• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ENSO Frequency Asymmetry and the Pacific Decadal Oscillation in Observations and 19 CMIP5 Models

    2018-03-07 06:58:03RenpingLINFeiZHENGandXiaoDONG
    Advances in Atmospheric Sciences 2018年5期

    Renping LIN,Fei ZHENG?,2,and Xiao DONG

    1International Center for Climate and Environment Sciences,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China

    2Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,Nanjing University of Information Science and Technology,Nanjing 210044,China

    1.Introduction

    The El Ni?o–Southern Oscillation(ENSO),as the most important natural variation on the interannual timescale,exerts considerable impacts on global climate.Thus,for several decades,great attention has been paid to investigating the mechanisms of ENSO(Bjerknes,1969;Jin,1997;Wang and Picaut,2004).In recent years,the decadal modulations of ENSO have attracted significant attention(An and Wang,2000).Timmermann(2003)suggested a nonlinear mechanism that generates decadal ENSO amplitude modulations without invoking extratropical dynamics.Yeh et al.(2004)stated that the decadal modulation of ENSO is primarily due to atmospheric noise processes.

    The Pacific Decadal Oscillation(PDO)is a climate mode on the decadal timescale that can influence global and regional climate(Mantua et al.,1997;Newman et al.,2016).Yeh and Kirtman(2005)investigated the relationship between Pacific decadal variability and decadal ENSO amplitude modulation and found that the PDO is unrelated to the modulation of ENSO amplitude.However,others have argued that the decadal modulations of ENSO variability are related to decadal climate modes,such as the PDO(Kravtsov,2011).Besides,Feng et al.(2014)claimed that the PDO can impact the evolution of ENSO,e.g.,El Ni?o(EN)decays slowly(rapidly)during positive(negative)PDO phases.Verdon and Franks(2006)investigated the interaction between ENSO and the PDO using proxy climate records derived from paleoclimate data of the past 400 years.

    However,decadal modulation of ENSO frequency asymmetry has not been intensively studied.For example,are there more(fewer)EN events than La Ni?a(LN)events in positive(negative)PDO phases?In this study,using the output of 19 models from the Coupled Model Intercomparison Project Phase 5(CMIP5)experiments combined with observational data,we investigate the modulation of ENSO frequency asymmetry(EN and LN occurrence frequency)by the phases of the PDO.Specifically,the following two questions are addressed:(1)Is the frequency of EN and LN events modulated by different PDO phases?(2)If so,what is the reason for this decadal modulation?

    2.Data and methods

    The following datasets are used in this study:(1)monthly mean sea surface temperature data provided by the NOAA’s Extended Reconstructed SST dataset,version 3b(ERSST.v3b),with a horizontal resolution of2°×2°(Smith et al.,2008).This dataset is available from 1854 to the present day.(2)The Kalnay et al.(1996)NCEP–NCAR reanalysis(R1)dataset,with a resolution of 2.5°×2.5°and covering the period 1948–2014.(3)Global sea level pressure(SLP)data from the Second Hadley Centre SLP dataset(HadSLP2),with a resolution of 5°×5°(Allan and Ansell,2006).The period 1900–2014 is used to investigate the modulation of ENSO frequency asymmetry by the PDO.When the mechanism is examined,we use the circulation data from R1 over the period 1948–2014.

    Additionally,outputs from the pre-industrial runs of 19 CMIP5 models are analyzed to validate observational results(Taylor et al.,2012).Details of the CMIP5 models used in this study are listed in Table 1.The coupled models are freely integrated for several hundred years—much longer than the time span of the observational data.Thus,more robust conclusions can be drawn if the results derived from the ensemble mean of the models are consistent with those from observation.

    The commonly used Ni?o3.4 index associated with ENSO is defined as the area average of monthly SST anomalies in the region(5°N–5°S,170°–120°W)(Trenberth et al.,2002).The climatology is derived from the whole period of each dataset.The December–January–February(DJF)averaged Ni?o3.4 SST anomalies from the ERSST.v3b observations of 1900–2014 are shown in Fig.1a.The Ni?o3.4 index reveals substantial multi-decadal oscillations superimposed on interannual variability.Because our focus here is on the interannual variability of the Ni?o3.4 index,we apply a nineyear high-pass filter to the original Ni?o3.4 index,and obtain a new result for the Ni?o3.4 index without multi-decadal variability(Fig.1b).

    We select EN(LN)events by identifying years when the Ni?o3.4 SST index exceeds 1(is less than?1)standard deviation.Additionally,the an indexRis calculated to reveal the difference between EN and LN event occurrence:

    in whichNEN(NLN)denotes the number of EN(LN)events.R=0 means that the number of EN events is the same as the number of LN events.

    The monthly PDO index is defined as the time series of the leading empirical orthogonal function(EOF)of monthly mean SST anomalies for the Pacific Ocean north of 20°N in the observational data(Mantua et al.,1997;Wang et al.,2012).Before performing the EOF calculation,the global mean SST anomaly is firstly removed to reduce the influence of long-term trends.Here,we mainly concentrate on the decadal modulation by the PDO,as in Feng et al.(2014).Following Wang et al.(2012),the Pacific decadal variability considered in this study is the first two EOFs of monthly SST anomalies in the North Pacific: the PDO and the North Pacific Gyre Oscillation(NPGO).In the observational data,the first(second)EOF is defined as the PDO(NPGO)(Wang et al.,2012).In the CMIP5 models,we provide the pattern correlation coefficients(PCCs)between two EOF modes of CMIP5 models and the observed PDO mode and NPGO mode(Table 2).We define the mode of a model as the PDO mode when the PCC of that mode with the observed PDO(NPGO)mode is higher(lower).According to this criterion,the second mode of eight models(ACCESS1.0,BCC CSM1.1,CanESM2,CESM1(CAM5),CNRM-CM5,CSIRO Mk3.6.0,FGOALS-s2 and MRI-CGCM3)is defined as the PDO mode.The final PDO patterns are also shown in Fig.2.The November–March(NDJFM)average is regarded as the PDO index(Fig.1c).Following Feng et al.(2014),positive(negative)PDO years are identified when the PDO index is greater(less)than zero.Furthermore,to exclude years when the PDO index is rather neutral,we select a threshold of the PDO index as 0.2 standard deviations,rather than zero as in Feng et al.(2014).The black line in Fig.1c denotes 0.2 standard deviations of the PDO index.Actually,the main results are insensitive to our chosen threshold.When identifying the numbers of EN and LN events,positive(negative)PDO years are considered as warm(cold)phases in the following analysis.

