• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Interannual Variations in Synoptic-Scale Disturbances over the Western North Pacific

    2018-03-07 06:58:06XingyanZHOURiyuLUGuanghuaCHENandLiangWU
    Advances in Atmospheric Sciences 2018年5期

    Xingyan ZHOU,Riyu LU?,Guanghua CHEN,and Liang WU

    1State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China

    2University of the Chinese Academy of Sciences,Beijing 100049,China

    3Center for Monsoon System Research,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China

    1.Introduction

    Synoptic disturbances are predominant over the western North Pacific(WNP)during the warm season.They are an important rainfall system,contributing to a large portion of total precipitation in the WNP and the South China Sea(SCS)(Hurley and Boos,2015).In addition,synoptic disturbances are significant precursors to the formation of tropical cyclones,and it is estimated that more than half of tropical cyclones occurring over the WNP are triggered by synoptic disturbances(Fu et al.,2007;Chen and Huang,2009;Xu et al.,2013;Chen and Chou,2014).Therefore,synoptic disturbances greatly affect the weather and climate of East Asia and Southeast Asia through landing disturbances and tropical cyclones(e.g.,Chen et al.,2012).

    The development of synoptic disturbance is strongly affected by the interaction with background circulations.It has been indicated that con fluent flows have an important impact on the amplification of synoptic disturbances(e.g.,Webster and Chang,1988;Kuo et al.,2001).Over the WNP,a confluence zone exists between the lower-level easterly trade winds and westerly monsoonal winds, i.e., the monsoon trough,during summer and autumn,and thus the monsoon trough contributes greatly to the growth of synoptic disturbance(Sobel and Bretherton,1999;Wu et al.,2012,2015a;Molinari and Vollaro,2013).Besides,intraseasonal oscillations can also modulate synoptic disturbance.During the active phases of intraseasonal oscillations,synoptic disturbances over the WNP are considerably stronger(Maloney and Hartmann,2001;Maloney and Dickinson,2003;Hsu et al.,2011;Cao et al.,2012;Tsou et al.,2014).

    From the interannual aspect,many studies have documented that ENSO can affect synoptic disturbance activity over the WNP through modulating large-scale circulations.For example,Hsu et al.(2009)revealed that during warm ENSO years the activity of synoptic disturbance is enhanced from the Philippine Sea to the date line,as compared to that during cold years.Wu et al.(2014)investigated the structure and evolution of synoptic waves related to ENSO,and found that during El Ni?o summers the tropical depression(TD)and mixed Rossby–gravity wave(MRG)appear with equivalent barotropic structure,and the transition from MRG to TD is clear.In contrast,during La Ni?a summers the vertical structure of TD-MRG waves becomes tilted eastward with height,and the MRG-to-TD transition is unclear.Additionally,ENSO may affect synoptic disturbance activity through modulating the location and strength of monsoon trough in the WNP.During El Ni?o(La Ni?a)years,the monsoon trough extends eastward(retreats westward)and becomes stronger(weaker),resulting in enhanced(reduced)disturbance activities over the southeastern quadrant of the WNP(Chan and Liu,2004;Li and Zhou,2012;Wu et al.,2012,2015a).

    In this study,we begin with the features of interannual variation in synoptic disturbances,rather than regarding the interannual variation as a result of ENSO impacts.From the viewpoint of the interannual variation,the following questions arise:What are the features and dominant modes of the interannual variations of synoptic disturbances?Are there any other factors, other than ENSO, significantly affecting the interannual variations of synoptic disturbances?If yes,what kind of mechanism is responsible for the impact?Answering these questions is the main motivation in this study.

    The rest of this paper is organized as follows:Section 2 introduces the datasets and analysis methods.The features of the annual cycle and interannual variation of synoptic disturbances over the WNP are presented in section 3.Section 4 shows the atmospheric circulations associated with the interannual variation of synoptic disturbance activity.Barotropic energy conversion is analyzed in section 5 to examine the interaction between the dominant modes and large-scale cir-culation anomalies.Finally,conclusions are given in section 6.

    Fig.1.Annual cycles of the(a)climatological mean and(b)interannual standard deviation of 850-hPa EKE averaged over 10°–20°N.(c)Climatological mean(contours)and standard deviation(shading)of EKE averaged over June–November.Units:m2s?2.

    2.Data and methods

    The daily and monthly horizontal winds are from the NCEP–NCAR reanalysis dataset.These data have a horizontal resolution of 2.5°×2.5°and span from 1958 to 2014.The SST data are from ERSST.v2,with a horizontal resolution of 2°×2°.The Ni?o3.4 index is defined as the SST anomalies averaged over the region(5°S–5°N,120°–170°W).

    EOF analysis is performed to determine the dominant modes of interannual variability of synoptic disturbance activity over the WNP.The Butterworth filter is applied to isolate synoptic disturbance with a period of 3–8 days.The strength of synoptic disturbance activity is measured by the 850-hPa eddy kinetic energy(EKE),

    where an overbar denotes the average over June–November,andu′andv′represent the synoptic zonal and meridional velocities,respectively.

    3.Features of the annual cycle and interannual variations

    In order to display the annual cycle of synoptic disturbance activity,Fig.1a shows a longitude–time Hovm¨oler diagram of EKE averaged over 10°–20°N.The maximum synoptic disturbance activity occurs during summer and autumn over the region 110°–150°E,and reaches a peak in July and August,which is consistent with previous studies(Serra et al.,2008;Huang and Huang,2011;Fukutomi et al.,2016).Figure 1b shows the annual cycle of the meridional mean(10°–20°N)interannual standard deviation of synoptic disturbances,which is used to represent the amplitude of interannual variation.Similar to the results shown in Fig.1a,the prominent interannual variation appears from June to November in the WNP region.We also examined the spatial distribution for the climatological mean and interannual standard deviation of 850-hPa EKE for each month from January to December(not shown),and found that the EKE and its variability are strong over the tropical and subtropical WNP in summer and autumn,and are distinguishable from the storm track over the North Pacific.Therefore,we select the period from June to November as the object of this study.The horizontal distributions of the climatological mean and interannual standard deviation of EKE over June–November are shown in Fig.1c.The regions with a large climatological mean and interannual standard deviation are roughly consistent.The strong standard deviation over the subtropical WNP is distinct from the strong midlatitude standard deviation associated with the storm tracks over the North Pacific.

