• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Characterize and optimize the four-wave mixing in dual-interferometer coupled silicon microrings?

    2019-11-06 00:44:40ChaoWu吳超YingwenLiu劉英文XiaowenGu顧曉文ShichuanXue薛詩川XinxinYu郁鑫鑫YuechanKong孔月嬋XiaogangQiang強曉剛JunjieWu吳俊杰ZhihongZhu朱志宏andPingXu徐平
    Chinese Physics B 2019年10期
    關(guān)鍵詞:徐平俊杰英文

    Chao Wu(吳超), Yingwen Liu(劉英文),Xiaowen Gu(顧曉文),Shichuan Xue(薛詩川) Xinxin Yu(郁鑫鑫),Yuechan Kong(孔月嬋),Xiaogang Qiang(強曉剛),Junjie Wu(吳俊杰),Zhihong Zhu(朱志宏),and Ping Xu(徐平),3,?

    1Institute for Quantum Information and State Key Laboratory of High Performance Computing,College of Computer,College of Advanced Interdisciplinary Studies,National University of Defense Technology,Changsha 410073,China

    2Science and Technology on Monolithic Integrated Circuits and Modules Laboratory,Nanjing Electronic Devices Institute,Nanjing 210016,China

    3National Laboratory of Solid State Microstructures and School of Physics,Nanjing University,Nanjing 210093,China

    Keywords:silicon resonators,four-wave mixing,Mach–Zehnder interferometer

    1.Introduction

    Four-wave mixing (FWM), a typical nonlinear optical frequency conversion process,has applications in alloptical processing,[1,2]such as wavelength conversion,[3]phase conjugation,[4]optical parametric amplification,[5]optical sampling,[6]and entangled photon pair generation.[7]The silicon-on-insulator(SOI)offers an appealing platform for four-wave mixing since it is compatible with electronic manufacturing[8]and it also contains a high refractive index contrast[9]and the significant third-order susceptibility.[10]In particular,silicon microrings that limit both transverse and longitudinal optical modes in micron scale and provide resonant enhancement of the nonlinear parametric process,can drastically increase FWM efficiency under a relatively low pump power of several microwatt.[2,3,9,11–15]

    To produce the strongest resonant enhancement of FWM efficiency,the microrings’coupling conditions for the four interacting wave play a key role.For the continuous wave(CW)pumped FWM,the microring should be operated at the critical point that is the round-trip loss of the microring equals its power coupling coefficient.[16,17]However,the optimal coupling condition of the pulse pumped FWM should be a different case,because there is a tradeoff between the coupled pump power and the enhancement factor since the higher coupled pump power requires a large resonant linewidth while the overall enhancement factor gets maximized with a narrow resonant linewidth at the critically coupling condition.Thus,an overcoupled condition for the pulse pump is expected while for the converted idler beam the coupling condition may differ since the tradeoff lies in the enhancement factor and extraction efficiency from the ring.However,there are lack of theoretical studies that can formulate the pulse pumped FWM.Experimentally,a single bus waveguide coupled microring resonator or dual-bus microring are usually adopted to perform the FWM process study[18,19]and the efficiency is usually optimized by proper design of the coupling gap between the bus waveguide and the ring.However,these designs can not control the coupling condition of the pump and signal/idler beams independently.

    Herein,we derive and formulate the optimal coupling condition for the pulse pumped FWM through the coupledmode equation in frequency domain,which shows the different overcoupling condition of the pump and idler beams should be satisfied for approaching the maximum efficiency.In experiments we design and adopt dual Mach–Zehnder interferometer coupled silicon microrings which allow for the pump and signal/idler beams being operated at specific coupling condition independently.The experimental results agree well with the theoretical predictions.

    2.Theory

    Assuming undepleted pump and signal when generating the idler,the conversion efficiency of resonance enhanced FWM under CW pump follows the model from Ref.[3]

    where the efficiency is defined by the ratio of the on-chip idler power over the signal power,γ is the effective nonlinearity,Ppis the pump power,vgis the microrings’group velocity,Fvis the amplitude enhancement factor with ωvand ?vbeing the beam’frequency and its resonant frequency,the extrinsic and intrinsic decay rates are defined by rext=vgk/2L and rint=vgα/2 with k and α being the power coupling coefficient and round-trip loss,respectively,L is the circumference of the microring,and Leffis the effective length defined by

    where ?β is the phase mismatch defined by ?β=2βp?βs?βi?2γPp.