    Table 1.Details of the pre-industrial control simulation experiments of the 19 CMIP5 models chosen in this study.

    Fig.1.Time series of(a)unfiltered and(b)nine-year high-pass filtered DJF Ni?o3.4 index,and(c)yearly PDO index,derived from ERSST.v3b during 1900 to 2014.The dashed line in(a)is the nine-year low-pass filtered Ni?o3.4 index.The black lines in(c)denote 0.2 standard deviations of the yearly PDO index.

    To test the significance of the modulation of ENSO frequency asymmetry by PDO phases,we use the Monte Carlo method(Chu and Wang,1997).In the 115 years of the observed time series(1900–2014),there are 45 positive PDO years.Thus,we choose 45 years randomly from the observed time series,one million times,to obtain one million samples.We then calculateRfor each sample.The probability distribution function(PDF)of the one millionRvalues is obtained.If the observedRis outside the 99%range of the PDF,we consider it to have reached the 99%level of significance according to the Monte Carlo test.The method is similar when the negative PDO phase is tested.

    Fig.2.PDO patterns of the(a)observational data and(b–t)simulations of 19 CMIP5 models(names given above each panel).In ACCESS1.0,BCCCSM1.1,CanESM2,CESM1(CAM5),CNRM-CM5,CSIRO Mk3.6.0,FGOALS-s2 and MRI-CGCM3,the PDO patterns are defined as the second EOF mode of the North Pacific SST anomalies.In the observational data and other models,the PDO patterns are defined as the first EOF mode of the North Pacific SST anomalies.

    Table 2.PCCs between the observed EOF1 mode and simulated EOF1 and EOF2 modes in 19 models.

    3.Results

    3.1.SST difference between positive and negative PDO phases

    Before examining the ENSO frequency asymmetry modulated by PDO phases,we firstly show the differences in SST,SLP and the wind field at 850 hPa between positive and negative PDO phases in Fig.3,in the observational data and in the multi-model simulations.The observational data show that the SLP difference between positive and negative PDO phases mainly occurs at midlatitudes.A notable negative anomaly occurs in the North Pacific,which is associated with the deepened Aleutian low in positive PDO phases.Additionally,although the PDO is defined as the leading empirical SST mode in the North Pacific,it has a considerable influence on the tropical Pacific.According to previous studies,this influence of the PDO on the tropics takes place via atmospheric teleconnections associated with the decadal background change(Barnett et al.,1999;Pierce et al.,2000;Wang and An,2002;Feng et al.,2014).In positive PDO phases,the eastern equatorial Pacific is anomalously warm.Similar conclusions have also been made by Feng et al.(2014)and Dong and Xue(2016).Additionally,compared to negative PDO phases,in positive PDO phases there are notable anomalous westerlies over the central equatorial Pacific.These PDO phase–dependent background westerly anomalies on the decadal timescale may be associated with the fact that more EN events tend to occur in positive PDO phases,although it is well known that westerly wind bursts are essential to triggering EN events(Lengaigne et al.,2004).

    Fig.3.(a)Observed and(b–t)simulated(model names given above each panel)differences in SST(color shading;units: °C),SLP(contours;units:hPa)and 850-hPa wind(vectors;units:m s?1)between positive and negative PDO phases.

    As for the simulation results,most models reproduce the negative SLP anomaly in the North Pacific,albeit with a slightly different location of the anomaly center.However,the magnitude of the SST anomaly—especially in the tropical eastern Pacific—is underestimated in most of the CMIP5 coupled models,which is associated with the weakly portrayed low-level westerly anomaly in the equatorial central Pacific.

    3.2.ENSO composition in positive and negative PDO phases

    To compare the EN/LN events between positive and negative PDO phases,we examine the spatial pattern of SST composition in EN/LN mature winter(DJF)in positive and negative PDO phases,separately(Fig.4).In positive PDO phases,in the observational data,with EN events the equatorial eastern Pacific is anomalously warm,and in the northern/southern central Pacific and equatorial western Pacific it is anomalously cool(Fig.4).The cooling anomaly in the northern and southern Pacific may be associated with the occurrence of a positive PDO phase,while that in the equatorial western Pacific may be associated with EN events(Shakun and Shaman,2009).Most models reproduce this spatial pattern of global SST,with respective regional bias( figure omitted).In negative PDO phases,with the positive SST anomaly in the central and eastern equatorial Pacific in EN events,the positive SST anomaly in the North Pacific is more significant than its South Pacific counterpart(Fig.4).Note that in positive PDO phases with EN events,the SST near the western coast of the American continent is anomalously warm;whereas,in negative PDO phases with EN events there is no significant signal.Besides,in the observational data,with EN events the positive SST anomaly in the equatorial eastern Pacific is much stronger in positive PDO phases than in negative PDO phases.Meanwhile,in the simulation results,models cannot reasonably reproduce this difference.That is,in the simulation results the contrast in magnitude between positive and negative PDO phase is negligible.

    Fig.4.Composite SST anomaly spatial pattern(color shading;units:°C)in(a,b)EN and(c,d)LN mature winter(DJF)in(a,c)positive(i.e.,warm)and(b,d)negative(i.e.,cool)PDO phases,based on the observational data(lefthand panels)and multi-model ensemble mean(right-hand panels).The oblique lines denote values that exceed the 95%confidence level in the observational results.