    To capture the spatial mode of synoptic disturbances,we perform an EOF analysis on the 850-hPa EKE averaged over June–November in the domain(0°–35°N,100°–160°E)during 1958–2014.The first two modes account for 32.3%and 18.1%of the total variance,respectively,and both are independent according to the criteria of North et al.(1982).These two leading modes explain more than half of the total variance.

    Fig.2.Regression of 850-hPa EKE with respect to the normalized(a)PC1 and(b)PC2,and the normalized(c)PC1 and(d)PC2,performed by EOF analysis.In(a,b),dots denote regions significant at the 95%confidence level.Units:m2s?2.

    The first mode(EOF1)is characterized by a northwest–southeast-oriented pattern over the WNP(Fig.2a).The second mode(EOF2)is also characterized by a northwest–southeast-oriented positive anomaly(Fig.2b),which is located around the Philippines and with its center shifted more southwestward in comparison with the first mode.In addition,there is a negative anomaly to the east of the positive anomaly,but with a weak amplitude.According to the spatial distributions,we refer to these two modes as the northeast pattern and southwest pattern,respectively.The principal components(PC1 and PC2)do not show an appreciable long-term trend or decadal variation(Figs.2c and d).

    Figure 3 displays the ratios of the total variance explained by these two leading modes in each grid.As expected from the EOF results shown in Fig.2,the first mode contributes greatly over the WNP,with a maximum larger than 60%of the total variance;whereas,the second mode contributes greatly around the Philippines,explaining about 80%of the total variance over this region.Although the first and second modes explain the main variance over these distinct regions,the combined contribution of the two modes is manifested as a unified pattern(Fig.3c).These two leading modes together explain more than 60%of the total variance over a broad area of the WNP.This indicates that the interannual variability of synoptic disturbance activity can be explained well by these two leading modes.

    4.Large-scale circulation anomalies associated with the dominant modes

    Figure 4 shows the regression of 850-hPa horizontal winds with respect to the normalized PC1 and PC2.The northeast pattern,the first mode,is related to a significant cyclonic anomaly over the subtropical WNP(Fig.4a).On the other hand,the southwest pattern,the second mode,is associated with a significant cyclonic anomaly centered over the SCS(Fig.4b).Furthermore,both the northeast and southwest patterns are related to a significant zonal wind anomaly over the equatorial Pacific:a westerly anomaly for the former pattern but an easterly anomaly for the latter pattern.

    Figure 5 shows the correlation coefficients between the Ni?o3.4 index and interannual variation of synoptic disturbance activity over the WNP and SCS.The correlation coefficients are positive over the WNP and negative around the Philippines.These positive and negative correlation coefficients resemble the northeast and southwest patterns,respectively,although the negative ones extend to the equator where the EKE shows weak interannual standard deviation(Fig.1c).These correlation coefficients confirm the close relationship between ENSO and the synoptic disturbance activities over the WNP and SCS,and suggest a close relationship between ENSO and the two leading modes.Actually,the correlation coefficient between the Ni?o3.4 index and PC1(PC2)is 0.43(?0.44),both being significant at the 99%confidence level.

    However,the correlation coefficients shown in Fig.5 indicate that the majority of the interannual variance of synoptic disturbance activity cannot be explained by ENSO.In contrast,the ENSO-related atmospheric circulation anomalies may be confused with the circulation anomalies associated with the interannual variation of synoptic disturbance activity.Therefore,we remove the effect of ENSO and investigate the circulation anomalies associated with the residual component of the interannual variation of synoptic disturbance activity.We first compute the ENSO-related components through linear regression onto the Ni?o3.4 index,and then remove them from original data.

    Fig.3.Ratios of the total variance explained by the(a) first mode,(b)second mode,and(c)both leading modes,for each grid.

    Fig.4.Regression of 850-hPa horizontal winds with respect to the normalized(a)PC1 and(b)PC2.Shading denotes regions of either zonal or meridional wind anomalies significant at the 95%confidence level.Units:m s?1.

    Fig.5.Correlation coefficients between 850-hPa EKE and the Ni?o3.4 index.Dots denote regions significant at the 95%confidence level.

    Figure 6 shows the EOF results after removing the effect of ENSO.Their distributions are similar to those of the original field shown in Fig.2.The first mode still displays a positive anomaly over the WNP(Fig.6a).The second mode is characterized by a positive anomaly around the Philippines and a weak negative anomaly to its east(Fig.6b).The differences in the amplitudes of these anomalies derive from the positive anomalies in the two modes becoming slightly weaker,and the negative anomalies for the second mode becoming slightly stronger,after the removal of the ENSO-related component.

    For convenience of description,the principal components of these two ENSO-removed modes are termed PC1_denso and PC2_denso,respectively.The correlation coefficient between PC1_denso/PC2_denso and the Ni?o3.4 index is 0.005/0.010,suggesting the method for removing the effect of ENSO is valid.The correlation coefficient between PC1_denso(PC2_denso)and PC1(PC2)is 0.88(0.80).The high correlation coefficients in the PCs and the similarity in the EOF distribution indicate that,after eliminating the effect of ENSO,the leading modes still maintain the major characteristics of the northeast and southwest patterns.

    Figure 7 shows the ratios of the total variance explained by PC1_denso and PC2_denso.Here,the total variance is obtained by the original data.The ratios are similar to those explained by PC1 and PC2 shown in Fig.3,despite a slight decrease in amplitude.These results con firm that the northeast and southwest patterns are still robust without the effect of ENSO and can explain most of the interannual variability in synoptic disturbances.This is expected considering ENSO explains less than 20%of the total variance of PC1/PC2,implied by the correlation coefficient between the Ni?o3.4index and PC1/PC2(0.43/?0.44).

    Figure 8 shows the regression of 850-hPa horizontal winds with respect to the normalized PC1_denso and PC2_denso.In comparison to Fig.4,in both the northeast and southwest patterns an apparent difference is that the zonal wind anomalies over the equatorial Pacific become much weaker and are con fined to the western Pacific due to the elimination of the ENSO effect.On the other hand,the anomalous cyclone appears over the WNP in the northeast pattern and over the Philippines in the southwest pattern,although their strengths are weaker than those obtained by the original data(Fig.4).