    Assuming the four waves are at resonance and their intrinsic quality factors defined bykeep invariant,the resonant enhancement for the FWM depends on the ratio between the intrinsic quality factor and extrinsic quality factor of the pump,signal,and idler respectively.As shown in Fig.1(a),the FWM efficiency will maximize at the critical coupling point for both the pump and signal/idler beams,namely,where the subscript p or s/i denotes the independent parameter of the pump or signal/idler and the extrinsic quality factor is given by

    Fig.1.The simulated FWM efficiency versus Qint,p/Qext,p and Qint,s/i/Qext,s/i for both the(a)CW pump and(b)pulse pump.

    The conversion efficiency for the pulse pumped FWM can be solved from the coupled-mode equation in the frequency domain

    where ap,as,and airepresent the pump,signal,and idler amplitudes in the cavity.Assuming the pump pulse has a Gaussian linewidth and the signal is a CW which is set to be on resonance,equation(3)could be solved as

    where

    is the pump line type,and σ is related to the frequency bandwidth as

    Just like the derivation of CW pumped FWM,we assume that the intrinsic quality factors of four interacting beams keep identical and the idler total quality factors are the same as the signal’s.Then,we calculate the conversion efficiency for the pulse pumped FWM with the pulse bandwidth at 0.17 nm,which is our pulse pump laser’s linewidth,as shown in Fig.1(b). Obviously,to obtain the maximum FWM efficiency,the pulse pump should be operated at the very overcoupling regime with Qint,p/Qext,p≈5.25;meanwhile,the converted idler beam should also be operated at the overcoupling regime but with a different condition of Qint,i/Qext,i≈1.75.So the optimal overcoupling points for the pump and idler beams are different. A specific novel design which can control the pump and idler’s coupling condition independently is highly desired.

    Fig.2.(a)Schematic of the dual-interferometer coupled microring.(b)The transmission spectra of the dual-interferometer coupled microring for the in-through side and add-drop side.

    Herein,we design a dual-interferometer coupled silicon microring as shown schematically in Fig.2. In 1995,a single interferometer coupled microring was proposed by Barbarossa et al.to suppress certain resonant mode.[20]Later on,several works have adopted such design for both classical and quantum applications.[21–25]Although the dual-interferometer coupled microrings have four ports like the dual-bus microrings,the difference is that each coupled waveguide forms an interferometer with the microring. Thus,the final operation condition of the ring is determined by the effective coupling coefficient given by the interferometer. If the two arms of the interferometer have a length difference ?L and equals half of the circumference of the microring,the period of interference spectra for the interferometer is twice of the free spectral range(FSR)of the cavity,which allows for every second resonance of the ring to be suppressed by tuning the interferometer’s phase.The transmission spectra of both in-through and add-drop sides are shown in Fig.2,which demonstrates that the resonance allowed by the in-through side will be suppressed by the add-drop side and the resonance allowed by the add-drop side will be suppressed by the in-through side.Then by coupling pump and the signal/idler from different sides,the coupling condition of the pump and signal/idler can be engineered separately. Assuming the two coupling points of the interferometer have the same gap,the effective coupling efficiency of the in-through side(side 1)or add-drop side(side 2)is only decided by this single power point coupling coefficient k1or k2associated with the gap g1or g2. In Fig.2,there are two different transmission spectra for the pump and idler beams under different power point coupling coefficient,respectively.

    3.Experiment

    A series of 12 dual-interferometer coupled silicon microrings were cascaded and fabricated on a single SOI chip,as shown in Fig.3.Each resonator has a radius of 28μm with the cross-section width and height at 500 nm and 220 nm,respectively. The coupling interferometer has the same radius with the ring and characterized by the single coupling gap which is 180 nm,210 nm,240 nm for the in-through side and 120 nm,150 nm,180 nm,210 nm,240 nm for the add-drop side. Totally 12 combinations listed in Table 1 were fabricated. Thermo-optic modulators were integrated on the microring and long arms of the interferometers to tune the resonance and interferometer phase separately,which ensured that only one of the resonator series was at resonance when measuring FWM efficiency.The silicon grating array was fabricated on the chip for coupling in and out the beams through the off-chip fiber array(FA),with a total coupling loss of 7.13 dB.The linear propagation loss was measured to be 4.23 dB/cm.

    Table 1 summarizes the key parameters of the cascaded resonators including the gap combination and quality factors. The quality factors for wavelengths of 1551.0 nm and 1544.6 nm are obtained from the in-through transmission spectra. Meanwhile,the quality factors of resonant wavelengths at 1552.4 nm and 1547.8 nm are obtained from the add-drop transmission spectra.The quality factors are calculated from the scanned transmission spectra using the formula

    where λ is the resonant wavelength,?λ and Γ denote the full width at half-maximum(FWHM)and the extinction ratio of the resonance,respectively.