    With respect to LN events,the observational data in Fig.4c show that in positive PDO phases there are significantly negative SSTs in the equatorial central and eastern Pacific and central and western North Pacific.Meanwhile,a positive SST anomaly is located in most regions of the Pacific Ocean.The magnitude of the negative SST anomaly in the central and eastern equatorial Pacific in the multi-model ensemble of the CMIP5 models is stronger than that in the observational data.Besides,not all of the CMIP5 models reproduce the concurrent negative SST anomaly in both the northern and equatorial Pacific in positive-PDO-phase LN events.Even in those models that do,the location of the negative SST anomaly in the northern Pacific is considerablely biased compared to the observed location.Thus,as stated in previous studies,it is still a difficult task to simulate the connection between the PDO and ENSO,or between the midlatitudes and equatorial ocean(Newman et al.,2016).In negative PDO phases with LN events,the observed positive SST anomaly in the North Pacific shifts eastward compared to in positive phases,and a South Pacific counterpart exists(Fig.4d).Most of the CMIP5 models reproduce the horseshoe pattern in the Pacific reasonably.The main deviation of the models is the overly westward shifted cold tongue in the equatorial Pacific,which is an unresolved problem in the current CMIP5 models.In addition,the negative SST anomaly in the equatorial Pacific is much stronger in negative PDO phases than in positive PDO phases.As mentioned for the EN events,in the simulation results,models cannot reproduce this difference reasonably.The contrast in magnitude between positive and negative PDO phases in the simulation results is negligible.

    Figure 5 shows the SST difference between positive and negative PDO phases in EN/LN events,separately.The results for EN and LN events are similar,i.e.,a negative(positive)center in the western and central North Pacific(equatorial central and eastern Pacific and coastline of the American continent).The multi-model ensemble reproduces the negative center in the North Pacific with only a slight location bias.However,the SST difference in the equatorial Pacific is rather weak.This indicates that many climate models suf-fer from bias in simulating the connection between the PDO and ENSO,or between the midlatitudes and equatorial ocean(Newman et al.,2016).

    Fig.5.Composite spatial pattern of SST anomaly differences(color shading;units:°C)in(a)EN and(b)LN events between different PDO phases[positive(i.e.,warm)minus negative(i.e.,cool)],based on the observational data(left-hand panels)and multi-model ensemble mean(right-hand panels).

    3.3.ENSO frequency asymmetry in different PDO phases

    Next,we investigate the PDO phase–dependent ENSO frequency asymmetry using the method defined in section 2.As shown in Fig.6,results show that in positive(negative)PDO phasesRis positive(negative),indicating that EN is more frequent than LN in positive PDO phases,while LN is more frequent than EN in negative PDO phases.In the observational data,EN is 300%more(58%less)frequent than LN in positive(negative)PDO phases.That is,positive(negative)PDO phases are conducive to the occurrence of more EN(LN)events.Besides,the amplitude ofRis also asymmetric in positive and negative PDO phases.For instance,in positive PDO phases EN is 300%more frequent than LN,which is much larger than its counterpart in negative PDO phases(58%).We also drew the above figure with unfiltered Ni?o3.4 index values,and the results were almost the same( figure not shown).

    To test the significance of our results,we apply the Monte Carlo significant test to the observational data.The PDF ofRin positive and negative PDO phases is shown in Fig.7.In positive(negative)PDO phases,the observedRvalue is positive(negative),which means that in positive(negative)PDO phases EN is more(less)frequent than LN.The same conclusion can be drawn from Fig.6.Besides,from Fig.7 it can be seen that the observedRvalue(red line)is beyond the threshold in both positive and negative PDO phases,indicating that our above conclusion,i.e.,that EN is more(less)frequent than LN in positive(negative)PDO phases,is significant at the 99%confidence level.The PDF distributions of the CMIP5 models are shown in Fig.8.Most of the CMIP5 model results are consistent with the observational results.However,there are six(seven)models that cannot reproduce the significant PDO phase–dependent ENSO asymmetry in positive(negative)PDO phases.This conclusion can also be drawn from Fig.6.

    Fig.6.The R values(percentage difference between the number of EN and LN events relative to the number of LN events)based on the observational data(OBS),multi-model ensemble(MME),and 19 CMIP5 models.The letter“Y”indicates that the R value is statistically significant at the 1%level.The vertical line(orange)denotes one standard deviation for the 19 model results.

    Fig.7.PDF of R in(a)positive and(b)negative phases of the PDO in the Monte Carlo test with a sample size of 1 000 000.The red line denotes the observed value of R and the blue line denotes the threshold[99%percentile for(a)and 1%percentile for(b)]beyond which the observed R can be regarded as significant.

    Fig.8.PDF of R derived from the observational data(OBS)and 19 CMIP5 models in(a)positive and(b)negative phases of the PDO in the Monte Carlo test with a sample size of 1 000 000.The red line denotes the value of R and the blue line denotes the threshold(99%percentile)beyond which R can be regarded as significant.

    Fig.8.(Continued)

    3.4.Discussion on the relationship between the PDO and ENSO

    To examine the possible causes of the ENSO frequency asymmetry between positive and negative PDO phases,the differences in SST,SLP and the wind field at 850 hPa between positive and negative PDO phases can be referred to,as mentioned in subsection 3.1(Fig.3).It can be seen that,although the PDO is defined as the leading empirical SST mode in the North Pacific,it has a considerable influence on the tropical Pacific.In positive PDO phases,the eastern equatorial Pacific is anomalously warm.Additionally,compared to negative PDO phases,in positive PDO phases there are notable anomalous westerlies over the central equatorial Pacific.This PDO-dependent westerly anomaly over the central equatorial Pacific on the decadal timescale may be with the fact that more EN rather than LN events tend to occur in positive PDO phases.However,it should be acknowledged that,from the evidence shown here, one cannot say for certain that it is the PDO that results in the occurrence of more EN events.Notably,previous studies(e.g.,Newman et al.2003)argue that the PDO is an ENSO-forced signal.In this paper,using observational data and CMIP5 coupled model results,we only reveal the phenomenon that there tend to be more EN events in positive PDO phases.Of course,two possibilities exist,i.e.,that the PDO influences ENSO or vice versa.More work(e.g.,numerical sensitivity experiments)should be carried out to explore the mechanisms involved(i.e.,whether the PDO influences ENSO,or the other way around).

