• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Interannual Variations in Synoptic-Scale Disturbances over the Western North Pacific

    2018-03-07 06:58:06XingyanZHOURiyuLUGuanghuaCHENandLiangWU
    Advances in Atmospheric Sciences 2018年5期

    Xingyan ZHOU,Riyu LU?,Guanghua CHEN,and Liang WU

    1State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China

    2University of the Chinese Academy of Sciences,Beijing 100049,China

    3Center for Monsoon System Research,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China

    1.Introduction

    Synoptic disturbances are predominant over the western North Pacific(WNP)during the warm season.They are an important rainfall system,contributing to a large portion of total precipitation in the WNP and the South China Sea(SCS)(Hurley and Boos,2015).In addition,synoptic disturbances are significant precursors to the formation of tropical cyclones,and it is estimated that more than half of tropical cyclones occurring over the WNP are triggered by synoptic disturbances(Fu et al.,2007;Chen and Huang,2009;Xu et al.,2013;Chen and Chou,2014).Therefore,synoptic disturbances greatly affect the weather and climate of East Asia and Southeast Asia through landing disturbances and tropical cyclones(e.g.,Chen et al.,2012).

    The development of synoptic disturbance is strongly affected by the interaction with background circulations.It has been indicated that con fluent flows have an important impact on the amplification of synoptic disturbances(e.g.,Webster and Chang,1988;Kuo et al.,2001).Over the WNP,a confluence zone exists between the lower-level easterly trade winds and westerly monsoonal winds, i.e., the monsoon trough,during summer and autumn,and thus the monsoon trough contributes greatly to the growth of synoptic disturbance(Sobel and Bretherton,1999;Wu et al.,2012,2015a;Molinari and Vollaro,2013).Besides,intraseasonal oscillations can also modulate synoptic disturbance.During the active phases of intraseasonal oscillations,synoptic disturbances over the WNP are considerably stronger(Maloney and Hartmann,2001;Maloney and Dickinson,2003;Hsu et al.,2011;Cao et al.,2012;Tsou et al.,2014).

    From the interannual aspect,many studies have documented that ENSO can affect synoptic disturbance activity over the WNP through modulating large-scale circulations.For example,Hsu et al.(2009)revealed that during warm ENSO years the activity of synoptic disturbance is enhanced from the Philippine Sea to the date line,as compared to that during cold years.Wu et al.(2014)investigated the structure and evolution of synoptic waves related to ENSO,and found that during El Ni?o summers the tropical depression(TD)and mixed Rossby–gravity wave(MRG)appear with equivalent barotropic structure,and the transition from MRG to TD is clear.In contrast,during La Ni?a summers the vertical structure of TD-MRG waves becomes tilted eastward with height,and the MRG-to-TD transition is unclear.Additionally,ENSO may affect synoptic disturbance activity through modulating the location and strength of monsoon trough in the WNP.During El Ni?o(La Ni?a)years,the monsoon trough extends eastward(retreats westward)and becomes stronger(weaker),resulting in enhanced(reduced)disturbance activities over the southeastern quadrant of the WNP(Chan and Liu,2004;Li and Zhou,2012;Wu et al.,2012,2015a).

    In this study,we begin with the features of interannual variation in synoptic disturbances,rather than regarding the interannual variation as a result of ENSO impacts.From the viewpoint of the interannual variation,the following questions arise:What are the features and dominant modes of the interannual variations of synoptic disturbances?Are there any other factors, other than ENSO, significantly affecting the interannual variations of synoptic disturbances?If yes,what kind of mechanism is responsible for the impact?Answering these questions is the main motivation in this study.

    The rest of this paper is organized as follows:Section 2 introduces the datasets and analysis methods.The features of the annual cycle and interannual variation of synoptic disturbances over the WNP are presented in section 3.Section 4 shows the atmospheric circulations associated with the interannual variation of synoptic disturbance activity.Barotropic energy conversion is analyzed in section 5 to examine the interaction between the dominant modes and large-scale cir-culation anomalies.Finally,conclusions are given in section 6.

    Fig.1.Annual cycles of the(a)climatological mean and(b)interannual standard deviation of 850-hPa EKE averaged over 10°–20°N.(c)Climatological mean(contours)and standard deviation(shading)of EKE averaged over June–November.Units:m2s?2.

    2.Data and methods

    The daily and monthly horizontal winds are from the NCEP–NCAR reanalysis dataset.These data have a horizontal resolution of 2.5°×2.5°and span from 1958 to 2014.The SST data are from ERSST.v2,with a horizontal resolution of 2°×2°.The Ni?o3.4 index is defined as the SST anomalies averaged over the region(5°S–5°N,120°–170°W).

    EOF analysis is performed to determine the dominant modes of interannual variability of synoptic disturbance activity over the WNP.The Butterworth filter is applied to isolate synoptic disturbance with a period of 3–8 days.The strength of synoptic disturbance activity is measured by the 850-hPa eddy kinetic energy(EKE),

    where an overbar denotes the average over June–November,andu′andv′represent the synoptic zonal and meridional velocities,respectively.

    3.Features of the annual cycle and interannual variations

    In order to display the annual cycle of synoptic disturbance activity,Fig.1a shows a longitude–time Hovm¨oler diagram of EKE averaged over 10°–20°N.The maximum synoptic disturbance activity occurs during summer and autumn over the region 110°–150°E,and reaches a peak in July and August,which is consistent with previous studies(Serra et al.,2008;Huang and Huang,2011;Fukutomi et al.,2016).Figure 1b shows the annual cycle of the meridional mean(10°–20°N)interannual standard deviation of synoptic disturbances,which is used to represent the amplitude of interannual variation.Similar to the results shown in Fig.1a,the prominent interannual variation appears from June to November in the WNP region.We also examined the spatial distribution for the climatological mean and interannual standard deviation of 850-hPa EKE for each month from January to December(not shown),and found that the EKE and its variability are strong over the tropical and subtropical WNP in summer and autumn,and are distinguishable from the storm track over the North Pacific.Therefore,we select the period from June to November as the object of this study.The horizontal distributions of the climatological mean and interannual standard deviation of EKE over June–November are shown in Fig.1c.The regions with a large climatological mean and interannual standard deviation are roughly consistent.The strong standard deviation over the subtropical WNP is distinct from the strong midlatitude standard deviation associated with the storm tracks over the North Pacific.