    The experimental setup is sketched in Fig.3. The CW laser(Agilent 8164B with a tuning range of 1454–1641 nm and a linewidth of 50 MHz)or the pulse laser(PriTel Inc.FFLTW-60 MHz with a wavelength bandwidth of 0.17 nm)serves as the pump beam and another CW laser(Yenista Tunics T100s with a tuning range of 1500–1630 nm and a linewidth of 0.4 MHz)is used as the signal beam.The pump and the signal beam polarizations are controlled by two separate polarization controllers before they could reach the chip.The idler alongside the residual signal from the drop port are separated and filtered by a dense wavelength division multiplexer(DWDM).The resonance of the pump and signal is monitored by two power meters(PM).The average power of the converted idler is recorded by another PM.

    Fig.3.Experimental setup and the photograph of our dual-interferometer coupled silicon microrings.PC,polarization controller;DWDM,dense wavelength division multiplexer;FA,fiber array;PM,power meter.

    Table 1.Key parameters of the 12 dual-interferometer coupled silicon microrings and the raw FWM efficiency alongside the loss-subtracted efficiency,Q,Qext(×104).The column with the subscript ls represents the loss-subtracted conversion efficiency;CE,the conversion efficiency.The column with pulse1 or pulse 2 represents the pump coupled through the in or drop port,respectively.

    For the CW pump FWM experiment,the pump photons with wavelength at 1551.0 nm are input through the in port and the signal photons with wavelength at 1554.2 nm are input though the add port.The raw measured conversion efficiency for the CW pump FWM using the pump power of 268μW and the signal power of 118μW is listed in the sixth column of Table 1.It is unfair to directly compare the FWM efficiency of different resonators,since the on-chip propagation loss is not negligible and the optical path lengths of the pump,signal,and idler beams for the 12 cascaded resonators also differ from each other.By deducting the impact from the on-chip propagation loss,we give the loss-subtracted conversion efficiency,as listed in the seventh column of Table 1.The maximum efficiency of ?44.8 dB is achieved in the resonator with the gap combination of 240 nm of both interferometers. It is worth noted that here the pump power is set to be low so that no obvious two-photon absorption and free-carrier absorption are involved in this four-wave mixing.

    By substituting the quality factor in Table 1 to Eq.(1),we calculate the theoretical conversion efficiency,which agrees well with experimental results as shown in Fig.4(a). In order to analyze the optimal coupling condition for both the pump and signal,we focus on the key parameters of the ratio between the intrinsic and extrinsic quality factors,that is Qint,p/Qext,pand Qint,i/Qext,i. Deducting the contributions from the signal and idler’s enhancement factor and the pump’s intrinsic factor,the conversion efficiency scale withis in the following formwhere A is a constant for each resonator. Figure 4 shows the theoretical curve and experimental results,which demonstrates that when the pump beam approaches the critical coupling point,the FWM efficiency becomes higher. For comparing the conversion efficiency of the 12 dual-interferometer coupled silicon microrings with different idler coupling conditions,we deduct the contributions from the signal and pump’s enhancement factor and the idler’s intrinsic factor.The efficiency versusis given bywhere B is a constant for each resonator. Both theoretical and experimental results are shown in Fig.4,verifying that the idler should also be operated at the critical point for the maximum CW pump FWM efficiency.

    Fig.4. The CW pump FWM experiment. (a)The normalized conversion efficiency of both the experiment and calculation for the 12 resonators. (b)and(c)The normalized conversion efficiency versusand respectively.

    Then we substitute the CW pump laser by a pulse laser for the pulse pumped FWM experiment,as shown in Fig.3,while the seeding signal keeps unchanged.The average power of the pulse pumped is 60μW and the signal power is the same as that in the former experiment. Both the in-through side and add-drop side can be used to couple the pulse pump,thus as shown in Table 1 and Fig.5,each resonator has two FWM efficiencies obtained by coupling the pump through the in and add ports,respectively. The measured results consist with the calculated well,verifying that our deduced theory of pulse pumped FWM is effective and solid.For most resonators of the ensemble,the FWM efficiency using the add port as the pump coupling port is much higher than that using the in port as the coupling port. This is because those resonators have narrow coupling gaps for the add-drop side compared with the in-through side,namely,the resonant mode of the add-drop side is at the more overcoupling regime which is preferable for pulse pumped FWM.

