣高清无吗| 亚洲,欧美精品.| 琪琪午夜伦伦电影理论片6080| 亚洲狠狠婷婷综合久久图片| 91av网站免费观看| 一本一本综合久久| 99热6这里只有精品| 婷婷丁香在线五月| 国产精品国产高清国产av| 国内揄拍国产精品人妻在线 | 亚洲欧美一区二区三区黑人| 久久天躁狠狠躁夜夜2o2o| 嫁个100分男人电影在线观看| 久久性视频一级片| 可以在线观看的亚洲视频| 中文字幕人妻熟女乱码| 亚洲人成伊人成综合网2020| 国产成人欧美在线观看| 亚洲成a人片在线一区二区| 最新在线观看一区二区三区| 高清在线国产一区| 丁香六月欧美| 女人爽到高潮嗷嗷叫在线视频| 美女国产高潮福利片在线看| 老汉色∧v一级毛片| 天天躁狠狠躁夜夜躁狠狠躁| АⅤ资源中文在线天堂| 夜夜爽天天搞| 久久久国产成人精品二区| 国产99久久九九免费精品| 国产激情偷乱视频一区二区| 男女那种视频在线观看| 高潮久久久久久久久久久不卡| 热re99久久国产66热| 在线国产一区二区在线| 天天一区二区日本电影三级| 亚洲av片天天在线观看| 老司机深夜福利视频在线观看| 国产黄片美女视频| 少妇熟女aⅴ在线视频| 精品少妇一区二区三区视频日本电影| 在线观看免费视频日本深夜| 一二三四在线观看免费中文在| 黄色成人免费大全| ponron亚洲| 美女午夜性视频免费| 一区二区日韩欧美中文字幕| 国产精品久久久av美女十八| 丰满的人妻完整版| 国产精品久久久久久精品电影 | 母亲3免费完整高清在线观看| 好男人在线观看高清免费视频 | 村上凉子中文字幕在线| 少妇被粗大的猛进出69影院| 女生性感内裤真人,穿戴方法视频| 免费女性裸体啪啪无遮挡网站| 在线观看免费日韩欧美大片| 18禁黄网站禁片午夜丰满| 最新在线观看一区二区三区| 国产成人啪精品午夜网站| 一本精品99久久精品77| 日本一本二区三区精品| 男男h啪啪无遮挡| 成人国产综合亚洲| 国产亚洲精品久久久久久毛片| 日韩免费av在线播放| 男女做爰动态图高潮gif福利片| 国产精品香港三级国产av潘金莲| 深夜精品福利| 国产成人精品久久二区二区91| 制服诱惑二区| 看免费av毛片| 在线十欧美十亚洲十日本专区| 动漫黄色视频在线观看| 国产主播在线观看一区二区| 色综合站精品国产| 又大又爽又粗| 国产熟女午夜一区二区三区| 午夜久久久久精精品| 99精品在免费线老司机午夜| 欧美日韩瑟瑟在线播放| 不卡一级毛片| 亚洲国产毛片av蜜桃av| 十八禁网站免费在线| 国产国语露脸激情在线看| 在线十欧美十亚洲十日本专区| av欧美777| 最近最新免费中文字幕在线| 午夜成年电影在线免费观看| 99精品在免费线老司机午夜| 悠悠久久av| 久久久国产精品麻豆| 午夜老司机福利片| 成人一区二区视频在线观看| 国产精品1区2区在线观看.| 午夜福利欧美成人| 日韩有码中文字幕| 99精品在免费线老司机午夜| 精品电影一区二区在线| 免费高清在线观看日韩| 亚洲成国产人片在线观看| 亚洲午夜精品一区,二区,三区| 男人舔女人下体高潮全视频| 两性夫妻黄色片| 特大巨黑吊av在线直播 | 日韩欧美一区二区三区在线观看| 日韩高清综合在线| av片东京热男人的天堂| 一区二区三区国产精品乱码| 亚洲国产精品合色在线| 精品人妻1区二区| 99在线人妻在线中文字幕| 色播亚洲综合网| 国产日本99.