    5. Energy analysis of the interaction between the dominant modes and circulation anomalies

    Fig.6.As in Fig.2 but after removing the effect of ENSO.

    The EKE balance equation has been widely used to diagnose the energy source and redistribution,and the barotropic conversion can be used to illustrate the energy transfer between the mean flows and eddies(e.g.,Lau and Lau,1992;Maloney and Hartmann,2001;Chen and Huang,2009).Therefore,in the following,the barotropic conversion is analyzed to illustrate the role of large-scale circulation anomalies in affecting synoptic disturbances.The EKE tendency related to the barotropic energy conversion can be expressed in the following form:

    Here,K,uandvrepresent kinetic energy and zonal and meridional velocities,respectively.The overbar denotes the June–November mean for one specified year,and the prime denotes synoptic perturbation.The first and fourth terms are determined by the perturbation momentum flux and horizontal mean flow shear,and the second and third terms are determined by the perturbation intensity and mean flow convergence.

    After calculating the barotropic energy conversion for each year,we perform the regression with respect to the normalized PC1_denso and PC2_denso.The zonal–vertical cross sections of regressed anomalies along the subtropics(such as 10°–25°N)indicate that the maximum values appear at 850 hPa(not shown),which is consistent with previous studies(Lau and Lau,1992;Hsu et al.,2009;Tsou et al.,2014).Therefore,we select this pressure level to show the horizontal distribution of regressed anomalies.

    Figures 9a and b show the regression of barotropic energy conversion at 850 hPa with respect to the normalized PC1_denso and PC2_denso.There is a significant positive anomaly over the Philippine Sea for the northeast pattern(Fig.9a),indicating that the mean flow tends to transfer more kinetic energy to the perturbation flow over this region when PC1_denso is positive.Therefore,we can conclude that,for a positive northeast pattern,synoptic disturbances obtain energy from the mean flow over the Philippine Sea and propagate northwestward,leading to strong EKE over the Philippine Sea and the subtropical WNP(Fig.6a).For the southwest pattern,the maximum barotropic energy conversion is shifted westward,occurring around the Philippines,and with a negative anomaly over the Philippine Sea(Fig.9b).The positive anomaly is twice as large as the negative one.These distributions of barotropic kinetic energy conversion are similar to those of the corresponding leading modes.This indicates that the barotropic conversion plays a crucial role in inducing the leading modes.To facilitate comparison,we also show the regression of barotropic energy conversion at 850 hPa with respect to the normalized PC1 and PC2,i.e.,the original time series of the PCs,in Figs.9c and d.Their distributions are similar to those of PC1_denso and PC2_denso,albeit with a slight increase in amplitude. This indicates that the circulation anomalies shown in Fig.8 can sustain the leading modes through barotropic energy conversion,although their strength becomes weaker after the removal of the ENSO effect.

    Fig.7.Ratios of the total variance explained by(a)PC1_denso,(b)PC2_denso,and(c)both PC1_denso and PC2_denso.

    Figure 10 depicts the regression of four barotropic conversion terms with respect to the normalized PC1_denso and PC2_denso.It is clearly shown that,for both the northeast and southwest patterns,the first term[?u′v′(?uˉ/?y)]exhibits the largest magnitude among all conversion terms,and its distribution is very similar to the total barotropic energy conversion(Figs.9a and b).This term is determined by the meridional shear of mean zonal flow(??uˉ/?y)and the momentum transport of synoptic disturbance(u′v′).The momentum transport(u′v′)is positive because synoptic perturbations over the WNP feature northeast–southwest orientation(e.g.,Chen and Huang,2009).Therefore,the sign of the first term is decided by the meridional shear of the zonal wind.For the northeast pattern,there is a cyclonic circulation,i.e.,?(?uˉ/?y)>0,over the Philippines Sea(Fig.8a),leading to a positive conversion anomaly over this region(Fig.10a).The first term related to the southwest pattern shows a positive anomaly over the Philippines and a relatively weak negative anomaly to the east(Fig.10b).This distribution of barotropic conversion anomalies can also be explained by the meridional shear of zonal wind,which is characterized by the cyclonic anomaly over the SCS and the anticyclonic anomaly to the east(Fig.8b).

    The second term[?u′2(?uˉ/?x)]shows a distribution somewhat similar to that of the first term for both the northeast and southwest patterns(Figs.10c and d),suggesting this term also partly contributes to the total barotropic conversion.However,the amplitude in this term is smaller than that in the first term,and tends to be opposite to that in the third term[?v′2(?vˉ/?y)](Figs.10e and f).The fourth term[?u′v′(?vˉ/?x)]is very small and can be neglected(Figs.10g and h).

    Therefore,we can conclude that the first term is dominant—that is,the cyclonic shear of the zonal wind is key to the barotropic conversion for both the northeast and southwest patterns.The cyclonic shear of the zonal wind is closely related to the variation of the monsoon trough.Previous studies have suggested that the variation of the monsoon trough plays an important role in the development of synoptic disturbances(Li and Zhou,2012;Wu et al.,2012,2015b).Therefore,the present results are basically consistent with previous research.If the monsoon trough index is defined by the PC of the first EOF mode of the interannual variation in the 850-hPa positive vorticity during June–November averaged over 5°–20°N,following Wu et al.(2012),this monsoon trough index has significant correlation coefficients with PC1/PC2(0.50/?0.42).On the other hand,it should be mentioned that this monsoon trough index has weak correlation coefficients with PC1_denso/PC2_denso(0.06/?0.14).However,the weak coefficients do not deny the relationship between the leading modes and monsoon trough after the removal of ENSO,as illustrated by Figs.8 and 10.Actually,these weak coefficients are possibly due to the definition of the monsoon trough index,in which strong weights are given at the longitudes of 140°–170°E(Wu et al.,2012,Fig.2a),while the cyclonic shear of the zonal wind is concentrated over the SCS and the western part of the WNP after the removal of ENSO(Fig.8).The southwest–northeast horizontal tilt axis of off-equatorial disturbances ensures positive perturbation momentum flux over the WNP,and this positive flux is concentrated in the western part of the WNP,being much weaker to the east of 150°E(not shown).Therefore,one of the implications of the results shown in this section is that the cyclonic shear of the zonal wind over the western part of the WNP is more crucial for inducing strong synoptic disturbances.