    To demonstrate the overcoupling condition for both the pump and signal/idler more directly,we list the key resonator parameters and the corresponding FWM efficiency in Table 2.All of the data in the table are obtained by coupling the pulse pump through the drop port.The above three resonators have the coupling gaps of the in-through side fixed at 180 nm and the add-drop side fixed at 180 nm,150 nm,and 120 nm respectively to ensure that the signal and idler’s quality factors have the minimal difference when analyzing the FWM efficiency dependence on pump’s coupling conditions.As the ratio of Qint,p/Qext,pincrease from 1.31 to 5.55,the conversion efficiency also increases,which demonstrates that more overcoupled condition of the pump should be satisfied for higher FWM efficiency.The below three resonators with the coupling gap of the add-drop side fixed at 150 nm and the in-through side varying from 240 nm to 180 nm ensure that the coupling conditions for the pump are approximately the same.The conversion efficiency also increases when the idler beam varies from the undercoupling to overcoupling points,as listed in Table 2.We believe it is the first time to both theoretically and experimentally verify that the pump and idler should be operated at different overcoupling conditions for achieving the maximum pulse pumped FWM efficiency.

    Fig.5.The pulse pumped FWM experimental data.

    Table 2. Six groups of pulse pumped FWM efficiency by pumping through the drop port with the pump,signal,and idler wavelengths at 1547.8 nm,1544.6 nm,and 1551.0 nm,respectively.CE is the normalized conversion efficiency.

    4.Discussion and conclusion

    We design and fabricate a series of dual-interferometer coupled silicon microrings for independently controlling the pump and signal/idler’s quality factors. Both the CW and pulse pumped FWM experiments are carried out to verify the optimal coupling conditions for maximizing the FWM efficiency using our design. The critical coupling condition of the pump and signal/idler has been demonstrated for the CW pump FWM in this work.For the first time,we theoretically and experimentally demonstrate that the pulse pumped FWM efficiency can be optimized by independently tuning the pump and signal/idler at their appropriate overcoupling points.Additionally,the dual-interferometer coupled silicon microrings require a low pump power of microwatt scale for efficient FWM and can be integrated with a large density.Thus,it will enable practical use in the research field of on-chip all-optical signal processing.