    To capture the spatial mode of synoptic disturbances,we perform an EOF analysis on the 850-hPa EKE averaged over June–November in the domain(0°–35°N,100°–160°E)during 1958–2014.The first two modes account for 32.3%and 18.1%of the total variance,respectively,and both are independent according to the criteria of North et al.(1982).These two leading modes explain more than half of the total variance.

    Fig.2.Regression of 850-hPa EKE with respect to the normalized(a)PC1 and(b)PC2,and the normalized(c)PC1 and(d)PC2,performed by EOF analysis.In(a,b),dots denote regions significant at the 95%confidence level.Units:m2s?2.

    The first mode(EOF1)is characterized by a northwest–southeast-oriented pattern over the WNP(Fig.2a).The second mode(EOF2)is also characterized by a northwest–southeast-oriented positive anomaly(Fig.2b),which is located around the Philippines and with its center shifted more southwestward in comparison with the first mode.In addition,there is a negative anomaly to the east of the positive anomaly,but with a weak amplitude.According to the spatial distributions,we refer to these two modes as the northeast pattern and southwest pattern,respectively.The principal components(PC1 and PC2)do not show an appreciable long-term trend or decadal variation(Figs.2c and d).

    Figure 3 displays the ratios of the total variance explained by these two leading modes in each grid.As expected from the EOF results shown in Fig.2,the first mode contributes greatly over the WNP,with a maximum larger than 60%of the total variance;whereas,the second mode contributes greatly around the Philippines,explaining about 80%of the total variance over this region.Although the first and second modes explain the main variance over these distinct regions,the combined contribution of the two modes is manifested as a unified pattern(Fig.3c).These two leading modes together explain more than 60%of the total variance over a broad area of the WNP.This indicates that the interannual variability of synoptic disturbance activity can be explained well by these two leading modes.

    4.Large-scale circulation anomalies associated with the dominant modes

    Figure 4 shows the regression of 850-hPa horizontal winds with respect to the normalized PC1 and PC2.The northeast pattern,the first mode,is related to a significant cyclonic anomaly over the subtropical WNP(Fig.4a).On the other hand,the southwest pattern,the second mode,is associated with a significant cyclonic anomaly centered over the SCS(Fig.4b).Furthermore,both the northeast and southwest patterns are related to a significant zonal wind anomaly over the equatorial Pacific:a westerly anomaly for the former pattern but an easterly anomaly for the latter pattern.

    Figure 5 shows the correlation coefficients between the Ni?o3.4 index and interannual variation of synoptic disturbance activity over the WNP and SCS.The correlation coefficients are positive over the WNP and negative around the Philippines.These positive and negative correlation coefficients resemble the northeast and southwest patterns,respectively,although the negative ones extend to the equator where the EKE shows weak interannual standard deviation(Fig.1c).These correlation coefficients confirm the close relationship between ENSO and the synoptic disturbance activities over the WNP and SCS,and suggest a close relationship between ENSO and the two leading modes.Actually,the correlation coefficient between the Ni?o3.4 index and PC1(PC2)is 0.43(?0.44),both being significant at the 99%confidence level.

    However,the correlation coefficients shown in Fig.5 indicate that the majority of the interannual variance of synoptic disturbance activity cannot be explained by ENSO.In contrast,the ENSO-related atmospheric circulation anomalies may be confused with the circulation anomalies associated with the interannual variation of synoptic disturbance activity.Therefore,we remove the effect of ENSO and investigate the circulation anomalies associated with the residual component of the interannual variation of synoptic disturbance activity.We first compute the ENSO-related components through linear regression onto the Ni?o3.4 index,and then remove them from original data.

    Fig.3.Ratios of the total variance explained by the(a) first mode,(b)second mode,and(c)both leading modes,for each grid.

    Fig.4.Regression of 850-hPa horizontal winds with respect to the normalized(a)PC1 and(b)PC2.Shading denotes regions of either zonal or meridional wind anomalies significant at the 95%confidence level.Units:m s?1.

    Fig.5.Correlation coefficients between 850-hPa EKE and the Ni?o3.4 index.Dots denote regions significant at the 95%confidence level.

    Figure 6 shows the EOF results after removing the effect of ENSO.Their distributions are similar to those of the original field shown in Fig.2.The first mode still displays a positive anomaly over the WNP(Fig.6a).The second mode is characterized by a positive anomaly around the Philippines and a weak negative anomaly to its east(Fig.6b).The differences in the amplitudes of these anomalies derive from the positive anomalies in the two modes becoming slightly weaker,and the negative anomalies for the second mode becoming slightly stronger,after the removal of the ENSO-related component.

    For convenience of description,the principal components of these two ENSO-removed modes are termed PC1_denso and PC2_denso,respectively.The correlation coefficient between PC1_denso/PC2_denso and the Ni?o3.4 index is 0.005/0.010,suggesting the method for removing the effect of ENSO is valid.The correlation coefficient between PC1_denso(PC2_denso)and PC1(PC2)is 0.88(0.80).The high correlation coefficients in the PCs and the similarity in the EOF distribution indicate that,after eliminating the effect of ENSO,the leading modes still maintain the major characteristics of the northeast and southwest patterns.

    Figure 7 shows the ratios of the total variance explained by PC1_denso and PC2_denso.Here,the total variance is obtained by the original data.The ratios are similar to those explained by PC1 and PC2 shown in Fig.3,despite a slight decrease in amplitude.These results con firm that the northeast and southwest patterns are still robust without the effect of ENSO and can explain most of the interannual variability in synoptic disturbances.This is expected considering ENSO explains less than 20%of the total variance of PC1/PC2,implied by the correlation coefficient between the Ni?o3.4index and PC1/PC2(0.43/?0.44).

    Figure 8 shows the regression of 850-hPa horizontal winds with respect to the normalized PC1_denso and PC2_denso.In comparison to Fig.4,in both the northeast and southwest patterns an apparent difference is that the zonal wind anomalies over the equatorial Pacific become much weaker and are con fined to the western Pacific due to the elimination of the ENSO effect.On the other hand,the anomalous cyclone appears over the WNP in the northeast pattern and over the Philippines in the southwest pattern,although their strengths are weaker than those obtained by the original data(Fig.4).