    4.Conclusions and discussion

    This study examines the modulation of ENSO frequency asymmetry by the different phases of the PDO.Results from observational data show that more EN(LN)events tend to occur in positive(negative)PDO phases.Specifically,EN is 300%more(58%less)frequent than LN in positive(negative)PDO phases.Monte Carlo testing is used to check the significance of the above observational evidence,and the results show that the conclusion,i.e.,that EN is more(less)frequent than LN in positive(negative)PDO phases,is statistically significant at the 99%confidence level.Besides the observational evidence,the pre-industrial simulations of 19 CMIP5 models are analyzed using the same method as with the observed data.We find that most of the CMIP5 models exhibit the same results as observed in both positive and negative PDO phases,indicating that ENSO frequency asymmetry is indeed modulated by the PDO phases.

    The modulation of ENSO frequency asymmetry by the PDO may be due to the background SST and circulation patterns in different PDO phases.In positive PDO phases there are notable anomalous westerlies over the central equatorial Pacific,which are associated with the warming SST east of the anomalous low-level wind.Thus,this decadal-scale westerly wind anomaly associated with positive PDO phases may encourage more EN events,rather than LN events,to occur.However,in previous studies(e.g.,Newman et al.,2003)it has been argued that the PDO is an ENSO-forced signal.Of course,two possibilities exist—that the PDO influences ENSO or vice versa.In this paper,using observational data and CMIP5 coupled model results,we only seek to reveal the phenomenon that there tend to be more EN events in positive PDO phases,and in doing so we find that this relationship between the PDO and ENSO is statistically significant based on the Monte Carlo test.

    Besides analysis of observational data and CMIP5 multimodel pre-industrial control simulations,sensitivity experiments using numerical models are necessary to fully explore the modulation of ENSO frequency asymmetry by the different PDO phases.Such work has recently begun using a coupled climate model with assimilated SST in the ocean component(Dong et al.,2016).Indeed,it has already been found that this method can reproduce the decadal variation of the East Asian summer monsoon reasonably well(Lin et al.,2016).Thus,further study using model experiments to investigate the associated mechanisms is warranted.

    Acknowledgements.We appreciate the suggestions and comments from the two anonymous reviewers and the Editor,which helped to improve the quality of the original paper.This work was jointly supported by the National Key R&D Program of China(Grant No.2017YFA0604201),the National Natural Science Foundation of China(Grant Nos.41576019,41606027 and 41706028),and the China Postdoctoral Science Foundation(Grant No.2015M571095).

    Allan,R.,and T.Ansell,2006:A new globally complete monthly historical gridded mean sea level pressure dataset(HadSLP2):1850-2004.J.Climate,19,5816–5842,https://doi.org/10.1175/JCLI3937.1.

    An,S.I.,and B.Wang,2000:Interdecadal change of the structure of the ENSO mode and its impact on the ENSO frequency.J.Climate,13,2044–2055,https://doi.org/10.1175/1520-0442(2000)013<2044:ICOTSO>2.0.CO;2.

    Barnett,T.P.,D.W.Pierce,M.Latif,D.Dommenget,and R.Saravanan,1999:Interdecadal interactions between the tropics and midlatitudes in the Pacific basin.Geophys.Res.Lett.,26,615–618,https://doi.org/doi:10.1029/1999GL900042.

    Bjerknes,J.,1969:Atmospheric teleconnections from the equatorial Pacific.Mon.Wea.Rev.,97(3),163–172,https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.

    Chu,P.S.,and J.X.Wang,1997:Tropical cyclone occurrences in the vicinity of Hawaii:Are the differences between El Ni?o and non-El Ni?o years significant?J.Climate,10(10),2683–2689,https://doi.org/10.1175/1520-0442(1997)010<2683:TCOITV>2.0.CO;2.

    Dong,X.,and F.Xue,2016:Phase transition of the Pacific decadal oscillation and decadal variation of the East Asian summer monsoon in the 20th century.Adv.Atmos.Sci.,33(3),330–338,https://doi.org/doi:10.1007/s00376-015-5130-7.

    Dong,X.,R.P.Lin,J.Zhu,and Z.T.Lu,2016:Evaluation of ocean data assimilation in CAS-ESM-C:Constraining the SST field.Adv.Atmos.Sci.,33(7),795–807,https://doi.org/10.1007/s00376-016-5234-8.

    Feng,J.,L.Wang,and W.Chen,2014:How does the East Asian summer monsoon behave in the decaying phase of El Ni?o during different PDO phases?J.Climate,27,2682–2698,https://doi.org/10.1175/JCLI-D-13-00015.1.

    Jin,F.F.,1997: An equatorial ocean recharge paradigm for ENSO.Part I:Conceptual model.J.Atmos.Sci.,54(7),811–829,https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.

    Kalnay,E.,and Coauthors,1996: The NCEP/NCAR 40-year reanalysis project.Bull.Amer.Meteor.Soc.,77(3),437–472,https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    Kravtsov,S.,2011:An empirical model of decadal ENSO variability.Climate Dyn.,39(9–10),2377–2391,https://doi.org/10.1007/s00382-012-1424-y.