    猜你喜歡
    徐平俊杰英文
    Improving the spectral purity of single photons by a single-interferometer-coupled microring
    Bandwidth-tunable silicon nitride microring resonators
    俊杰印象
    海峽姐妹(2019年11期)2019-12-23 08:42:18
    屹立
    悅行(2019年7期)2019-09-10 07:22:44
    表演大師
    我的同桌
    英文摘要
    鄱陽湖學刊(2016年6期)2017-01-16 13:05:41
    英文摘要
    英文摘要
    財經(jīng)(2016年19期)2016-08-11 08:17:03
    徐平 肩負重任的北上
    中國汽車界(2016年1期)2016-07-18 11:13:34
    中国美白少妇内射xxxbb| 国产精品久久久久久av不卡| 另类亚洲欧美激情| 亚洲四区av| 日韩成人av中文字幕在线观看| 大片电影免费在线观看免费| av免费在线看不卡| 久久久成人免费电影| 亚洲精品自拍成人| 久久国产精品大桥未久av | 黄片无遮挡物在线观看| 国产成人午夜福利电影在线观看| 美女高潮的动态| 久久人人爽av亚洲精品天堂 | 亚洲av免费高清在线观看| 狂野欧美白嫩少妇大欣赏| 久久人妻熟女aⅴ| 国产大屁股一区二区在线视频| 日本黄色片子视频| 水蜜桃什么品种好| 成人无遮挡网站| 天天躁日日操中文字幕| 国产精品一区www在线观看| 97精品久久久久久久久久精品| 亚洲成人一二三区av| 精品亚洲乱码少妇综合久久| 亚洲国产欧美在线一区| 国产成人午夜福利电影在线观看| 91久久精品国产一区二区三区| 免费大片黄手机在线观看| 久久国产精品男人的天堂亚洲 | 国产一区二区三区综合在线观看 | 美女高潮的动态| 国产白丝娇喘喷水9色精品| 亚洲国产精品999| 成年女人在线观看亚洲视频| 国产亚洲一区二区精品| 夜夜骑夜夜射夜夜干| 久久人人爽av亚洲精品天堂 | 国产精品久久久久久精品电影小说 | 国产精品成人在线| 欧美激情极品国产一区二区三区 | h视频一区二区三区| 国产日韩欧美亚洲二区| av专区在线播放| 久久鲁丝午夜福利片| 成年美女黄网站色视频大全免费 | 在线 av 中文字幕| 国产大屁股一区二区在线视频| 日韩成人伦理影院| 久久女婷五月综合色啪小说| 国产男女超爽视频在线观看| 久久久a久久爽久久v久久| 一边亲一边摸免费视频| 在线天堂最新版资源| 午夜视频国产福利| 国产大屁股一区二区在线视频| 亚洲不卡免费看| 久热久热在线精品观看| 亚洲欧美一区二区三区国产| 美女cb高潮喷水在线观看| 亚洲av电影在线观看一区二区三区| 精品午夜福利在线看| 久久国产乱子免费精品| 国产精品一区二区性色av| 熟女电影av网| 黄色一级大片看看| 精品一品国产午夜福利视频| 午夜老司机福利剧场| 色视频在线一区二区三区| 狂野欧美激情性xxxx在线观看| 黑人猛操日本美女一级片| 精华霜和精华液先用哪个| 人妻夜夜爽99麻豆av| 国产又色又爽无遮挡免| 欧美极品一区二区三区四区| 国产中年淑女户外野战色| 一级黄片播放器| 国产美女午夜福利| 王馨瑶露胸无遮挡在线观看| 久久久成人免费电影| 少妇被粗大猛烈的视频| 亚洲av国产av综合av卡| 99精国产麻豆久久婷婷| 国产av精品麻豆| 伦理电影大哥的女人| 国产在线男女| 中文字幕久久专区| 国产精品久久久久久精品古装| 一边亲一边摸免费视频| 国产成人精品婷婷| 中文字幕av成人在线电影| 久久久久久久久久久免费av| 国产午夜精品一二区理论片| 亚洲国产精品国产精品| 中文字幕人妻熟人妻熟丝袜美| 中文字幕制服av| 国产男人的电影天堂91| av免费在线看不卡| 菩萨蛮人人尽说江南好唐韦庄| 欧美三级亚洲精品| 国产伦精品一区二区三区四那| 久久久久久久国产电影| 六月丁香七月| 久久ye,这里只有精品| 亚洲精品国产色婷婷电影| a级毛片免费高清观看在线播放| 国产亚洲欧美精品永久| 午夜激情久久久久久久| 一区二区av电影网| 亚洲电影在线观看av| 亚洲,欧美,日韩| 97超碰精品成人国产| 男女无遮挡免费网站观看| 精品亚洲乱码少妇综合久久| 免费播放大片免费观看视频在线观看| 亚洲国产精品国产精品| 亚洲无线观看免费| 一级二级三级毛片免费看| 午夜激情久久久久久久| 99久久综合免费| 精品人妻偷拍中文字幕| 中文精品一卡2卡3卡4更新| 亚洲欧美清纯卡通| 