    5. Energy analysis of the interaction between the dominant modes and circulation anomalies

    Fig.6.As in Fig.2 but after removing the effect of ENSO.

    The EKE balance equation has been widely used to diagnose the energy source and redistribution,and the barotropic conversion can be used to illustrate the energy transfer between the mean flows and eddies(e.g.,Lau and Lau,1992;Maloney and Hartmann,2001;Chen and Huang,2009).Therefore,in the following,the barotropic conversion is analyzed to illustrate the role of large-scale circulation anomalies in affecting synoptic disturbances.The EKE tendency related to the barotropic energy conversion can be expressed in the following form:

    Here,K,uandvrepresent kinetic energy and zonal and meridional velocities,respectively.The overbar denotes the June–November mean for one specified year,and the prime denotes synoptic perturbation.The first and fourth terms are determined by the perturbation momentum flux and horizontal mean flow shear,and the second and third terms are determined by the perturbation intensity and mean flow convergence.

    After calculating the barotropic energy conversion for each year,we perform the regression with respect to the normalized PC1_denso and PC2_denso.The zonal–vertical cross sections of regressed anomalies along the subtropics(such as 10°–25°N)indicate that the maximum values appear at 850 hPa(not shown),which is consistent with previous studies(Lau and Lau,1992;Hsu et al.,2009;Tsou et al.,2014).Therefore,we select this pressure level to show the horizontal distribution of regressed anomalies.

    Figures 9a and b show the regression of barotropic energy conversion at 850 hPa with respect to the normalized PC1_denso and PC2_denso.There is a significant positive anomaly over the Philippine Sea for the northeast pattern(Fig.9a),indicating that the mean flow tends to transfer more kinetic energy to the perturbation flow over this region when PC1_denso is positive.Therefore,we can conclude that,for a positive northeast pattern,synoptic disturbances obtain energy from the mean flow over the Philippine Sea and propagate northwestward,leading to strong EKE over the Philippine Sea and the subtropical WNP(Fig.6a).For the southwest pattern,the maximum barotropic energy conversion is shifted westward,occurring around the Philippines,and with a negative anomaly over the Philippine Sea(Fig.9b).The positive anomaly is twice as large as the negative one.These distributions of barotropic kinetic energy conversion are similar to those of the corresponding leading modes.This indicates that the barotropic conversion plays a crucial role in inducing the leading modes.To facilitate comparison,we also show the regression of barotropic energy conversion at 850 hPa with respect to the normalized PC1 and PC2,i.e.,the original time series of the PCs,in Figs.9c and d.Their distributions are similar to those of PC1_denso and PC2_denso,albeit with a slight increase in amplitude. This indicates that the circulation anomalies shown in Fig.8 can sustain the leading modes through barotropic energy conversion,although their strength becomes weaker after the removal of the ENSO effect.

    Fig.7.Ratios of the total variance explained by(a)PC1_denso,(b)PC2_denso,and(c)both PC1_denso and PC2_denso.

    Figure 10 depicts the regression of four barotropic conversion terms with respect to the normalized PC1_denso and PC2_denso.It is clearly shown that,for both the northeast and southwest patterns,the first term[?u′v′(?uˉ/?y)]exhibits the largest magnitude among all conversion terms,and its distribution is very similar to the total barotropic energy conversion(Figs.9a and b).This term is determined by the meridional shear of mean zonal flow(??uˉ/?y)and the momentum transport of synoptic disturbance(u′v′).The momentum transport(u′v′)is positive because synoptic perturbations over the WNP feature northeast–southwest orientation(e.g.,Chen and Huang,2009).Therefore,the sign of the first term is decided by the meridional shear of the zonal wind.For the northeast pattern,there is a cyclonic circulation,i.e.,?(?uˉ/?y)>0,over the Philippines Sea(Fig.8a),leading to a positive conversion anomaly over this region(Fig.10a).The first term related to the southwest pattern shows a positive anomaly over the Philippines and a relatively weak negative anomaly to the east(Fig.10b).This distribution of barotropic conversion anomalies can also be explained by the meridional shear of zonal wind,which is characterized by the cyclonic anomaly over the SCS and the anticyclonic anomaly to the east(Fig.8b).

    The second term[?u′2(?uˉ/?x)]shows a distribution somewhat similar to that of the first term for both the northeast and southwest patterns(Figs.10c and d),suggesting this term also partly contributes to the total barotropic conversion.However,the amplitude in this term is smaller than that in the first term,and tends to be opposite to that in the third term[?v′2(?vˉ/?y)](Figs.10e and f).The fourth term[?u′v′(?vˉ/?x)]is very small and can be neglected(Figs.10g and h).

    Therefore,we can conclude that the first term is dominant—that is,the cyclonic shear of the zonal wind is key to the barotropic conversion for both the northeast and southwest patterns.The cyclonic shear of the zonal wind is closely related to the variation of the monsoon trough.Previous studies have suggested that the variation of the monsoon trough plays an important role in the development of synoptic disturbances(Li and Zhou,2012;Wu et al.,2012,2015b).Therefore,the present results are basically consistent with previous research.If the monsoon trough index is defined by the PC of the first EOF mode of the interannual variation in the 850-hPa positive vorticity during June–November averaged over 5°–20°N,following Wu et al.(2012),this monsoon trough index has significant correlation coefficients with PC1/PC2(0.50/?0.42).On the other hand,it should be mentioned that this monsoon trough index has weak correlation coefficients with PC1_denso/PC2_denso(0.06/?0.14).However,the weak coefficients do not deny the relationship between the leading modes and monsoon trough after the removal of ENSO,as illustrated by Figs.8 and 10.Actually,these weak coefficients are possibly due to the definition of the monsoon trough index,in which strong weights are given at the longitudes of 140°–170°E(Wu et al.,2012,Fig.2a),while the cyclonic shear of the zonal wind is concentrated over the SCS and the western part of the WNP after the removal of ENSO(Fig.8).The southwest–northeast horizontal tilt axis of off-equatorial disturbances ensures positive perturbation momentum flux over the WNP,and this positive flux is concentrated in the western part of the WNP,being much weaker to the east of 150°E(not shown).Therefore,one of the implications of the results shown in this section is that the cyclonic shear of the zonal wind over the western part of the WNP is more crucial for inducing strong synoptic disturbances.