    Lengaigne,M.,E.Guilyardi,J.P.Boulanger,C.Menkes,P.Delecluse,P.Inness,J.Cole,and J.Slingo,2004:Triggering of El Ni?no by westerly wind events in a coupled general circulation model.Climate Dyn.,23(6),601–620,https://doi.org/10.1007/s00382-004-0457-2.

    Lin,R.,J.Zhu,and F.Zheng,2016:Decadal shifts of East Asian summer monsoon in a climate model free of explicit GHGs and aerosols.Scientific Reports,6,38546,https://doi.org/10.1038/srep38546.

    Mantua,N.J.,S.R.Hare,Y.Zhang,J.M.Wallace,and R.C.Francis,1997:A Pacific interdecadal climate oscillation with impacts on salmon production.Bull.Amer.Meteor.Soc.,78,1069–1079,https://doi.org/10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    Newman,M.,and Coauthors,2016:The Pacific decadal oscillation,revisited.J.Climate,29(12),4399–4427,https://doi.org/10.1175/JCLI-D-15-0508.1.

    Pierce,D.W.,T.P.Barnett,and M.Latif,2000:Connections between the Pacific Ocean tropics and midlatitudes on decadal time scales.J.Climate,13,1173–1194.

    Shakun,J.D.,and J.Shaman,2009:Tropical origins of North and South Pacific decadal variability.Geophys.Res.Lett.,36,L19711,https://doi.org/10.doi:1029/2009GL040313.

    Smith,T.M.,R.W.Reynolds,T.C.Peterson,and J.Lawrimore,2008:Improvements to NOAA’s historical merged land–ocean surface temperature analysis(1880-2006).J.Climate,21,2283–2296,https://doi.org/10.1175/2007JCLI2100.1.

    Taylor,K.E.,R.J.Stouffer,and G.A.Meehl,2012:An overview of CMIP5 and the experiment design.Bull.Amer.Meteor.Soc.,93,485–498,https://doi.org/10.1175/BAMS-D-11-00094.1.

    Timmermann,A.,2003:Decadal ENSO amplitude modulations:A nonlinear paradigm.Global and Planetary Change,37(1–2),135–156,https://doi.org/10.1016/S0921-8181(02)00194-7.

    Trenberth,K.E.,J.M.Caron,D.P.Stepaniak,and S.Worley,2002:Evolution of El Ni?o–Southern Oscillation and global atmospheric surface temperatures.J.Geophys.Res.,107,4065,https://doi.org/doi:10.1029/2000JD000298.

    Verdon,D.C.,and S.W.Franks,2006:Long-term behaviour of ENSO:interactions with the PDO over the past 400 years inferred from paleoclimate records.Geophys.Res.Lett.,33(6),L06712,https://doi.org/10.1029/2005GL025052.

    Wang,B.,and S.I.An,2002:A mechanism for decadal changes of ENSO behavior:Roles of background wind changes.Climate Dyn.,18,475–486,https://doi.org/10.1007/s00382-001-0189-5.

    Wang,C.Z.,and J.Picaut,2004:Understanding ENSO physics—a review.Earth’s Climate:The Ocean-Atmosphere Interaction,C.Wang et al.,Eds.,American Geophysical Union,21–48,https://doi.org/10.1029/147GM02.

    Wang,H.,A.Kumar,W.Q.Wang,and Y.Xue,2012:Influence of ENSO on Pacific decadal variability:An analysis based on the NCEP climate forecast system.J.Climate,25,6136–6151,https://doi.org/10.1175/JCLI-D-11-00573.1.

    Yeh,S.W.,and B.P.Kirtman,2005:Pacific decadal variability and decadal ENSO amplitude modulation.Geophys.Res.Lett.,32(5),L05703,https://doi.org/10.1029/2004GL021731.

    Yeh,S.W.,J.G.Jhun,I.S.Kang,and B.P.Kirtman,2004:The decadal ENSO variability in a hybrid coupled model.J.Climate,17(6),1225–1238,https://doi.org/10.1175/1520-0442(2004)017<1225:TDEVIA>2.0.CO;2.