亚洲电影在线观看av| 成人高潮视频无遮挡免费网站| 国产爱豆传媒在线观看| 国国产精品蜜臀av免费| 国产淫片久久久久久久久| 久久久久久久大尺度免费视频| 成人午夜精彩视频在线观看| 国产极品天堂在线| 男女边吃奶边做爰视频| 内地一区二区视频在线| 国产成人一区二区在线| 精品人妻偷拍中文字幕| 嫩草影院新地址| 亚洲电影在线观看av| 亚洲伊人久久精品综合| 日韩亚洲欧美综合| 在线观看一区二区三区激情| 网址你懂的国产日韩在线| 亚洲天堂av无毛| 天天躁日日操中文字幕| 亚洲美女搞黄在线观看| 欧美激情极品国产一区二区三区 | 视频区图区小说| 嫩草影院新地址| 三级国产精品片| 人妻 亚洲 视频| 久久99蜜桃精品久久| 精品久久久久久久久av| 乱系列少妇在线播放| 国产免费又黄又爽又色| 少妇高潮的动态图| 2018国产大陆天天弄谢| 99久国产av精品国产电影| 亚洲不卡免费看| 国产一区有黄有色的免费视频| 久久精品人妻少妇| 色哟哟·www| 国内精品宾馆在线| 国产色婷婷99| 少妇人妻一区二区三区视频| 深爱激情五月婷婷| 亚洲成人一二三区av| 夫妻性生交免费视频一级片| 少妇丰满av| av国产精品久久久久影院| 狂野欧美白嫩少妇大欣赏| 亚洲久久久国产精品| 午夜福利在线在线| 美女xxoo啪啪120秒动态图| 日本一二三区视频观看| 青春草视频在线免费观看| 在线天堂最新版资源| 久久久久久九九精品二区国产| 亚洲av电影在线观看一区二区三区| 51国产日韩欧美| 男女无遮挡免费网站观看| 免费av不卡在线播放| 中国三级夫妇交换| 久久99精品国语久久久| 欧美变态另类bdsm刘玥| 久久人人爽人人片av| av一本久久久久| 成人漫画全彩无遮挡| 久久综合国产亚洲精品| 国产成人a∨麻豆精品| 欧美zozozo另类| 97热精品久久久久久| 性色avwww在线观看| 国产精品99久久99久久久不卡 | 伦理电影大哥的女人| 亚洲电影在线观看av| 看非洲黑人一级黄片| 国产黄片视频在线免费观看| 久久久久久久久久久丰满| 欧美高清成人免费视频www| 精品国产乱码久久久久久小说| 日本爱情动作片www.在线观看| 国产精品久久久久久精品古装| 国产大屁股一区二区在线视频| 中国美白少妇内射xxxbb| 美女脱内裤让男人舔精品视频| 久久久久久久久久成人| 18+在线观看网站| 亚洲性久久影院| 色综合色国产| 我的老师免费观看完整版| 亚洲精品久久久久久婷婷小说| 精品一区二区免费观看| 大码成人一级视频| 亚州av有码| 亚洲av电影在线观看一区二区三区| 亚洲精品久久午夜乱码| 高清不卡的av网站| 国产av国产精品国产| 一本久久精品| 亚洲精品久久午夜乱码| 国产精品免费大片| 免费观看无遮挡的男女| av国产久精品久网站免费入址| 99久国产av精品国产电影| 欧美日韩亚洲高清精品| 波野结衣二区三区在线| 亚洲综合色惰| 久久精品国产亚洲网站| 国产黄片美女视频| 精品久久国产蜜桃| 国产在线一区二区三区精| 久久女婷五月综合色啪小说| 久久久久视频综合| 99久久人妻综合| 国产av码专区亚洲av| 日韩精品有码人妻一区| 卡戴珊不雅视频在线播放| 国产精品久久久久久久久免| 久久久久国产网址| 亚洲av男天堂| 国产精品久久久久久精品古装| 国产精品.久久久| 一区二区av电影网| 亚洲av免费高清在线观看| 亚洲最大成人中文| 99久久中文字幕三级久久日本| 中国国产av一级| 亚洲精品一区蜜桃| 人妻夜夜爽99麻豆av| 七月丁香在线播放| 亚洲精品日本国产第一区| 男女无遮挡免费网站观看| 这个男人来自地球电影免费观看 | 日日啪夜夜撸| 国产高清有码在线观看视频| 免费看av在线观看网站| 夫妻性生交免费视频一级片| 深爱激情五月婷婷| 久久精品国产亚洲av天美| 欧美最新免费一区二区三区| 日本爱情动作片www.在线观看| 日日啪夜夜爽| 黄色日韩在线| 天天躁夜夜躁狠狠久久av| 精品久久久久久久久亚洲| 国产成人aa在线观看| 国产伦理片在线播放av一区| av国产免费在线观看| 日本一二三区视频观看| 一级毛片aaaaaa免费看小| 欧美精品一区二区大全| 激情 狠狠 欧美| 老师上课跳d突然被开到最大视频| 免费观看av网站的网址| 激情 狠狠 欧美| av在线老鸭窝| av国产免费在线观看| 在线观看免费高清a一片| 中文在线观看免费www的网站| 亚洲最大成人中文| 久久精品人妻少妇| 亚洲一级一片aⅴ在线观看| 综合色丁香网| 在现免费观看毛片| 亚洲精品国产av蜜桃| 在线观看一区二区三区激情| 国产欧美亚洲国产| 亚洲av中文av极速乱| 