    For completeness,we also analyzed the barotropic energy conversion associated with ENSO,and found that the conversion is positive over the WNP and negative around the Philippines during El Ni?o years(not shown),consistent with the result shown in Fig.5.We also found that this spatial distribution of conversion is attributable to the meridional shear of the zonal winds associated with ENSO(not shown).

    Fig.8.As in Fig.4 but for(a)PC1_denso and(b)PC2_denso.

    Fig.9.Regression of the 850-hPa EKE temporal rate of change due to the barotropic energy conversion with respect to the normalized(a)PC1_denso,(b)PC2_denso,(c)PC1,and(d)PC2.Dots denote regions significant at the 95%confidence level.Units:10?6m2s?3.

    6.Conclusions

    This study investigates the leading modes of interannual variation in synoptic disturbance activity over the WNP during the period 1958-2014.The EOF analysis indicates that both of the first two leading modes are characterized by a northwest–southeast-oriented pattern,but with distinct active locations:the first mode appears over the WNP,and the second mode appears around Philippines.These two modes can explain more than 60%of the total variance over a broad area of the WNP and SCS,indicating that they can successfully depict the interannual variability of synoptic disturbance activity.

    Fig.10.Regression of(a,b)term 1,(c,d)term 2,(e,f)term 3,and(g,h)term 4,with respect to the normalized(a,c,e,g)PC1_denso and(b,d,f,h)PC2_denso.Dots denote regions significant at the 95%confidence level.Units:10?6 m2s?3.

    Both modes are associated with lower-level cyclonic anomalies.These cyclonic anomalies appear over different locations for the two modes:over the subtropical WNP for the first mode and over the SCS for the second mode.In addition,both modes are related to a significant zonal wind anomaly over the equatorial Pacific,consistent with the close relationship between these modes and ENSO.The correlation coefficients between the PC1/PC2 and Ni?o3.4 index are significant but with opposite signs.We remove the components related to ENSO and further examine the leading modes.The results show that,after removing the effect of ENSO,the two leading modes are very similar to those obtained from the original data,albeit explaining slightly less of the variance.In addition,these two modes are associated with the local cyclonic anomalies in the lower troposphere—similar to the results obtained from the original data.The energetic analysis suggests that the meridional shear of the zonal wind associated with the cyclonic anomaly—particularly in the western part of the WNP—plays a dominant role in the barotropic kinetic energy conversion from mean flow to eddy flow,which maintains the leading modes.

    Acknowledgements.We thank the two anonymous reviewers for their comments,which were very helpful for improving the presentation of this paper.This work was supported by the National Natural Science Foundation of China(Grant Nos.41320104007,41475074 and 41475077).

    Cao,X.,P.Huang,G.H.Chen,and W.Chen,2012:Modulation of western North Pacific tropical cyclone genesis by intraseasonal oscillation of the ITCZ:A statistical analysis.Adv.Atmos.Sci.,29,744–754,https://doi.org/10.1007/s00376-012-1121-0.

    Chan,J.C.L.,and K.S.Liu,2004:Global warming and western North Pacific typhoon activity from an observational perspective.J.Climate,17,4590–4602,https://doi.org/10.1175/3240.1.

    Chen,G.H.,and R.H.Huang,2009:Interannual variations in mixed Rossby-gravity waves and their impacts on tropical cyclogenesis over the western North Pacific.J.Climate,22,535–549,https://doi.org/10.1175/2008JCLI2221.1.

    Chen,G.H.,and C.Chou,2014:Joint contribution of multiple equatorial waves to tropical cyclogenesis over the western North Pacific.Mon.Wea.Rev.,142,79–93,https://doi.org/10.1175/MWR-D-13-00207.1.

    Chen,T.-C.,J.-D.Tsay,M.-C.Yen,and J.Matsumoto,2012:Interannual variation of the late fall rainfall in central Vietnam.J.Climate,25,392–413,https://doi.org/10.1175/JCLI-D-11-00068.1.

    Fu,B.,T.Li,M.S.Peng,and F.Z.Weng,2007:Analysis of tropical cyclogenesis in the western North Pacific for 2000 and 2001.Wea.Forecasting,22,763–780,https://doi.org/10.1175/WAF1013.1.

    Fukutomi,Y.,C.Kodama,Y.Yamada,A.T.Noda,and M.Satoh,2016:Tropical synoptic-scale wave disturbances over the western Pacific simulated by a global cloud-system resolving model.Theor.Appl.Climatol.,124,737–755,https://doi.org/10.1007/s00704-015-1456-4.

    Hsu,P.-C.,C.-H.Tsou,H.-H.Hsu,and J.H.Chen,2009:Eddy energy along the tropical storm track in association with ENSO.J.Meteor.Soc.Japan,87,687–704,https://doi.org/10.2151/jmsj.87.687.

    Hsu,P.-C.,T.Li,and C.-H.Tsou,2011:Interactions between boreal summer intraseasonal oscillations and synoptic-scale disturbances over the western North Pacific.Part I:Energetics diagnosis.J.Climate,24,927–941,https://doi.org/10.1175/2010JCLI3833.1.

    Huang,P.,and R.H.Huang,2011:Climatology and interannual variability of convectively coupled equatorial waves activity.J.Climate,24,4451–4465,https://doi.org/10.1175/2011 JCLI4021.1.

    Hurley,J.V.,and W.R.Boos,2015:A global climatology of monsoon low-pressure systems.Quart.J.Roy.Meteor.Soc.,141,1049–1064,https://doi.org/10.1002/qj.2447.

    Kuo,H.-C.,J.-H.Chen,R.T.Williams,and C.-P.Chang,2001:Rossby waves in zonally opposing mean flow:Behavior in northwest Pacific summer monsoon.J.Atmos.Sci.,58,1035–1050,https://doi.org/10.1175/1520-0469(2001)058<1035:RWIZOM>2.0.CO;2.

    Lau,K.-H.,and N.-C.Lau,1992:The energetics and propagation dynamics of tropical summertime synoptic-scale disturbances.Mon.Wea.Rev.,120,2523–2539,https://doi.org/10.1175/1520-0493(1992)120<2523:TEAPDO>2.0.CO;2.