    亚洲,一卡二卡三卡| 美女福利国产在线| 少妇人妻 视频| 满18在线观看网站| a级片在线免费高清观看视频| 国产精品久久久久久久久免| 国产成人免费无遮挡视频| 亚洲免费av在线视频| 日韩av在线免费看完整版不卡| 久久鲁丝午夜福利片| 国产精品久久久av美女十八| 黄网站色视频无遮挡免费观看| 欧美日韩精品网址| 亚洲婷婷狠狠爱综合网| 国产片内射在线| 国产精品一国产av| 国产av精品麻豆| 亚洲视频免费观看视频| 婷婷色av中文字幕| 又黄又粗又硬又大视频| 丰满乱子伦码专区| 伊人亚洲综合成人网| 天天躁夜夜躁狠狠久久av| 1024香蕉在线观看| 日韩精品免费视频一区二区三区| 精品一区二区免费观看| 男女免费视频国产| 高清视频免费观看一区二区| 久久久国产欧美日韩av| 成年av动漫网址| 亚洲综合精品二区| xxxhd国产人妻xxx| 多毛熟女@视频| 91aial.com中文字幕在线观看| 国产欧美亚洲国产| 岛国毛片在线播放| 中文字幕人妻丝袜制服| 国产毛片在线视频| 久久久精品免费免费高清| 亚洲国产精品国产精品| 亚洲四区av| 在线观看免费高清a一片| 制服人妻中文乱码| 日韩大片免费观看网站| 美女主播在线视频| 亚洲一码二码三码区别大吗| 日韩,欧美,国产一区二区三区| 亚洲欧美成人精品一区二区| 在线观看免费视频网站a站| 热99久久久久精品小说推荐| 欧美精品高潮呻吟av久久| 999精品在线视频| 国产成人欧美| 青春草国产在线视频| 午夜激情av网站| 夜夜骑夜夜射夜夜干| 免费在线观看视频国产中文字幕亚洲 | 国产精品二区激情视频| 人妻 亚洲 视频| 国产无遮挡羞羞视频在线观看| www日本在线高清视频| 久久精品亚洲熟妇少妇任你| av电影中文网址| 一二三四中文在线观看免费高清| 亚洲欧美一区二区三区久久| 极品人妻少妇av视频| 精品福利永久在线观看| 国产一区二区激情短视频 | 亚洲精品视频女| 欧美日韩综合久久久久久| 国产在线免费精品| 国产一区有黄有色的免费视频| 国产精品一二三区在线看| 超碰成人久久| 校园人妻丝袜中文字幕| 中文字幕色久视频| 国产精品欧美亚洲77777| 国产成人欧美在线观看 | 精品国产超薄肉色丝袜足j| 免费黄色在线免费观看| 亚洲国产最新在线播放| 多毛熟女@视频| 久久久精品国产亚洲av高清涩受| 日本一区二区免费在线视频| 日韩一本色道免费dvd| 男女之事视频高清在线观看 | 曰老女人黄片| 蜜桃国产av成人99| 亚洲精品国产区一区二| 日韩 亚洲 欧美在线| 亚洲精品日本国产第一区| 热re99久久国产66热| 丰满少妇做爰视频| 黑人欧美特级aaaaaa片| 两个人看的免费小视频| 日日爽夜夜爽网站| 成年动漫av网址| 视频区图区小说| 国产在线视频一区二区| 亚洲伊人色综图| 国产人伦9x9x在线观看| 国产国语露脸激情在线看| 国产欧美日韩综合在线一区二区| 精品国产乱码久久久久久小说| 国产黄频视频在线观看| 国产极品天堂在线| 99精品久久久久人妻精品| 国产精品偷伦视频观看了| 欧美精品一区二区免费开放| 国产av国产精品国产| 亚洲 欧美一区二区三区| 国产精品久久久久久精品古装| 国产精品久久久av美女十八| 999久久久国产精品视频| 亚洲精品在线美女| 男女午夜视频在线观看| 亚洲精品久久成人aⅴ小说| 久久精品国产亚洲av涩爱| 亚洲国产精品一区二区三区在线| 超色免费av| 日韩不卡一区二区三区视频在线| 桃花免费在线播放| 亚洲美女视频黄频| 国产一区亚洲一区在线观看| 黑人欧美特级aaaaaa片| 老司机深夜福利视频在线观看 | 亚洲图色成人| 精品少妇一区二区三区视频日本电影 | 男女国产视频网站| 亚洲av福利一区| 精品久久蜜臀av无| 日韩中文字幕视频在线看片| 中文字幕色久视频| 国产一区二区在线观看av| 免费在线观看黄色视频的| 国产成人欧美在线观看 | 涩涩av久久男人的天堂| 美女午夜性视频免费| 一个人免费看片子| 免费看不卡的av| 国产野战对白在线观看| 91成人精品电影| 青春草视频在线免费观看| 国产一卡二卡三卡精品 | 免费观看人在逋| 精品国产乱码久久久久久男人| 黄色一级大片看看| 国产有黄有色有爽视频| 老鸭窝网址在线观看| 青草久久国产| 久久久精品国产亚洲av高清涩受| 精品午夜福利在线看| 欧美国产精品一级二级三级| 在线观看国产h片| 午夜老司机福利片| 只有这里有精品99| 中文字幕另类日韩欧美亚洲嫩草| 国产福利在线免费观看视频| 国产免费福利视频在线观看| 久久久亚洲精品成人影院| 婷婷色麻豆天堂久久| 久久性视频一级片| 国产麻豆69| 亚洲国产中文字幕在线视频| 成人三级做爰电影| 国产片内射在线| 一二三四中文在线观看免费高清| 国精品久久久久久国模美| 日本爱情动作片www.