免费观看| 国产高清videossex| 天天一区二区日本电影三级| 久久精品人妻少妇| 亚洲第一青青草原| 国产成人精品久久二区二区91| 欧美一级毛片孕妇| 中文字幕精品免费在线观看视频| 欧美又色又爽又黄视频| 成人免费观看视频高清| 18禁黄网站禁片午夜丰满| 可以在线观看毛片的网站| 婷婷精品国产亚洲av| 亚洲国产毛片av蜜桃av| 琪琪午夜伦伦电影理论片6080| 久久久久国内视频| 国产久久久一区二区三区| 搞女人的毛片| 日韩成人在线观看一区二区三区| 女性生殖器流出的白浆| av视频在线观看入口| 这个男人来自地球电影免费观看| 别揉我奶头~嗯~啊~动态视频| 伦理电影免费视频| 亚洲精品av麻豆狂野| 午夜福利在线在线| 精品国内亚洲2022精品成人| 久热爱精品视频在线9| 男女午夜视频在线观看| 一区福利在线观看| 亚洲av日韩精品久久久久久密| 91av网站免费观看| 国产国语露脸激情在线看| 波多野结衣巨乳人妻| 老汉色∧v一级毛片| 亚洲av美国av| 久久精品国产亚洲av高清一级| 亚洲欧美激情综合另类| 成人永久免费在线观看视频| 国产一区在线观看成人免费| 日日干狠狠操夜夜爽| 欧美丝袜亚洲另类 | 免费在线观看成人毛片| 国产久久久一区二区三区| 少妇 在线观看| 国内揄拍国产精品人妻在线 | 最新在线观看一区二区三区| 一本精品99久久精品77| 国产精品免费视频内射| 两个人免费观看高清视频| 久久久国产精品麻豆| 99久久国产精品久久久| 热re99久久国产66热| 国产99白浆流出| 哪里可以看免费的av片| 久久性视频一级片| 黄片播放在线免费| 国语自产精品视频在线第100页| 18禁黄网站禁片免费观看直播| 免费观看人在逋| 人妻久久中文字幕网| 成人国产综合亚洲| 久久精品aⅴ一区二区三区四区| 国产精品久久视频播放| 正在播放国产对白刺激| 女性被躁到高潮视频| 久久久久亚洲av毛片大全| 女生性感内裤真人,穿戴方法视频| 一本一本综合久久| 久久伊人香网站| av免费在线观看网站| 18禁国产床啪视频网站| 一本一本综合久久| 男男h啪啪无遮挡| 亚洲真实伦在线观看| 国产一区二区三区在线臀色熟女| 人人妻人人澡人人看| 亚洲av中文字字幕乱码综合 | 99国产综合亚洲精品| 亚洲免费av在线视频| 无限看片的www在线观看| 国产精品久久久av美女十八| 99国产精品一区二区蜜桃av| 亚洲国产精品久久男人天堂| 久久精品91蜜桃| 亚洲精品粉嫩美女一区| 1024手机看黄色片| 亚洲国产日韩欧美精品在线观看 | 一边摸一边做爽爽视频免费| 国产欧美日韩一区二区三| 1024视频免费在线观看| 日日摸夜夜添夜夜添小说| 色哟哟哟哟哟哟| 欧美黑人精品巨大| 久久精品国产亚洲av高清一级| 精品久久久久久成人av| 午夜两性在线视频| videosex国产| 一级作爱视频免费观看| 成年女人毛片免费观看观看9| 制服人妻中文乱码| 日本免费一区二区三区高清不卡| 长腿黑丝高跟| 久久久久九九精品影院| 国产人伦9x9x在线观看| 成年版毛片免费区| 亚洲av美国av| 久久这里只有精品19| 精品卡一卡二卡四卡免费| 自线自在国产av| 日韩欧美免费精品| 国产av一区在线观看免费| 亚洲国产欧美日韩在线播放| 