    For completeness,we also analyzed the barotropic energy conversion associated with ENSO,and found that the conversion is positive over the WNP and negative around the Philippines during El Ni?o years(not shown),consistent with the result shown in Fig.5.We also found that this spatial distribution of conversion is attributable to the meridional shear of the zonal winds associated with ENSO(not shown).

    Fig.8.As in Fig.4 but for(a)PC1_denso and(b)PC2_denso.

    Fig.9.Regression of the 850-hPa EKE temporal rate of change due to the barotropic energy conversion with respect to the normalized(a)PC1_denso,(b)PC2_denso,(c)PC1,and(d)PC2.Dots denote regions significant at the 95%confidence level.Units:10?6m2s?3.

    6.Conclusions

    This study investigates the leading modes of interannual variation in synoptic disturbance activity over the WNP during the period 1958-2014.The EOF analysis indicates that both of the first two leading modes are characterized by a northwest–southeast-oriented pattern,but with distinct active locations:the first mode appears over the WNP,and the second mode appears around Philippines.These two modes can explain more than 60%of the total variance over a broad area of the WNP and SCS,indicating that they can successfully depict the interannual variability of synoptic disturbance activity.

    Fig.10.Regression of(a,b)term 1,(c,d)term 2,(e,f)term 3,and(g,h)term 4,with respect to the normalized(a,c,e,g)PC1_denso and(b,d,f,h)PC2_denso.Dots denote regions significant at the 95%confidence level.Units:10?6 m2s?3.

    Both modes are associated with lower-level cyclonic anomalies.These cyclonic anomalies appear over different locations for the two modes:over the subtropical WNP for the first mode and over the SCS for the second mode.In addition,both modes are related to a significant zonal wind anomaly over the equatorial Pacific,consistent with the close relationship between these modes and ENSO.The correlation coefficients between the PC1/PC2 and Ni?o3.4 index are significant but with opposite signs.We remove the components related to ENSO and further examine the leading modes.The results show that,after removing the effect of ENSO,the two leading modes are very similar to those obtained from the original data,albeit explaining slightly less of the variance.In addition,these two modes are associated with the local cyclonic anomalies in the lower troposphere—similar to the results obtained from the original data.The energetic analysis suggests that the meridional shear of the zonal wind associated with the cyclonic anomaly—particularly in the western part of the WNP—plays a dominant role in the barotropic kinetic energy conversion from mean flow to eddy flow,which maintains the leading modes.

    Acknowledgements.We thank the two anonymous reviewers for their comments,which were very helpful for improving the presentation of this paper.This work was supported by the National Natural Science Foundation of China(Grant Nos.41320104007,41475074 and 41475077).

    Cao,X.,P.Huang,G.H.Chen,and W.Chen,2012:Modulation of western North Pacific tropical cyclone genesis by intraseasonal oscillation of the ITCZ:A statistical analysis.Adv.Atmos.Sci.,29,744–754,https://doi.org/10.1007/s00376-012-1121-0.

    Chan,J.C.L.,and K.S.Liu,2004:Global warming and western North Pacific typhoon activity from an observational perspective.J.Climate,17,4590–4602,https://doi.org/10.1175/3240.1.

    Chen,G.H.,and R.H.Huang,2009:Interannual variations in mixed Rossby-gravity waves and their impacts on tropical cyclogenesis over the western North Pacific.J.Climate,22,535–549,https://doi.org/10.1175/2008JCLI2221.1.

    Chen,G.H.,and C.Chou,2014:Joint contribution of multiple equatorial waves to tropical cyclogenesis over the western North Pacific.Mon.Wea.Rev.,142,79–93,https://doi.org/10.1175/MWR-D-13-00207.1.

    Chen,T.-C.,J.-D.Tsay,M.-C.Yen,and J.Matsumoto,2012:Interannual variation of the late fall rainfall in central Vietnam.J.Climate,25,392–413,https://doi.org/10.1175/JCLI-D-11-00068.1.

    Fu,B.,T.Li,M.S.Peng,and F.Z.Weng,2007:Analysis of tropical cyclogenesis in the western North Pacific for 2000 and 2001.Wea.Forecasting,22,763–780,https://doi.org/10.1175/WAF1013.1.

    Fukutomi,Y.,C.Kodama,Y.Yamada,A.T.Noda,and M.Satoh,2016:Tropical synoptic-scale wave disturbances over the western Pacific simulated by a global cloud-system resolving model.Theor.Appl.Climatol.,124,737–755,https://doi.org/10.1007/s00704-015-1456-4.

    Hsu,P.-C.,C.-H.Tsou,H.-H.Hsu,and J.H.Chen,2009:Eddy energy along the tropical storm track in association with ENSO.J.Meteor.Soc.Japan,87,687–704,https://doi.org/10.2151/jmsj.87.687.

    Hsu,P.-C.,T.Li,and C.-H.Tsou,2011:Interactions between boreal summer intraseasonal oscillations and synoptic-scale disturbances over the western North Pacific.Part I:Energetics diagnosis.J.Climate,24,927–941,https://doi.org/10.1175/2010JCLI3833.1.

    Huang,P.,and R.H.Huang,2011:Climatology and interannual variability of convectively coupled equatorial waves activity.J.Climate,24,4451–4465,https://doi.org/10.1175/2011 JCLI4021.1.

    Hurley,J.V.,and W.R.Boos,2015:A global climatology of monsoon low-pressure systems.Quart.J.Roy.Meteor.Soc.,141,1049–1064,https://doi.org/10.1002/qj.2447.

    Kuo,H.-C.,J.-H.Chen,R.T.Williams,and C.-P.Chang,2001:Rossby waves in zonally opposing mean flow:Behavior in northwest Pacific summer monsoon.J.Atmos.Sci.,58,1035–1050,https://doi.org/10.1175/1520-0469(2001)058<1035:RWIZOM>2.0.CO;2.

    Lau,K.-H.,and N.-C.Lau,1992:The energetics and propagation dynamics of tropical summertime synoptic-scale disturbances.Mon.Wea.Rev.,120,2523–2539,https://doi.org/10.1175/1520-0493(1992)120<2523:TEAPDO>2.0.CO;2.

    Li,R.C.Y.,and W.Zhou,2012:Changes in western Pacific tropical cyclones associated with the El Ni?o-Southern Oscillation cycle.J.Climate,25,5864–5878,https://doi.org/10.1175/JCLI-D-11-00430.1.