在线观看| 亚洲 欧美一区二区三区| 欧美久久黑人一区二区| 国产成人av激情在线播放| 久久精品久久精品一区二区三区| 久久韩国三级中文字幕| 日韩免费高清中文字幕av| 欧美精品亚洲一区二区| 久热爱精品视频在线9| 蜜桃国产av成人99| 伊人久久国产一区二区| 亚洲精品久久成人aⅴ小说| 午夜福利乱码中文字幕| 宅男免费午夜| 赤兔流量卡办理| 欧美黑人欧美精品刺激| 欧美日韩亚洲综合一区二区三区_| 亚洲国产欧美一区二区综合| 肉色欧美久久久久久久蜜桃| 在线看a的网站| 国产免费福利视频在线观看| 亚洲精品视频女| 黄片无遮挡物在线观看| 99精品久久久久人妻精品| 国产成人欧美在线观看 | 男女午夜视频在线观看| 国产日韩欧美在线精品| 欧美变态另类bdsm刘玥| 精品少妇黑人巨大在线播放| 亚洲精品美女久久av网站| 男女边摸边吃奶| 久久性视频一级片| 一区二区av电影网| 国产精品一区二区在线不卡| 国产日韩一区二区三区精品不卡| 综合色丁香网| 亚洲欧美成人精品一区二区| 久久av网站| 成年人免费黄色播放视频| 欧美日韩综合久久久久久| 人成视频在线观看免费观看| 日韩av不卡免费在线播放| 黄片无遮挡物在线观看| 亚洲av成人精品一二三区| 2018国产大陆天天弄谢| 看免费av毛片| 丝袜脚勾引网站| 在线观看人妻少妇| 亚洲在久久综合| 交换朋友夫妻互换小说| 日本色播在线视频| 亚洲一级一片aⅴ在线观看| 日本爱情动作片www.在线观看| 日日爽夜夜爽网站| 久热爱精品视频在线9| 在线亚洲精品国产二区图片欧美| 国产不卡av网站在线观看| 久久女婷五月综合色啪小说| 亚洲精品自拍成人| 免费不卡黄色视频| 亚洲情色 制服丝袜| 人妻人人澡人人爽人人| 飞空精品影院首页| 精品亚洲乱码少妇综合久久| 两个人免费观看高清视频| 蜜桃在线观看..| videosex国产| 一级片免费观看大全| 亚洲欧洲国产日韩| 一级毛片电影观看| 久久 成人 亚洲| 久久 成人 亚洲| av不卡在线播放| 纯流量卡能插随身wifi吗| 熟女av电影| 欧美日本中文国产一区发布| 女性生殖器流出的白浆| 天堂中文最新版在线下载| 电影成人av| 黄片无遮挡物在线观看| 亚洲美女视频黄频| 日韩av免费高清视频| 亚洲 欧美一区二区三区| 2021少妇久久久久久久久久久| 蜜桃国产av成人99| 国产淫语在线视频| 性高湖久久久久久久久免费观看| 天天操日日干夜夜撸| 一区二区三区精品91| 日韩制服骚丝袜av| svipshipincom国产片| 嫩草影院入口| 国产精品国产三级国产专区5o| 精品人妻一区二区三区麻豆| 不卡视频在线观看欧美| 天堂中文最新版在线下载| 日本午夜av视频| 日韩av免费高清视频| 亚洲婷婷狠狠爱综合网| 欧美成人精品欧美一级黄| 亚洲成人免费av在线播放| 一本一本久久a久久精品综合妖精| 亚洲国产欧美一区二区综合| 日韩一本色道免费dvd| 爱豆传媒免费全集在线观看| xxxhd国产人妻xxx| 男人爽女人下面视频在线观看| 麻豆乱淫一区二区| 国产精品久久久久久久久免| 久久精品国产a三级三级三级| 午夜免费观看性视频| 国产高清不卡午夜福利| 哪个播放器可以免费观看大片| 免费久久久久久久精品成人欧美视频| 综合色丁香网| 97精品久久久久久久久久精品| 青春草视频在线免费观看| 国产成人精品福利久久| 又大又爽又粗| 欧美日韩亚洲国产一区二区在线观看 | 精品午夜福利在线看| 亚洲成人手机| 午夜精品国产一区二区电影| 黄片小视频在线播放| 又大又爽又粗| 中文字幕色久视频| 亚洲欧美清纯卡通| 999精品在线视频| 欧美黄色片欧美黄色片| 天堂中文最新版在线下载| 最黄视频免费看| 久久综合国产亚洲精品| 欧美 亚洲 国产 日韩一| 亚洲av综合色区一区| 精品视频人人做人人爽| 国产成人精品久久久久久| 色吧在线观看| 丝袜美足系列| 亚洲精品国产av蜜桃| 尾随美女入室| 国产极品天堂在线| 在线观看三级黄色| 精品少妇内射三级| 中文字幕制服av| 免费在线观看完整版高清| 一级片免费观看大全| 色吧在线观看| 国产1区2区3区精品| 亚洲 欧美一区二区三区| 在现免费观看毛片| 免费黄网站久久成人精品| 啦啦啦 在线观看视频| 免费观看a级毛片全部| 日韩成人av中文字幕在线观看| 国产一级毛片在线| 亚洲成色77777| 一区二区av电影网| 一本大道久久a久久精品| 天天躁狠狠躁夜夜躁狠狠躁| 久久99一区二区三区| 免费不卡黄色视频| netflix在线观看网站| 国产深夜福利视频在线观看| 亚洲av电影在线进入| 色婷婷av一区二区三区视频| 日日摸夜夜添夜夜爱| 飞空精品影院首页| 成年人免费黄色播放视频| 哪个播放器可以免费观看大片| xxxhd国产人妻xxx| 狠狠精品人妻久久久久久综合| 大陆偷拍与自拍| 久久午夜综合久久蜜桃| 亚洲三区欧美一区| 成人免费观看视频高清| 日韩精品有码人妻一区| 一本大道久久a久久精品| 美女中出高潮动态图| 黄频高清免费视频| 波多野结衣一区麻豆| 天美传媒精品一区二区| 下体分泌物呈黄色| 亚洲,欧美精品.| 精品久久久久久电影网| 热99国产精品久久久久久7| 国产深夜福利视频在线观看| 你懂的网址亚洲精品在线观看| 99久久精品国产亚洲精品| 中文字幕av电影在线播放| 一区二区三区激情视频| 男女床上黄色一级片免费看| 在线观看免费午夜福利视频| 午夜日韩欧美国产| av在线老鸭窝| 老司机影院毛片| 国产精品成人在线| 欧美中文综合在线视频| 久久久久国产精品人妻一区二区| kizo精华| 精品一区二区三区四区五区乱码 | 久久99精品国语久久久| 搡老乐熟女国产| 免费黄网站久久成人精品| 免费高清在线观看日韩| 日韩中文字幕视频在线看片| 国产黄色视频一区二区在线观看| 国产成人午夜福利电影在线观看| 午夜日本视频在线| 激情五月婷婷亚洲| 国产精品99久久99久久久不卡 | 欧美日韩福利视频一区二区| 色播在线永久视频| 男女无遮挡免费网站观看| 久久99精品国语久久久| 国产1区2区3区精品| 一区福利在线观看| 十八禁人妻一区二区| 