    Li,R.C.Y.,and W.Zhou,2012:Changes in western Pacific tropical cyclones associated with the El Ni?o-Southern Oscillation cycle.J.Climate,25,5864–5878,https://doi.org/10.1175/JCLI-D-11-00430.1.

    Maloney,E.D.,and D.L.Hartmann,2001:The Madden-Julian oscillation,Barotropic dynamics,and North Pacific tropical cyclone formation.Part I:Observations.J.Atmos.Sci.,58,2545–2558,https://doi.org/10.1175/1520-0469(2001)058<2545:TMJOBD>2.0.CO;2.

    Maloney,E.D.,and M.J.Dickinson,2003:The intraseasonal oscillation and the energetics of summertime tropical western North Pacific synoptic-scale disturbances.J.Atmos.Sci.,60,2153–2168,https://doi.org/10.1175/1520-0469(2003)060<2153:TIOATE>2.0.CO;2.

    Molinari,J.,and D.Vollaro,2013:What percentage of western North Pacific tropical cyclones form within the monsoon trough?Mon.Wea.Rev.,141,499–505,https://doi.org/10.1175/MWR-D-12-00165.1.

    North,G.R.,T.L.Bell,R.F.Cahalan,and F.J.Moeng,1982:Sampling errors in the estimation of empirical orthogonal functions.Mon.Wea.Rev.,110,669–706,https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    Serra,Y.L.,G.N.Kiladis,and M.F.Cronin,2008:Horizontal and vertical structure of easterly waves in the Pacific ITCZ.J.Atmos.Sci.,65,1266–1284,https://doi.org/10.1175/2007 JAS2341.1.

    Sobel,A.H.,and C.S.Bretherton,1999:Development of synoptic-scale disturbances over the summertime tropical northwest Pacific.J.Atmos.Sci.,56,3106–3127,https://doi.org/10.1175/1520-0469(1999)056<3106:DOSSDO>2.0.CO;2.

    Tsou,C.-H.,H.-H.Hsu,and P.-C.Hsu,2014:The role of multiscale interaction in synoptic-scale eddy kinetic energy over the western North Pacific in autumn.J.Climate,27,3750–3766,https://doi.org/10.1175/JCLI-D-13-00380.1.

    Webster,P.J.,and H.-R.Chang,1988:Equatorial energy accumulation and emanation regions:Impacts of a zonally varying basic state.J.Atmos.Sci.,45,803–829,https://doi.org/10.1175/1520-0469(1988)045<0803:EEAAER>2.0.CO;2.

    Wu,L.,Z.P.Wen,R.H.Huang,and R.G.Wu,2012:Possible linkage between the monsoon trough variability and the tropical cyclone activity over the western North Pacific.Mon.Wea.Rev.,140,140–150,https://doi.org/10.1175/MWR-D-11-00078.1.

    Wu,L.,Z.P.Wen,T.Li,and R.H.Huang,2014:ENSO-phase dependent TD and MRG wave activity in the western North Pacific.Climate Dyn.,42,1217–1227,https://doi.org/10.1175/MWR-D-11-00078.1.

    Wu,L.,Z.P.Wen,and R.G.Wu,2015a:Influence of the monsoon trough on westward-propagating tropical waves over the western North Pacific.Part I:Observations.J.Climate,28,7108–7127,https://doi.org/10.1175/JCLI-D-14-00806.1.

    Wu,L.,Z.P.Wen,and R.G.Wu,2015b:Influence of the monsoon trough on westward-propagating tropical waves over the western North Pacific.Part II:Energetics and numerical experiments.J.Climate,28,9332–9349,https://doi.org/10.1175/JCLI-D-14-00807.1.

    Xu,Y.M.,T.Li,and M.Peng,2013:Tropical cyclogenesis in the western North Pacific as revealed by the 2008-09 YOTC data.Wea.Forecasting,28,1038–1056,https://doi.org/10.1175/WAF-D-12-00104.1.