    Maloney,E.D.,and D.L.Hartmann,2001:The Madden-Julian oscillation,Barotropic dynamics,and North Pacific tropical cyclone formation.Part I:Observations.J.Atmos.Sci.,58,2545–2558,https://doi.org/10.1175/1520-0469(2001)058<2545:TMJOBD>2.0.CO;2.

    Maloney,E.D.,and M.J.Dickinson,2003:The intraseasonal oscillation and the energetics of summertime tropical western North Pacific synoptic-scale disturbances.J.Atmos.Sci.,60,2153–2168,https://doi.org/10.1175/1520-0469(2003)060<2153:TIOATE>2.0.CO;2.

    Molinari,J.,and D.Vollaro,2013:What percentage of western North Pacific tropical cyclones form within the monsoon trough?Mon.Wea.Rev.,141,499–505,https://doi.org/10.1175/MWR-D-12-00165.1.

    North,G.R.,T.L.Bell,R.F.Cahalan,and F.J.Moeng,1982:Sampling errors in the estimation of empirical orthogonal functions.Mon.Wea.Rev.,110,669–706,https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    Serra,Y.L.,G.N.Kiladis,and M.F.Cronin,2008:Horizontal and vertical structure of easterly waves in the Pacific ITCZ.J.Atmos.Sci.,65,1266–1284,https://doi.org/10.1175/2007 JAS2341.1.

    Sobel,A.H.,and C.S.Bretherton,1999:Development of synoptic-scale disturbances over the summertime tropical northwest Pacific.J.Atmos.Sci.,56,3106–3127,https://doi.org/10.1175/1520-0469(1999)056<3106:DOSSDO>2.0.CO;2.

    Tsou,C.-H.,H.-H.Hsu,and P.-C.Hsu,2014:The role of multiscale interaction in synoptic-scale eddy kinetic energy over the western North Pacific in autumn.J.Climate,27,3750–3766,https://doi.org/10.1175/JCLI-D-13-00380.1.

    Webster,P.J.,and H.-R.Chang,1988:Equatorial energy accumulation and emanation regions:Impacts of a zonally varying basic state.J.Atmos.Sci.,45,803–829,https://doi.org/10.1175/1520-0469(1988)045<0803:EEAAER>2.0.CO;2.

    Wu,L.,Z.P.Wen,R.H.Huang,and R.G.Wu,2012:Possible linkage between the monsoon trough variability and the tropical cyclone activity over the western North Pacific.Mon.Wea.Rev.,140,140–150,https://doi.org/10.1175/MWR-D-11-00078.1.

    Wu,L.,Z.P.Wen,T.Li,and R.H.Huang,2014:ENSO-phase dependent TD and MRG wave activity in the western North Pacific.Climate Dyn.,42,1217–1227,https://doi.org/10.1175/MWR-D-11-00078.1.

    Wu,L.,Z.P.Wen,and R.G.Wu,2015a:Influence of the monsoon trough on westward-propagating tropical waves over the western North Pacific.Part I:Observations.J.Climate,28,7108–7127,https://doi.org/10.1175/JCLI-D-14-00806.1.

    Wu,L.,Z.P.Wen,and R.G.Wu,2015b:Influence of the monsoon trough on westward-propagating tropical waves over the western North Pacific.Part II:Energetics and numerical experiments.J.Climate,28,9332–9349,https://doi.org/10.1175/JCLI-D-14-00807.1.

    Xu,Y.M.,T.Li,and M.Peng,2013:Tropical cyclogenesis in the western North Pacific as revealed by the 2008-09 YOTC data.Wea.Forecasting,28,1038–1056,https://doi.org/10.1175/WAF-D-12-00104.1.