国产精品日韩av在线免费观看| 日韩一卡2卡3卡4卡2021年| av免费在线观看网站| 亚洲人成77777在线视频| 老司机午夜福利在线观看视频| av电影中文网址| 久久婷婷成人综合色麻豆| 婷婷六月久久综合丁香| 成人手机av| 日日爽夜夜爽网站| 免费在线观看影片大全网站| 成人亚洲精品一区在线观看| 少妇的丰满在线观看| www日本在线高清视频| 久久精品国产清高在天天线| 香蕉国产在线看| 日日夜夜操网爽| 国产野战对白在线观看| 亚洲无线在线观看| av片东京热男人的天堂| 国产熟女xx| 免费看a级黄色片| a级毛片在线看网站| 窝窝影院91人妻| 亚洲成人国产一区在线观看| 十分钟在线观看高清视频www| 日韩中文字幕欧美一区二区| 性色av乱码一区二区三区2| 中文字幕久久专区| 国产精品久久久人人做人人爽| 欧美成人免费av一区二区三区| 国产精品影院久久| 亚洲成av人片免费观看| 欧美 亚洲 国产 日韩一| 日本精品一区二区三区蜜桃| 日本三级黄在线观看| 亚洲 国产 在线| 久久午夜亚洲精品久久| 亚洲中文字幕日韩| 欧美成人一区二区免费高清观看 | 听说在线观看完整版免费高清| 亚洲国产中文字幕在线视频| 欧美日韩黄片免| 俄罗斯特黄特色一大片| 97人妻精品一区二区三区麻豆 | 免费女性裸体啪啪无遮挡网站| 亚洲天堂国产精品一区在线| 午夜福利高清视频| 大型av网站在线播放| 黄片播放在线免费| 亚洲精品在线观看二区| 99riav亚洲国产免费| 怎么达到女性高潮| 日韩欧美国产一区二区入口| 中国美女看黄片| 中文字幕av电影在线播放| 天天躁狠狠躁夜夜躁狠狠躁| 1024视频免费在线观看| 亚洲中文日韩欧美视频| 18禁黄网站禁片免费观看直播| 亚洲五月婷婷丁香| 啦啦啦观看免费观看视频高清| 波多野结衣av一区二区av| 免费看十八禁软件| 韩国av一区二区三区四区| 男女床上黄色一级片免费看| 国产97色在线日韩免费| 日韩中文字幕欧美一区二区| 天天添夜夜摸| 美女扒开内裤让男人捅视频| 在线观看66精品国产| 久久久水蜜桃国产精品网| 可以免费在线观看a视频的电影网站| 侵犯人妻中文字幕一二三四区| 天堂√8在线中文| 欧美一级毛片孕妇| 中文亚洲av片在线观看爽| 国产欧美日韩一区二区三| 国产色视频综合| 亚洲午夜理论影院| 久久精品aⅴ一区二区三区四区| 日韩大码丰满熟妇| 国产熟女xx| 美女高潮喷水抽搐中文字幕| 精品一区二区三区四区五区乱码| 亚洲专区国产一区二区| 国产黄a三级三级三级人| 首页视频小说图片口味搜索| 亚洲 欧美 日韩 在线 免费| 久久人妻福利社区极品人妻图片| 美女扒开内裤让男人捅视频| 免费看a级黄色片| 久久性视频一级片| 女性被躁到高潮视频| 国产一区二区激情短视频| 亚洲av电影不卡..在线观看| 国产三级在线视频| 欧美色欧美亚洲另类二区| 日本免费一区二区三区高清不卡| 一夜夜www| 欧美性长视频在线观看| 国产午夜精品久久久久久| 亚洲精品国产一区二区精华液| 最好的美女福利视频网| 日韩高清综合在线| 欧美乱色亚洲激情| 免费高清在线观看日韩| 国产精品一区二区免费欧美| 少妇被粗大的猛进出69影院| 日韩有码中文字幕| 欧美成人午夜精品| 亚洲九九香蕉| 在线国产一区二区在线| 亚洲熟妇中文字幕五十中出| xxx96com| 