    99热国产这里只有精品6| 亚洲av国产av综合av卡| 国产乱人视频| 亚洲av男天堂| 91在线精品国自产拍蜜月| 男人爽女人下面视频在线观看| 国产在线一区二区三区精| 国产成人一区二区在线| 国产黄频视频在线观看| 欧美国产精品一级二级三级 | 欧美日韩精品成人综合77777| 国产精品人妻久久久影院| 超碰av人人做人人爽久久| 丝袜脚勾引网站| 国产 一区 欧美 日韩| 日韩成人伦理影院| 亚洲精品日韩在线中文字幕| 我要看日韩黄色一级片| 国产乱来视频区| 99热这里只有是精品50| 欧美日韩一区二区视频在线观看视频在线 | 一个人看视频在线观看www免费| 永久免费av网站大全| 少妇人妻久久综合中文| 亚洲国产最新在线播放| 免费黄频网站在线观看国产| 在线a可以看的网站| 哪个播放器可以免费观看大片| 噜噜噜噜噜久久久久久91| 日韩亚洲欧美综合| 大又大粗又爽又黄少妇毛片口| 人人妻人人澡人人爽人人夜夜| 亚洲精品,欧美精品| 国国产精品蜜臀av免费| 秋霞在线观看毛片| av在线亚洲专区| 国内少妇人妻偷人精品xxx网站| 亚洲av男天堂| 高清欧美精品videossex| 高清在线视频一区二区三区| 99视频精品全部免费 在线| 99热国产这里只有精品6| 天美传媒精品一区二区| 成年免费大片在线观看| 亚洲国产日韩一区二区| 真实男女啪啪啪动态图| 久久精品熟女亚洲av麻豆精品| 联通29元200g的流量卡| 人人妻人人看人人澡| 国产午夜精品一二区理论片| 精品少妇黑人巨大在线播放| 在线天堂最新版资源| 国产精品久久久久久久电影| 日日啪夜夜撸| 精品国产乱码久久久久久小说| 在线观看一区二区三区| 有码 亚洲区| 成人漫画全彩无遮挡| 91在线精品国自产拍蜜月| 一区二区三区免费毛片| 亚洲va在线va天堂va国产| 热99国产精品久久久久久7| 简卡轻食公司| 热re99久久精品国产66热6| 国产一区有黄有色的免费视频| 欧美区成人在线视频| 国产精品久久久久久精品电影| 欧美xxxx黑人xx丫x性爽| 亚洲美女搞黄在线观看| 日本-黄色视频高清免费观看| 97超视频在线观看视频| 亚洲成人久久爱视频| 欧美潮喷喷水| 神马国产精品三级电影在线观看| 亚洲精品久久午夜乱码| 伊人久久国产一区二区| 99热网站在线观看| 激情 狠狠 欧美| a级毛片免费高清观看在线播放| 人妻制服诱惑在线中文字幕| 交换朋友夫妻互换小说| 亚洲欧美成人综合另类久久久| 18禁在线播放成人免费| 国产精品99久久99久久久不卡 | 青春草亚洲视频在线观看| 久久久精品94久久精品| 国产成人福利小说| 超碰av人人做人人爽久久| 精品久久久久久久末码| 超碰97精品在线观看| 内地一区二区视频在线| a级一级毛片免费在线观看| 免费看光身美女| 日本-黄色视频高清免费观看| 亚洲av欧美aⅴ国产| 欧美日韩精品成人综合77777| 精品一区在线观看国产| 特大巨黑吊av在线直播| 成人亚洲欧美一区二区av| 99热网站在线观看| 日韩 亚洲 欧美在线| 欧美高清成人免费视频www| 免费看a级黄色片| 青春草亚洲视频在线观看| 成人鲁丝片一二三区免费| 国产成人freesex在线| 99热国产这里只有精品6| 精品久久久久久久末码| 午夜免费观看性视频| av.在线天堂| 成人毛片a级毛片在线播放| 国产爽快片一区二区三区| 青春草视频在线免费观看| 日本熟妇午夜| 你懂的网址亚洲精品在线观看| 1000部很黄的大片| 在线观看一区二区三区| 欧美少妇被猛烈插入视频| 一级毛片我不卡| 亚洲精品乱码久久久v下载方式| av在线亚洲专区| 亚洲精品乱码久久久久久按摩| 草草在线视频免费看| 久久97久久精品| 国产中年淑女户外野战色| 欧美97在线视频| 国产精品.久久久| 欧美亚洲 丝袜 人妻 在线| 777米奇影视久久| 亚洲四区av| 中文字幕亚洲精品专区| 日韩成人伦理影院| 亚洲激情五月婷婷啪啪| 午夜激情久久久久久久| 亚洲aⅴ乱码一区二区在线播放| 性插视频无遮挡在线免费观看| 色播亚洲综合网| 亚洲最大成人手机在线| 美女视频免费永久观看网站| 99久久精品一区二区三区| 三级男女做爰猛烈吃奶摸视频| 亚洲精品成人久久久久久| 精品久久国产蜜桃| 一本久久精品| 一级黄片播放器| 联通29元200g的流量卡| 亚洲成人av在线免费| 亚洲精品,欧美精品| 国产精品国产三级国产av玫瑰| 亚洲最大成人av| 午夜福利视频1000在线观看| 麻豆精品久久久久久蜜桃| 久久久久性生活片| 国产精品蜜桃在线观看| 在线观看人妻少妇| 亚洲av男天堂| 五月伊人婷婷丁香| 高清日韩中文字幕在线| 日韩成人av中文字幕在线观看| 好男人在线观看高清免费视频| 狠狠精品人妻久久久久久综合| 欧美老熟妇乱子伦牲交| 欧美亚洲 丝袜 人妻 在线| 精品午夜福利在线看| 欧美成人一区二区免费高清观看| 高清在线视频一区二区三区| 夫妻性生交免费视频一级片| 国产成人91sexporn| 毛片一级片免费看久久久久| 久热久热在线精品观看| 国产精品99久久久久久久久| 久久久久久九九精品二区国产| 九色成人免费人妻av| 一二三四中文在线观看免费高清| 成人亚洲精品av一区二区| 亚洲精华国产精华液的使用体验| 亚洲av中文av极速乱| 久久久久久久午夜电影| 精品久久久精品久久久| 乱码一卡2卡4卡精品| 亚洲电影在线观看av| 视频区图区小说| 久久久久久久精品精品| 欧美 日韩 精品 国产| 欧美激情国产日韩精品一区| 只有这里有精品99| 18禁在线播放成人免费| 久久久久性生活片| 男人添女人高潮全过程视频| 大话2 男鬼变身卡| 久久久久精品久久久久真实原创| 欧美另类一区| 老司机影院成人| 国产成人a区在线观看| 成人免费观看视频高清| 中文欧美无线码| 久久人人爽av亚洲精品天堂 | 99热网站在线观看| 精品少妇久久久久久888优播| 亚洲欧美一区二区三区国产| 最近最新中文字幕大全电影3| 少妇高潮的动态图| 