久久久久久九九精品二区国产| 日韩欧美 国产精品| 观看av在线不卡| 国产高清国产精品国产三级 | 性色av一级| 免费黄频网站在线观看国产| 欧美老熟妇乱子伦牲交| 内地一区二区视频在线| 青春草视频在线免费观看| 国产精品一区二区三区四区免费观看| 日韩欧美 国产精品| 日本与韩国留学比较| 五月玫瑰六月丁香| 欧美zozozo另类| 久久人人爽人人片av| 日日啪夜夜爽| 欧美高清成人免费视频www| 国产精品一区二区三区四区免费观看| 日产精品乱码卡一卡2卡三| 国产精品国产三级国产av玫瑰| 91在线精品国自产拍蜜月| 国产精品国产三级国产专区5o| 久久国产精品男人的天堂亚洲 | 蜜臀久久99精品久久宅男| 欧美精品国产亚洲| 亚洲色图综合在线观看| 亚洲精品乱码久久久v下载方式| 伦理电影大哥的女人| 视频中文字幕在线观看| 亚洲图色成人| 国产高潮美女av| 一区二区三区乱码不卡18| 欧美变态另类bdsm刘玥| 色婷婷av一区二区三区视频| 中文字幕免费在线视频6| 高清黄色对白视频在线免费看 | 舔av片在线| 亚洲av综合色区一区| 久久久亚洲精品成人影院| 亚洲内射少妇av| 成人无遮挡网站| 国产日韩欧美亚洲二区| 欧美日韩视频精品一区| 亚洲第一av免费看| 亚洲精品久久久久久婷婷小说| 六月丁香七月| 一个人免费看片子| 国产一区二区三区av在线| 国产在视频线精品| 国产午夜精品一二区理论片| 日本wwww免费看| 国产成人aa在线观看| 成人高潮视频无遮挡免费网站| 久久人人爽人人爽人人片va| 亚洲美女搞黄在线观看| 日韩视频在线欧美| 十分钟在线观看高清视频www | 亚洲国产av新网站| 最近2019中文字幕mv第一页| 久久精品人妻少妇| 夜夜骑夜夜射夜夜干| 日韩一区二区视频免费看| 亚洲av.av天堂| 少妇 在线观看| .国产精品久久| 男男h啪啪无遮挡| 久久婷婷青草| 日韩不卡一区二区三区视频在线| 秋霞在线观看毛片| 免费在线观看成人毛片| 亚洲电影在线观看av| 日韩免费高清中文字幕av| 亚洲欧美成人精品一区二区| 国产精品女同一区二区软件| 成人美女网站在线观看视频| 亚洲av福利一区| 超碰97精品在线观看| 成人免费观看视频高清| av在线播放精品| 秋霞伦理黄片| 少妇被粗大猛烈的视频| 免费黄网站久久成人精品| 日韩欧美 国产精品| av国产久精品久网站免费入址| 久久精品国产亚洲av天美| 欧美激情国产日韩精品一区| 蜜臀久久99精品久久宅男| 成人国产av品久久久| 亚洲欧美精品专区久久| 国产精品欧美亚洲77777| a级毛片免费高清观看在线播放| 日韩视频在线欧美| 精品久久久久久久久av| 日本欧美视频一区| 欧美日韩在线观看h| 简卡轻食公司| 国产高清不卡午夜福利| 欧美xxxx黑人xx丫x性爽| 赤兔流量卡办理| 久久久久久久久大av| 国产大屁股一区二区在线视频| 亚洲精品,欧美精品| 久久久久国产精品人妻一区二区| 肉色欧美久久久久久久蜜桃| av国产精品久久久久影院| 在线播放无遮挡| 男女下面进入的视频免费午夜| 观看美女的网站| 51国产日韩欧美| 色5月婷婷丁香| 黄色一级大片看看| 亚洲一区二区三区欧美精品| 精品午夜福利在线看| 在线免费十八禁| 精品人妻一区二区三区麻豆| 日韩在线高清观看一区二区三区| 日韩,欧美,国产一区二区三区| 国产午夜精品久久久久久一区二区三区| 伦理电影免费视频| 女的被弄到高潮叫床怎么办| 永久免费av网站大全| 最后的刺客免费高清国语| 国产精品99久久久久久久久| 国产成人精品婷婷| 青春草视频在线免费观看| 色婷婷av一区二区三区视频| 欧美成人精品欧美一级黄| 精品国产三级普通话版| 国产精品一二三区在线看| 亚洲性久久影院| 日韩av免费高清视频| 大香蕉97超碰在线| 80岁老熟妇乱子伦牲交| 亚洲美女黄色视频免费看| 国产淫片久久久久久久久| 国产精品一区二区在线观看99| 亚洲精品国产成人久久av| 在线播放无遮挡| 欧美少妇被猛烈插入视频| 亚洲美女搞黄在线观看| 日韩大片免费观看网站| 午夜精品国产一区二区电影| 久久久久精品久久久久真实原创| 人妻系列 视频| 91午夜精品亚洲一区二区三区| 一本久久精品| 新久久久久国产一级毛片| 久久久久久伊人网av| 干丝袜人妻中文字幕| 国产白丝娇喘喷水9色精品| 超碰av人人做人人爽久久| 日韩视频在线欧美| 亚洲精品国产成人久久av| 日韩电影二区| 亚洲一级一片aⅴ在线观看| 国产淫语在线视频| 国产成人91sexporn| 国产精品一二三区在线看| 欧美日韩视频精品一区| 国产视频内射| 国产在线视频一区二区| 六月丁香七月| 黄色一级大片看看| 