18禁国产床啪视频网站| 成人18禁在线播放| 国内揄拍国产精品人妻在线 | 中文字幕最新亚洲高清| 久久国产精品男人的天堂亚洲| x7x7x7水蜜桃| 久久婷婷成人综合色麻豆| 亚洲精品久久国产高清桃花| 精品福利观看| 国产黄色小视频在线观看| 亚洲 欧美一区二区三区| 精品少妇一区二区三区视频日本电影| 久久人妻福利社区极品人妻图片| 脱女人内裤的视频| 日本精品一区二区三区蜜桃| 久久午夜综合久久蜜桃| 村上凉子中文字幕在线| 国产熟女午夜一区二区三区| 亚洲av五月六月丁香网| 亚洲七黄色美女视频| 亚洲专区字幕在线| 国产三级黄色录像| 91老司机精品| 91麻豆精品激情在线观看国产| 亚洲第一欧美日韩一区二区三区| 日本免费一区二区三区高清不卡| 又大又爽又粗| 欧美激情久久久久久爽电影| 日韩视频一区二区在线观看| 黄色毛片三级朝国网站| 十八禁网站免费在线| 国内久久婷婷六月综合欲色啪| 村上凉子中文字幕在线| 一进一出抽搐动态| 99久久久亚洲精品蜜臀av| 高清毛片免费观看视频网站| 亚洲专区国产一区二区| 一个人观看的视频www高清免费观看 | 桃色一区二区三区在线观看| 波多野结衣高清无吗| 一进一出抽搐动态| 亚洲成人免费电影在线观看| 男女视频在线观看网站免费 | 女性被躁到高潮视频| 99国产综合亚洲精品| 亚洲国产欧美网| 欧美性猛交黑人性爽| 人人妻人人看人人澡| 亚洲熟妇熟女久久| 亚洲欧美日韩高清在线视频| 男女床上黄色一级片免费看| 精品第一国产精品| 欧美午夜高清在线| 国产人伦9x9x在线观看| 一区二区日韩欧美中文字幕| 国产精品 欧美亚洲| 日韩欧美一区视频在线观看| 亚洲av电影不卡..在线观看| 亚洲真实伦在线观看| 女警被强在线播放| 嫩草影视91久久| 人人妻人人澡人人看| 一进一出抽搐gif免费好疼| 麻豆国产av国片精品| 国产精品综合久久久久久久免费| 在线观看免费日韩欧美大片| 亚洲人成网站在线播放欧美日韩| 18美女黄网站色大片免费观看| 日韩精品中文字幕看吧| 香蕉丝袜av| 欧美性长视频在线观看| 欧美zozozo另类| 一级a爱视频在线免费观看| 精品久久久久久久末码| 老熟妇乱子伦视频在线观看| 69av精品久久久久久| 国产精品98久久久久久宅男小说| 视频在线观看一区二区三区| 国产精品亚洲一级av第二区| 母亲3免费完整高清在线观看| 欧美日韩精品网址| 久久精品91无色码中文字幕| 国产亚洲精品久久久久久毛片| 18美女黄网站色大片免费观看| 侵犯人妻中文字幕一二三四区| 18禁裸乳无遮挡免费网站照片 | 欧美又色又爽又黄视频| 一进一出抽搐动态| av天堂在线播放| 亚洲成国产人片在线观看| 丁香欧美五月| 亚洲男人的天堂狠狠| 久久精品国产清高在天天线| 我的亚洲天堂| 欧美日韩中文字幕国产精品一区二区三区| 国产又黄又爽又无遮挡在线| 十八禁网站免费在线| 中文字幕高清在线视频| 国内毛片毛片毛片毛片毛片| 欧美日韩瑟瑟在线播放| 色播亚洲综合网| 亚洲专区国产一区二区| 高清毛片免费观看视频网站| 亚洲成人久久性| e午夜精品久久久久久久| 亚洲国产精品sss在线观看| 国产v大片淫在线免费观看| 国产av一区二区精品久久| svipshipincom国产片| 久久精品国产清高在天天线| 中文字幕久久专区|