    精品国内亚洲2022精品成人 | 国产区一区二久久| 精品少妇久久久久久888优播| 欧美精品啪啪一区二区三区 | 久久中文字幕一级| 两人在一起打扑克的视频| 精品国产乱子伦一区二区三区 | 一进一出抽搐动态| 免费在线观看日本一区| 中文字幕制服av| 国产91精品成人一区二区三区 | 黑人猛操日本美女一级片| 无限看片的www在线观看| 欧美 日韩 精品 国产| 两个人免费观看高清视频| 久久中文字幕一级| 国产97色在线日韩免费| av不卡在线播放| 女人高潮潮喷娇喘18禁视频| 欧美激情高清一区二区三区| 午夜老司机福利片| 女人爽到高潮嗷嗷叫在线视频| 亚洲国产成人一精品久久久| 欧美日韩中文字幕国产精品一区二区三区 | 久久中文看片网| 伊人亚洲综合成人网| 亚洲第一欧美日韩一区二区三区 | 亚洲精品成人av观看孕妇| 青春草视频在线免费观看| 日本a在线网址| 成人国产av品久久久| 久久国产精品影院| 久久亚洲精品不卡| 一级,二级,三级黄色视频| 午夜激情久久久久久久| 免费在线观看视频国产中文字幕亚洲 | 最近最新免费中文字幕在线| 国产人伦9x9x在线观看| 一级黄色大片毛片| 男女床上黄色一级片免费看| 视频区图区小说| 啦啦啦视频在线资源免费观看| 悠悠久久av| 亚洲精品美女久久久久99蜜臀| 欧美日韩成人在线一区二区| 啦啦啦中文免费视频观看日本| 一区二区三区激情视频| 黄片小视频在线播放| 中国美女看黄片| svipshipincom国产片| 美女国产高潮福利片在线看| 欧美97在线视频| 国产成人精品无人区| 777米奇影视久久| 老司机影院成人| 国产精品久久久av美女十八| 亚洲av日韩在线播放| 亚洲成国产人片在线观看| 无限看片的www在线观看| 欧美av亚洲av综合av国产av| 亚洲黑人精品在线| 高清av免费在线| 国产老妇伦熟女老妇高清| 国产一区有黄有色的免费视频| 久久中文字幕一级| 成年女人毛片免费观看观看9 | 亚洲综合色网址| 免费日韩欧美在线观看| 两个人免费观看高清视频| 1024视频免费在线观看| 制服人妻中文乱码| 少妇粗大呻吟视频| 黄色视频,在线免费观看| 亚洲国产av影院在线观看| 亚洲成人手机| 巨乳人妻的诱惑在线观看| 国产成人精品久久二区二区91| 一级片'在线观看视频| 色婷婷久久久亚洲欧美| 国产xxxxx性猛交| 天天操日日干夜夜撸| 亚洲国产中文字幕在线视频| 97人妻天天添夜夜摸| 少妇被粗大的猛进出69影院| 亚洲天堂av无毛| 脱女人内裤的视频| 午夜福利视频在线观看免费| 国产精品久久久久久人妻精品电影 | 国产片内射在线| 亚洲专区国产一区二区| 啦啦啦 在线观看视频| 欧美日韩一级在线毛片| 国产在视频线精品| 国产精品麻豆人妻色哟哟久久| 久久99一区二区三区| 国产激情久久老熟女| 欧美精品亚洲一区二区| 一二三四社区在线视频社区8| 桃红色精品国产亚洲av| 国产熟女午夜一区二区三区| 女警被强在线播放| 午夜成年电影在线免费观看| 日日爽夜夜爽网站| 九色亚洲精品在线播放| 乱人伦中国视频| 久久亚洲国产成人精品v| 久久99一区二区三区| 国产国语露脸激情在线看| 正在播放国产对白刺激| 亚洲精品国产av成人精品| 午夜精品国产一区二区电影| 一区二区日韩欧美中文字幕| 一个人免费在线观看的高清视频 | 久久久久久久久免费视频了| a级毛片黄视频| 自线自在国产av| 一个人免费在线观看的高清视频 | 丝瓜视频免费看黄片| 免费高清在线观看日韩| 国产精品欧美亚洲77777| 国产精品国产三级国产专区5o| 亚洲第一青青草原| 日韩一卡2卡3卡4卡2021年| 亚洲欧美清纯卡通| 美女国产高潮福利片在线看| 国产又色又爽无遮挡免| 国产成人一区二区三区免费视频网站| 国产精品一区二区精品视频观看| 亚洲精品粉嫩美女一区| 亚洲免费av在线视频| 老司机影院成人| 欧美老熟妇乱子伦牲交| 亚洲一卡2卡3卡4卡5卡精品中文| 两性午夜刺激爽爽歪歪视频在线观看 | 久久这里只有精品19| 中文字幕精品免费在线观看视频| 精品视频人人做人人爽| 亚洲一卡2卡3卡4卡5卡精品中文| 美女国产高潮福利片在线看| 五月开心婷婷网| 女人精品久久久久毛片| 精品福利观看| 日韩熟女老妇一区二区性免费视频| av片东京热男人的天堂| 97精品久久久久久久久久精品| 日本精品一区二区三区蜜桃| av又黄又爽大尺度在线免费看| 97精品久久久久久久久久精品| 日本黄色日本黄色录像| 日韩制服骚丝袜av| 秋霞在线观看毛片| 中文字幕人妻丝袜制服| 久久久久久久久免费视频了| 在线观看一区二区三区激情| 香蕉国产在线看| 丝袜美足系列| 考比视频在线观看| 女人精品久久久久毛片| 蜜桃国产av成人99| 久久99一区二区三区| 国产一区二区 视频在线| 天天躁夜夜躁狠狠躁躁| 精品免费久久久久久久清纯 | 国产男人的电影天堂91| 18禁观看日本| 亚洲精品中文字幕一二三四区 | 久久久久久免费高清国产稀缺| 午夜福利免费观看在线| 欧美少妇被猛烈插入视频| 女人被躁到高潮嗷嗷叫费观| 亚洲欧美一区二区三区黑人| 国产99久久九九免费精品| videos熟女内射| 男女边摸边吃奶| 国产99久久九九免费精品| tube8黄色片| 中国美女看黄片| 真人做人爱边吃奶动态| 久久久精品免费免费高清| 男人操女人黄网站| 在线 av 中文字幕| 美女高潮到喷水免费观看| 精品久久蜜臀av无| 纯流量卡能插随身wifi吗| 国产亚洲精品久久久久5区| 男女国产视频网站| 日本91视频免费播放| 国产精品 国内视频| 一级毛片精品| 美女午夜性视频免费| 后天国语完整版免费观看| 欧美乱码精品一区二区三区| 日本精品一区二区三区蜜桃| 欧美日韩亚洲国产一区二区在线观看 | 午夜老司机福利片| 一区二区三区激情视频| 永久免费av网站大全| 午夜免费鲁丝| 少妇被粗大的猛进出69影院| 国产成人欧美在线观看 | 女性被躁到高潮视频| 午夜福利,免费看| 菩萨蛮人人尽说江南好唐韦庄| 曰老女人黄片| 