欧美日韩国产mv在线观看视频 | 国产一区二区三区av在线| 久久久久久久国产电影| 日本色播在线视频| 高清在线视频一区二区三区| 亚洲国产av新网站| 99热这里只有精品一区| 十分钟在线观看高清视频www | 噜噜噜噜噜久久久久久91| 久久久久久久久久成人| 黑丝袜美女国产一区| 国产综合精华液| 国产又色又爽无遮挡免| 色哟哟·www| 中文资源天堂在线| 丰满迷人的少妇在线观看| 蜜桃亚洲精品一区二区三区| 日韩不卡一区二区三区视频在线| 国产老妇伦熟女老妇高清| 久久精品国产亚洲av涩爱| 亚洲av国产av综合av卡| 久久ye,这里只有精品| 日本黄色片子视频| 色综合色国产| 国产一区亚洲一区在线观看| a级毛色黄片| 国产精品一区二区在线观看99| 精品午夜福利在线看| 建设人人有责人人尽责人人享有的 | 国产精品无大码| 91精品国产国语对白视频| 免费少妇av软件| 欧美日韩视频精品一区| 在现免费观看毛片| 高清毛片免费看| 亚洲天堂av无毛| 美女高潮的动态| 日韩人妻高清精品专区| 成人二区视频| 深夜a级毛片| 99热6这里只有精品| 日韩伦理黄色片| 91精品国产九色| 日日啪夜夜撸| 大香蕉久久网| 亚洲色图综合在线观看| 亚洲国产日韩一区二区| 久久国产乱子免费精品| 国产深夜福利视频在线观看| 久久精品久久久久久噜噜老黄| 精品一区二区三区视频在线| 啦啦啦啦在线视频资源| 国产亚洲一区二区精品| 不卡视频在线观看欧美| 一本色道久久久久久精品综合| 最近的中文字幕免费完整| 亚洲最大成人中文| 有码 亚洲区| 蜜桃亚洲精品一区二区三区| 天堂中文最新版在线下载| 国产精品久久久久久av不卡| 九草在线视频观看| 欧美日韩视频高清一区二区三区二| 午夜视频国产福利| 中文资源天堂在线| 麻豆国产97在线/欧美| 国产成人午夜福利电影在线观看| 国产精品三级大全| 午夜福利视频精品| 一级毛片aaaaaa免费看小| 日韩大片免费观看网站| 精品亚洲乱码少妇综合久久| 精品国产乱码久久久久久小说| 18禁动态无遮挡网站| 久久久午夜欧美精品| 少妇熟女欧美另类| 亚洲精品久久久久久婷婷小说| 久久人人爽人人片av| 久久99蜜桃精品久久| 少妇熟女欧美另类| 日韩av在线免费看完整版不卡| 亚洲人与动物交配视频| 中文字幕av成人在线电影| 天天躁日日操中文字幕| 国产伦精品一区二区三区四那| 深夜a级毛片| 一本久久精品| 蜜桃在线观看..| 久久久久久久久大av| 日韩 亚洲 欧美在线| 国产伦在线观看视频一区| 精品久久久久久久久亚洲| 亚洲av免费高清在线观看| 国产精品国产av在线观看| 天天躁夜夜躁狠狠久久av| 嫩草影院新地址| 女性生殖器流出的白浆| 欧美国产精品一级二级三级 | 国产精品福利在线免费观看| av国产精品久久久久影院| 夜夜爽夜夜爽视频| 少妇被粗大猛烈的视频| 婷婷色综合www| 国产成人午夜福利电影在线观看| 我要看日韩黄色一级片| 国产亚洲av片在线观看秒播厂| 亚洲精品久久久久久婷婷小说| 一级毛片我不卡| 国产在线男女| 舔av片在线| 国产日韩欧美在线精品| 精品久久久久久久久亚洲| 久久国内精品自在自线图片| 内射极品少妇av片p| 亚洲精品色激情综合| 亚洲精品成人av观看孕妇| 免费看光身美女| 精品午夜福利在线看| 国产精品伦人一区二区| 亚洲精品aⅴ在线观看| 久久 成人 亚洲| 国产成人午夜福利电影在线观看| 久久精品国产自在天天线| 国产老妇伦熟女老妇高清| 国产午夜精品一二区理论片| 日韩不卡一区二区三区视频在线| 18禁裸乳无遮挡免费网站照片| 久久久久久久久久久免费av| 我要看日韩黄色一级片| 日本欧美视频一区| 久久精品国产自在天天线| 秋霞在线观看毛片| 国产午夜精品一二区理论片| 一个人看的www免费观看视频| 国产一区二区在线观看日韩| 亚洲欧美中文字幕日韩二区| 国产欧美日韩精品一区二区| 久久99热6这里只有精品| 国产有黄有色有爽视频| 视频中文字幕在线观看| 亚洲丝袜综合中文字幕| 久久精品久久久久久噜噜老黄| 秋霞在线观看毛片| 大陆偷拍与自拍| 欧美日韩视频高清一区二区三区二| a级一级毛片免费在线观看| 一本色道久久久久久精品综合| 久久久久久久大尺度免费视频| 在线观看av片永久免费下载| 国语对白做爰xxxⅹ性视频网站| 国产精品国产av在线观看| 色婷婷av一区二区三区视频| 亚洲精品成人av观看孕妇| 欧美三级亚洲精品| 国产成人a∨麻豆精品| 尾随美女入室| 国产精品人妻久久久影院| 久久久久精品性色| 国产高清不卡午夜福利| 国产 一区精品| 青春草亚洲视频在线观看| 亚洲国产精品999| 国产精品免费大片| 日日啪夜夜爽|