亚洲精品,欧美精品| 精品一区在线观看国产| 久久久久精品性色| h日本视频在线播放| 午夜激情久久久久久久| 亚洲美女搞黄在线观看| 国产精品成人在线| 男人爽女人下面视频在线观看| 特级一级黄色大片| 黄片wwwwww| 国产片特级美女逼逼视频| 内射极品少妇av片p| 久久久久久久久大av| 97精品久久久久久久久久精品| www.av在线官网国产| 亚洲内射少妇av| 91精品国产九色| 免费观看av网站的网址| 一级二级三级毛片免费看| 老女人水多毛片| 国产精品偷伦视频观看了| 国产在视频线精品| 人妻制服诱惑在线中文字幕| 搡女人真爽免费视频火全软件| 在线 av 中文字幕| 欧美激情久久久久久爽电影| 麻豆国产97在线/欧美| 亚洲国产成人一精品久久久| 中文天堂在线官网| 日本一二三区视频观看| 国产黄片美女视频| 久久人人爽av亚洲精品天堂 | 免费观看在线日韩| 国产成人a∨麻豆精品| 成人午夜精彩视频在线观看| 精品午夜福利在线看| 久热久热在线精品观看| 午夜福利在线在线| 简卡轻食公司| 亚洲欧美一区二区三区黑人 | 激情 狠狠 欧美| 丝袜喷水一区| 搡女人真爽免费视频火全软件| 久久精品夜色国产| 欧美xxⅹ黑人| 亚洲aⅴ乱码一区二区在线播放| 青春草视频在线免费观看| 成人国产麻豆网| 久久久久国产精品人妻一区二区| 人妻夜夜爽99麻豆av| 久久97久久精品| 午夜视频国产福利| 午夜激情久久久久久久| 欧美成人午夜免费资源| 亚洲精品成人久久久久久| 人妻少妇偷人精品九色| 肉色欧美久久久久久久蜜桃 | 亚洲国产高清在线一区二区三| 天美传媒精品一区二区| kizo精华| 国国产精品蜜臀av免费| 欧美97在线视频| 成人国产麻豆网| 久久人人爽人人片av| 你懂的网址亚洲精品在线观看| 最近中文字幕高清免费大全6| 久久这里有精品视频免费| 亚洲国产精品专区欧美| 特大巨黑吊av在线直播| 自拍偷自拍亚洲精品老妇| 97热精品久久久久久| 在线精品无人区一区二区三 | 在线免费十八禁| 黄色日韩在线| 国产av国产精品国产| 久久久精品免费免费高清| 国产精品久久久久久精品电影| 亚洲精品中文字幕在线视频 | 国产精品国产av在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 成年女人看的毛片在线观看| 久久午夜福利片| 欧美人与善性xxx| 夫妻午夜视频| 男女无遮挡免费网站观看| 亚洲欧洲国产日韩| 蜜桃亚洲精品一区二区三区| 中文欧美无线码| 国产黄色视频一区二区在线观看| 在线天堂最新版资源| 精品少妇久久久久久888优播| 丰满乱子伦码专区| 成年女人在线观看亚洲视频 | 欧美变态另类bdsm刘玥| 九色成人免费人妻av| 中文在线观看免费www的网站| 亚洲精品日韩av片在线观看| 成人二区视频| 国产永久视频网站| 日韩亚洲欧美综合| 欧美xxⅹ黑人| 精品久久久精品久久久| 精品国产一区二区三区久久久樱花 | 免费看a级黄色片| 丝袜脚勾引网站| 亚洲第一区二区三区不卡| 卡戴珊不雅视频在线播放| 伦精品一区二区三区| 亚洲国产欧美人成| 久久精品熟女亚洲av麻豆精品| 少妇人妻久久综合中文| 免费黄网站久久成人精品| 亚洲自拍偷在线| 欧美xxxx性猛交bbbb| 免费观看在线日韩| 高清欧美精品videossex| 亚洲经典国产精华液单| 视频中文字幕在线观看| 亚洲在久久综合| 男女国产视频网站| 久久这里有精品视频免费| 亚洲av免费在线观看| 日本三级黄在线观看| 亚洲成人中文字幕在线播放| 男人狂女人下面高潮的视频| 亚洲自拍偷在线| 久久人人爽人人片av| 制服丝袜香蕉在线| 99九九线精品视频在线观看视频| 九九爱精品视频在线观看| 午夜福利网站1000一区二区三区| 狂野欧美激情性xxxx在线观看| 国产v大片淫在线免费观看| 色网站视频免费| 嫩草影院精品99| 乱码一卡2卡4卡精品| 蜜臀久久99精品久久宅男| 亚洲,一卡二卡三卡| 极品少妇高潮喷水抽搐| 神马国产精品三级电影在线观看| 天美传媒精品一区二区| 国产乱人偷精品视频| 夜夜看夜夜爽夜夜摸| 亚洲欧洲日产国产| 中文乱码字字幕精品一区二区三区| 成人一区二区视频在线观看| 亚洲精品视频女| 69av精品久久久久久| 精品人妻一区二区三区麻豆| 亚洲av日韩在线播放| 久久久精品欧美日韩精品| 成年av动漫网址| 欧美日韩一区二区视频在线观看视频在线 | av又黄又爽大尺度在线免费看| 欧美xxxx性猛交bbbb| 人人妻人人爽人人添夜夜欢视频 | 国产欧美日韩一区二区三区在线 | 亚洲怡红院男人天堂| 五月天丁香电影| 三级经典国产精品| 亚洲内射少妇av| 国产成人精品一,二区| 99久久中文字幕三级久久日本| 亚洲精品一区蜜桃| 免费av毛片视频| 丝瓜视频免费看黄片| 亚洲欧美成人综合另类久久久| 如何舔出高潮| 亚洲美女视频黄频| 国产乱人偷精品视频| 菩萨蛮人人尽说江南好唐韦庄| 熟妇人妻不卡中文字幕| 久久精品国产自在天天线| 亚洲国产成人一精品久久久| 国产精品秋霞免费鲁丝片| 亚洲精品国产av蜜桃| 久久99精品国语久久久| 午夜福利视频1000在线观看| 欧美激情国产日韩精品一区| av又黄又爽大尺度在线免费看| 黄色视频在线播放观看不卡| h日本视频在线播放| 嫩草影院精品99| 午夜精品一区二区三区免费看| 深夜a级毛片| 国产精品久久久久久精品电影小说 | 一二三四中文在线观看免费高清| av在线老鸭窝| 神马国产精品三级电影在线观看| 国产av国产精品国产| 丝袜喷水一区| 亚洲自拍偷在线| 男插女下体视频免费在线播放| av在线亚洲专区| 免费播放大片免费观看视频在线观看| 亚洲精品国产av成人精品| 人人妻人人爽人人添夜夜欢视频 | 男女国产视频网站| 婷婷色综合www| 国产精品99久久久久久久久| 国产视频首页在线观看| 亚洲国产精品国产精品| 国产精品国产三级专区第一集| 男人爽女人下面视频在线观看| 国产熟女欧美一区二区| 