最近中文字幕2019免费版| av一本久久久久| 成年av动漫网址| 纵有疾风起免费观看全集完整版| 亚洲av成人一区二区三| 国产欧美日韩精品亚洲av| 777米奇影视久久| 每晚都被弄得嗷嗷叫到高潮| 免费看十八禁软件| 欧美性长视频在线观看| 性高湖久久久久久久久免费观看| 国产精品一区二区免费欧美 | 国产日韩一区二区三区精品不卡| 日韩 欧美 亚洲 中文字幕| 久久香蕉激情| 国产日韩欧美视频二区| cao死你这个sao货| 丰满少妇做爰视频| 美女高潮到喷水免费观看| 国产精品 欧美亚洲| 少妇粗大呻吟视频| 免费人妻精品一区二区三区视频| 色老头精品视频在线观看| 日本黄色日本黄色录像| 国产片内射在线| 亚洲少妇的诱惑av| 久久精品久久久久久噜噜老黄| 欧美激情久久久久久爽电影 | 日本wwww免费看| 亚洲精品一卡2卡三卡4卡5卡 | 免费在线观看日本一区| 十八禁高潮呻吟视频| 亚洲人成77777在线视频| 亚洲熟女精品中文字幕| 久久人人爽av亚洲精品天堂| 动漫黄色视频在线观看| www.999成人在线观看| 成人三级做爰电影| 91成人精品电影| 亚洲美女黄色视频免费看| 超碰成人久久| 99国产综合亚洲精品| 黄片播放在线免费| 两个人免费观看高清视频| 女人精品久久久久毛片| www.自偷自拍.com| 丝袜人妻中文字幕| 9热在线视频观看99| 国产亚洲欧美在线一区二区| 亚洲情色 制服丝袜| 国产一区有黄有色的免费视频| 99精品久久久久人妻精品| 久久久久网色| 国内毛片毛片毛片毛片毛片| 一区二区三区四区激情视频| 久久中文看片网| 十分钟在线观看高清视频www| 老汉色∧v一级毛片| 人人妻人人澡人人爽人人夜夜| 女警被强在线播放| 日韩视频一区二区在线观看| 亚洲美女黄色视频免费看| 精品第一国产精品| 欧美亚洲日本最大视频资源| 亚洲欧美日韩另类电影网站| 国产在线观看jvid| 黄频高清免费视频| 最新在线观看一区二区三区| 欧美亚洲日本最大视频资源| 精品福利永久在线观看| www日本在线高清视频| 90打野战视频偷拍视频| 免费在线观看日本一区| 国产精品二区激情视频| 亚洲av电影在线观看一区二区三区| 欧美在线黄色| 在线av久久热| 国产野战对白在线观看| 精品久久久久久电影网| 老熟妇仑乱视频hdxx| 色精品久久人妻99蜜桃| 女性被躁到高潮视频| 人人妻人人澡人人爽人人夜夜| 国产成人av激情在线播放| 久久精品熟女亚洲av麻豆精品| 亚洲国产av新网站| 成人国产一区最新在线观看| 免费观看a级毛片全部| 九色亚洲精品在线播放| 老鸭窝网址在线观看| 搡老熟女国产l中国老女人| 十八禁网站免费在线| 国产片内射在线| 欧美97在线视频| e午夜精品久久久久久久| 国产欧美日韩一区二区三区在线| 制服诱惑二区| 国产精品久久久久久精品古装| 日韩人妻精品一区2区三区| 欧美 亚洲 国产 日韩一| 国产成人精品在线电影| 91精品国产国语对白视频| 人人妻人人爽人人添夜夜欢视频| 两个人看的免费小视频| 免费在线观看完整版高清| 国产精品 欧美亚洲| 日本欧美视频一区| 各种免费的搞黄视频| 99国产极品粉嫩在线观看| 一区在线观看完整版| 亚洲熟女毛片儿| 国产成人精品无人区| 无限看片的www在线观看| 成人亚洲精品一区在线观看| 久久国产亚洲av麻豆专区| 亚洲男人天堂网一区| 国产精品欧美亚洲77777| 免费少妇av软件| 免费不卡黄色视频| 精品人妻1区二区| 黄色片一级片一级黄色片| 欧美亚洲日本最大视频资源| 欧美人与性动交α欧美精品济南到| 建设人人有责人人尽责人人享有的| 永久免费av网站大全| 99国产精品一区二区三区| 久久中文字幕一级| 中文字幕精品免费在线观看视频| 性色av乱码一区二区三区2| 丰满少妇做爰视频| 日韩欧美免费精品| 国产成+人综合+亚洲专区| 午夜福利在线免费观看网站| 9191精品国产免费久久| 午夜福利在线免费观看网站| 搡老熟女国产l中国老女人| 成人免费观看视频高清| 在线观看免费高清a一片| 精品人妻熟女毛片av久久网站| 9色porny在线观看| 亚洲视频免费观看视频| 9色porny在线观看| 精品人妻熟女毛片av久久网站| 人人澡人人妻人| 亚洲视频免费观看视频| 国产一区二区 视频在线| 1024香蕉在线观看| 中国国产av一级| 国产一卡二卡三卡精品| 黄片播放在线免费| 日韩三级视频一区二区三区| 窝窝影院91人妻| 久久久水蜜桃国产精品网| 亚洲av电影在线观看一区二区三区| 亚洲视频免费观看视频| 久久久久久久久免费视频了| 久久久水蜜桃国产精品网| 脱女人内裤的视频| 成人亚洲精品一区在线观看| 亚洲欧美一区二区三区久久| 日韩欧美免费精品| 成年人午夜在线观看视频| 男女之事视频高清在线观看| 色婷婷久久久亚洲欧美| 大型av网站在线播放| 岛国在线观看网站| 色精品久久人妻99蜜桃| 韩国高清视频一区二区三区| 两性夫妻黄色片| 欧美亚洲日本最大视频资源| 一进一出抽搐动态| av在线app专区| 国产成人免费观看mmmm| av天堂在线播放| 日韩有码中文字幕| 侵犯人妻中文字幕一二三四区| 1024香蕉在线观看| 国产一卡二卡三卡精品| 免费在线观看黄色视频的| 一边摸一边抽搐一进一出视频| 一本一本久久a久久精品综合妖精| 久久这里只有精品19| 久久久久国产精品人妻一区二区| videosex国产| 中文字幕最新亚洲高清| 日本91视频免费播放| 制服诱惑二区| 曰老女人黄片| 日韩视频一区二区在线观看| 9色porny在线观看| 国产真人三级小视频在线观看| av福利片在线| 秋霞在线观看毛片| 精品免费久久久久久久清纯 | 亚洲中文av在线| 中文字幕最新亚洲高清| 国产日韩欧美在线精品| 人人妻人人澡人人看| 国产精品一二三区在线看| 99国产精品一区二区蜜桃av | 香蕉国产在线看| 性色av一级| 国产一区二区三区av在线| 婷婷色av中文字幕| 18禁黄网站禁片午夜丰满| 天天躁夜夜躁狠狠躁躁| 亚洲精品乱久久久久久| 久热这里只有精品99| 欧美大码av| 99精品欧美一区二区三区四区| 久久99热这里只频精品6学生| 亚洲精品国产精品久久久不卡| 精品少妇内射三级| 91av网站免费观看| 日韩 亚洲 欧美在线| 桃红色精品国产亚洲av| 狠狠精品人妻久久久久久综合| 亚洲欧美成人综合另类久久久| 日本五十路高清| 成年女人毛片免费观看观看9 | 黑人巨大精品欧美一区二区mp4| 又大又爽又粗| 纯流量卡能插随身wifi吗| 亚洲国产av新网站| 精品国产一区二区三区四区第35| 高清在线国产一区| 久久久水蜜桃国产精品网| 亚洲av片天天在线观看| 亚洲一码二码三码区别大吗| 亚洲成人免费电影在线观看| 18禁黄网站禁片午夜丰满| 国产亚洲精品第一综合不卡| 国产男女内射视频| 亚洲,欧美精品.| 中文字幕av电影在线播放| 国产男女超爽视频在线观看| 成年人午夜在线观看视频| 久久精品成人免费网站| 免费在线观看影片大全网站| 女人精品久久久久毛片| 两个人免费观看高清视频| 91老司机精品| 国产精品自产拍在线观看55亚洲 | 乱人伦中国视频| 欧美人与性动交α欧美精品济南到| 成人国产一区最新在线观看| 成年女人毛片免费观看观看9 | 下体分泌物呈黄色| 中文欧美无线码| 亚洲 国产 在线| 亚洲免费av在线视频| 美女中出高潮动态图| 国产片内射在线| 久久久久精品人妻al黑| 天天躁日日躁夜夜躁夜夜| 满18在线观看网站| 丰满饥渴人妻一区二区三| 久久香蕉激情| 午夜福利视频在线观看免费| 高清在线国产一区| 国产在线免费精品| 热99国产精品久久久久久7| 亚洲激情五月婷婷啪啪| 成人av一区二区三区在线看 | 午夜福利一区二区在线看| 亚洲国产精品一区三区| 国产精品.久久久| 国产精品久久久久成人av| 一级,二级,三级黄色视频| 欧美亚洲日本最大视频资源| 在线av久久热| kizo精华| 国产1区2区3区精品| 叶爱在线成人免费视频播放| 久久久久国产精品人妻一区二区| 欧美日韩福利视频一区二区| 国产一区有黄有色的免费视频| 男女高潮啪啪啪动态图| 十八禁网站免费在线| 黑人操中国人逼视频| 交换朋友夫妻互换小说| 美女视频免费永久观看网站| 一本—道久久a久久精品蜜桃钙片| 国产av一区二区精品久久| 久久青草综合色| 中文字幕人妻丝袜制服| 午夜两性在线视频| 国产麻豆69| 在线观看免费视频网站a站| 淫妇啪啪啪对白视频 | 窝窝影院91人妻| 少妇裸体淫交视频免费看高清 | 母亲3免费完整高清在线观看| 天堂俺去俺来也www色官网| 视频区图区小说| 青春草视频在线免费观看| 人人澡人人妻人| 精品国产一区二区三区久久久樱花| 女人爽到高潮嗷嗷叫在线视频| 色精品久久人妻99蜜桃| 亚洲 国产 在线| 欧美另类亚洲清纯唯美| 国产欧美日韩精品亚洲av| av电影中文网址| 久久免费观看电影| 好男人电影高清在线观看| av网站在线播放免费| 99国产精品免费福利视频| 女人爽到高潮嗷嗷叫在线视频| 久久天躁狠狠躁夜夜2o2o| 狠狠精品人妻久久久久久综合| 久久久久国产一级毛片高清牌| 午夜福利,免费看| 丰满少妇做爰视频| 欧美日韩成人在线一区二区| 国产野战对白在线观看| 欧美久久黑人一区二区| 狠狠婷婷综合久久久久久88av| 亚洲三区欧美一区| 久久久久久亚洲精品国产蜜桃av| a级片在线免费高清观看视频| 午夜日韩欧美国产| 母亲3免费完整高清在线观看| 狠狠精品人妻久久久久久综合| 熟女少妇亚洲综合色aaa.| 十八禁网站网址无遮挡| 五月天丁香电影| 午夜精品久久久久久毛片777| 免费少妇av软件| 免费在线观看日本一区| 欧美在线一区亚洲| 亚洲精品国产av蜜桃| 亚洲国产中文字幕在线视频| 视频区欧美日本亚洲| 777久久人妻少妇嫩草av网站| 精品熟女少妇八av免费久了| 亚洲精品久久成人aⅴ小说| 国产1区2区3区精品| 日韩人妻精品一区2区三区| 丝瓜视频免费看黄片| 国产片内射在线| 亚洲性夜色夜夜综合| 亚洲成人免费电影在线观看| 18禁裸乳无遮挡动漫免费视频| 免费在线观看完整版高清| 欧美人与性动交α欧美软件| 波多野结衣一区麻豆| 男人添女人高潮全过程视频| 日日爽夜夜爽网站| 色精品久久人妻99蜜桃| 极品少妇高潮喷水抽搐| 久久影院123| 亚洲性夜色夜夜综合| 久久久精品区二区三区| 777米奇影视久久| 亚洲精品国产精品久久久不卡| 777久久人妻少妇嫩草av网站| 国产精品秋霞免费鲁丝片| 国产av一区二区精品久久| 午夜91福利影院| 久久性视频一级片| 免费少妇av软件| 啦啦啦视频在线资源免费观看| 一级,二级,三级黄色视频| 新久久久久国产一级毛片| 两个人看的免费小视频| 男女免费视频国产| 国产高清视频在线播放一区 | 国产欧美亚洲国产| av免费在线观看网站| 99久久精品国产亚洲精品| 99精品欧美一区二区三区四区| 老司机影院成人| 亚洲欧美成人综合另类久久久| 亚洲精品一二三| 久久精品亚洲熟妇少妇任你| 69精品国产乱码久久久| 考比视频在线观看| 亚洲专区字幕在线| 99香蕉大伊视频| 国产av一区二区精品久久| 国产亚洲精品一区二区www | 黄片大片在线免费观看| 久久国产精品男人的天堂亚洲| 91精品国产国语对白视频| 18在线观看网站| 亚洲第一av免费看| 国产成人a∨麻豆精品| 久久精品成人免费网站| 国产精品麻豆人妻色哟哟久久| 一级毛片精品| 亚洲人成电影观看| 国产一区有黄有色的免费视频| 啦啦啦视频在线资源免费观看| 18在线观看网站| 国产真人三级小视频在线观看| 热re99久久国产66热| 免费高清在线观看视频在线观看| 巨乳人妻的诱惑在线观看| 热re99久久国产66热| 成年人黄色毛片网站| 久久亚洲精品不卡| 国产在视频线精品| 日韩有码中文字幕| 久久天堂一区二区三区四区| 国产精品熟女久久久久浪| 国产成人一区二区三区免费视频网站| 国产伦理片在线播放av一区| 国产精品久久久久久精品电影小说| 日本撒尿小便嘘嘘汇集6| 亚洲精品美女久久av网站|