天美传媒精品一区二区| a级一级毛片免费在线观看| 国内揄拍国产精品人妻在线| 久久精品夜色国产| 一级毛片黄色毛片免费观看视频| 免费观看性生交大片5| 国产成人一区二区在线| 一级毛片电影观看| 欧美一级a爱片免费观看看| 亚洲国产精品专区欧美| 丝瓜视频免费看黄片| 久久久久精品久久久久真实原创| 美女视频免费永久观看网站| 亚洲成人精品中文字幕电影| 精品少妇久久久久久888优播| 亚洲性久久影院| 一级毛片久久久久久久久女| 男人添女人高潮全过程视频| 99热网站在线观看| 中文字幕亚洲精品专区| 欧美日韩在线观看h| 国产精品嫩草影院av在线观看| 色5月婷婷丁香| 亚洲精品自拍成人| 97热精品久久久久久| 欧美+日韩+精品| 18禁裸乳无遮挡动漫免费视频 | 两个人的视频大全免费| 欧美性感艳星| 欧美97在线视频| 九九久久精品国产亚洲av麻豆| a级毛色黄片| 日本-黄色视频高清免费观看| 卡戴珊不雅视频在线播放| 欧美老熟妇乱子伦牲交| 国产一区二区三区av在线| 欧美 日韩 精品 国产| 国产精品99久久久久久久久| 噜噜噜噜噜久久久久久91| 精品视频人人做人人爽| 亚洲av福利一区| 一级爰片在线观看| 久久精品国产自在天天线| 欧美 日韩 精品 国产| 亚洲熟女精品中文字幕| 国产乱来视频区| 在线看a的网站| 天天躁日日操中文字幕| 99久久精品一区二区三区| 大片电影免费在线观看免费| 日本一本二区三区精品| 免费播放大片免费观看视频在线观看| 免费看av在线观看网站| 麻豆成人av视频| 青春草亚洲视频在线观看| 在线播放无遮挡| 一级二级三级毛片免费看| 精品久久久久久久人妻蜜臀av| av一本久久久久| 免费av观看视频| 久久久精品欧美日韩精品| 久久亚洲国产成人精品v| 亚洲精品色激情综合| 日日啪夜夜爽| 少妇人妻久久综合中文| 高清毛片免费看| 精品国产乱码久久久久久小说| 国产v大片淫在线免费观看| 成人黄色视频免费在线看| 免费看av在线观看网站| 97人妻精品一区二区三区麻豆| 热re99久久精品国产66热6| 男女啪啪激烈高潮av片| 日韩欧美精品免费久久| 黄色一级大片看看| 超碰av人人做人人爽久久| 人妻一区二区av| 成人漫画全彩无遮挡| 可以在线观看毛片的网站| 午夜激情久久久久久久| 国产欧美日韩精品一区二区| 亚洲av免费在线观看| 高清毛片免费看| 精品久久久久久久久亚洲| 狂野欧美激情性bbbbbb| 纵有疾风起免费观看全集完整版| 亚洲aⅴ乱码一区二区在线播放| 精品少妇黑人巨大在线播放| 国产 一区精品| 国产精品爽爽va在线观看网站| 亚洲av在线观看美女高潮| 国产一区二区三区av在线| 黄色视频在线播放观看不卡| 日本黄大片高清| 国产在视频线精品| 国产av码专区亚洲av| 久久午夜福利片| 国产男女超爽视频在线观看| 亚洲婷婷狠狠爱综合网| 国产精品一区二区三区四区免费观看| 久久精品久久精品一区二区三区| 一个人看视频在线观看www免费| 久久久精品欧美日韩精品| 欧美变态另类bdsm刘玥| 久久精品综合一区二区三区| 日韩欧美一区视频在线观看 | 一级av片app| 免费看a级黄色片| 久久99热6这里只有精品| 国产精品福利在线免费观看| 女人被狂操c到高潮| 亚洲成人中文字幕在线播放| 欧美日韩亚洲高清精品| 国产一区二区三区av在线| 国产久久久一区二区三区| 大片电影免费在线观看免费| 看免费成人av毛片| 亚洲国产色片| 黄片wwwwww| 免费人成在线观看视频色| av国产精品久久久久影院| 身体一侧抽搐| 成人二区视频| 国产亚洲91精品色在线| 特级一级黄色大片| 国内精品宾馆在线| av免费观看日本| 国产色婷婷99| 欧美激情在线99| 麻豆久久精品国产亚洲av| 热re99久久精品国产66热6| 色吧在线观看| 97超碰精品成人国产| 精品久久久久久久末码| 亚洲精品自拍成人| 97在线人人人人妻| 午夜激情久久久久久久| 看黄色毛片网站| 激情 狠狠 欧美| 丰满乱子伦码专区| 人人妻人人看人人澡| 成人特级av手机在线观看| 日日摸夜夜添夜夜添av毛片| 国产av国产精品国产| 成人高潮视频无遮挡免费网站| 久久6这里有精品| 成年版毛片免费区| 久久99热这里只频精品6学生| 黄色配什么色好看| 国产精品久久久久久av不卡| 最近中文字幕2019免费版| 18禁裸乳无遮挡免费网站照片| 亚洲电影在线观看av| 国产亚洲精品久久久com| 我的老师免费观看完整版| 黄色视频在线播放观看不卡| 久久久亚洲精品成人影院| 天堂俺去俺来也www色官网| 22中文网久久字幕| 少妇 在线观看| 国产精品国产三级专区第一集| 美女高潮的动态| 五月伊人婷婷丁香| 成年av动漫网址| 国产女主播在线喷水免费视频网站| 亚洲国产精品成人久久小说| 午夜福利在线在线| 欧美丝袜亚洲另类| 成人毛片a级毛片在线播放| 久久久久国产精品人妻一区二区| 日韩av不卡免费在线播放| 国产亚洲一区二区精品| 看非洲黑人一级黄片| 国产日韩欧美亚洲二区| 中文精品一卡2卡3卡4更新| 日韩一区二区视频免费看| 美女xxoo啪啪120秒动态图| 伦精品一区二区三区| 国精品久久久久久国模美| 久久久久久久久久久免费av| 婷婷色综合www| 国产乱人视频| 韩国高清视频一区二区三区| 日韩精品有码人妻一区| 久久久久久久久久久丰满| 大码成人一级视频| 97超碰精品成人国产| 久久97久久精品| 熟女电影av网| 男人爽女人下面视频在线观看| eeuss影院久久| 波多野结衣巨乳人妻| 插阴视频在线观看视频| 精华霜和精华液先用哪个| a级一级毛片免费在线观看| 性色avwww在线观看| 中文欧美无线码| 欧美97在线视频| 精品久久久久久久末码| 国产精品无大码| 涩涩av久久男人的天堂| 久久精品综合一区二区三区| 看免费成人av毛片| 国产片特级美女逼逼视频| 精华霜和精华液先用哪个| 亚洲人成网站在线观看播放| 久久久精品欧美日韩精品| 国产精品一区二区在线观看99|