好男人视频免费观看在线| 亚洲精品久久成人aⅴ小说| 国产精品成人在线| 日日爽夜夜爽网站| 人人妻,人人澡人人爽秒播 | 搡老岳熟女国产| 国产黄色免费在线视频| 在线观看免费高清a一片| 亚洲国产毛片av蜜桃av| 欧美精品一区二区免费开放| 天天躁日日躁夜夜躁夜夜| 欧美97在线视频| 亚洲精品,欧美精品| 日日摸夜夜添夜夜爱| 成年动漫av网址| 午夜av观看不卡| 亚洲欧美一区二区三区久久| 国产又爽黄色视频| 男女边摸边吃奶| 日日爽夜夜爽网站| 涩涩av久久男人的天堂| 视频在线观看一区二区三区| 美女福利国产在线| 80岁老熟妇乱子伦牲交| 成人黄色视频免费在线看| 无限看片的www在线观看| 亚洲国产精品999| 国产精品国产三级专区第一集| 久久99热这里只频精品6学生| 久久久久久人妻| 亚洲七黄色美女视频| 搡老乐熟女国产| 纯流量卡能插随身wifi吗| 欧美精品人与动牲交sv欧美| 91老司机精品| 精品人妻一区二区三区麻豆| 日韩一本色道免费dvd| av国产精品久久久久影院| 无遮挡黄片免费观看| 精品国产一区二区三区久久久樱花| 欧美中文综合在线视频| 自线自在国产av| 成人毛片60女人毛片免费| 国产视频首页在线观看| 欧美精品高潮呻吟av久久| 久久精品亚洲av国产电影网| 国产成人av激情在线播放| 午夜精品国产一区二区电影| 国产有黄有色有爽视频| 久久综合国产亚洲精品| 亚洲精品一区蜜桃| 午夜福利网站1000一区二区三区| 国产精品一区二区在线不卡| 国产乱人偷精品视频| 人成视频在线观看免费观看| 青青草视频在线视频观看| 国产乱人偷精品视频| 91aial.com中文字幕在线观看| 精品久久久精品久久久| 国产av一区二区精品久久| 亚洲av成人精品一二三区| 亚洲三区欧美一区| 久久女婷五月综合色啪小说| 大片电影免费在线观看免费| 在线亚洲精品国产二区图片欧美| 叶爱在线成人免费视频播放| 久久热在线av| 在线观看一区二区三区激情| 免费人妻精品一区二区三区视频| 91精品国产国语对白视频| 国产精品久久久人人做人人爽| 国产精品国产三级专区第一集| 免费久久久久久久精品成人欧美视频| 三上悠亚av全集在线观看| 在线看a的网站| 人人妻人人添人人爽欧美一区卜| 日韩精品免费视频一区二区三区| 国产精品一国产av| 亚洲精品日本国产第一区| 人人妻人人澡人人爽人人夜夜| 国产精品 欧美亚洲| 亚洲图色成人| 国产黄色免费在线视频| 9191精品国产免费久久| 久久亚洲国产成人精品v| 各种免费的搞黄视频| 久久人人爽人人片av| 免费观看av网站的网址| 最近中文字幕高清免费大全6| 精品一区二区三卡| 午夜老司机福利片| 国产精品久久久久久久久免| 亚洲美女黄色视频免费看| 中文字幕精品免费在线观看视频| 黄片小视频在线播放| 成人三级做爰电影| 天天躁夜夜躁狠狠躁躁| 老鸭窝网址在线观看| 欧美乱码精品一区二区三区| 熟女av电影| 亚洲一级一片aⅴ在线观看| 九九爱精品视频在线观看| 男的添女的下面高潮视频| 国产免费一区二区三区四区乱码| 黄片小视频在线播放| 国产一区亚洲一区在线观看| 悠悠久久av| 日韩大码丰满熟妇| 夜夜骑夜夜射夜夜干| 捣出白浆h1v1| 综合色丁香网| 人妻 亚洲 视频| 国产精品免费大片| 午夜福利视频在线观看免费| 夫妻性生交免费视频一级片| 多毛熟女@视频| 日韩电影二区| 国产男人的电影天堂91| 精品亚洲成a人片在线观看| 国产极品粉嫩免费观看在线| 亚洲精品中文字幕在线视频| 视频在线观看一区二区三区| 五月天丁香电影| 国产熟女欧美一区二区| 久久精品国产综合久久久| 91精品三级在线观看| 搡老乐熟女国产| 两个人免费观看高清视频| 亚洲综合色网址| 免费黄频网站在线观看国产| 国产极品粉嫩免费观看在线| 免费看av在线观看网站| 18在线观看网站| 一级a爱视频在线免费观看| 人成视频在线观看免费观看| 女人爽到高潮嗷嗷叫在线视频| 久久鲁丝午夜福利片| 制服人妻中文乱码| 国产精品香港三级国产av潘金莲 | 蜜桃在线观看..| 久久久精品国产亚洲av高清涩受| 曰老女人黄片| 你懂的网址亚洲精品在线观看| 午夜91福利影院| 国产精品av久久久久免费| 午夜日韩欧美国产| 看免费成人av毛片| 激情五月婷婷亚洲| 另类亚洲欧美激情| 国产精品三级大全| 日韩 欧美 亚洲 中文字幕| 成人国产av品久久久| 国产精品熟女久久久久浪| 天天添夜夜摸| 精品卡一卡二卡四卡免费| 久久久久久久久久久免费av| 免费观看性生交大片5| 欧美激情极品国产一区二区三区| 亚洲国产精品一区三区| 亚洲成av片中文字幕在线观看| 成人18禁高潮啪啪吃奶动态图| 成人午夜精彩视频在线观看| 亚洲国产中文字幕在线视频| 一区二区日韩欧美中文字幕| 成年女人毛片免费观看观看9 | 最黄视频免费看| 丰满饥渴人妻一区二区三| 亚洲av国产av综合av卡| 亚洲欧美日韩另类电影网站| 91国产中文字幕| 久久精品久久久久久久性| 日本av免费视频播放| 国产成人欧美| 中文字幕人妻熟女乱码| 国产爽快片一区二区三区| 精品国产乱码久久久久久小说| 在线亚洲精品国产二区图片欧美| 一区二区av电影网| 国产在线一区二区三区精| 亚洲免费av在线视频| 国产日韩欧美在线精品| 又粗又硬又长又爽又黄的视频| 欧美精品高潮呻吟av久久| 久久久久国产一级毛片高清牌| 美女中出高潮动态图| 高清av免费在线| 国产av一区二区精品久久| 亚洲国产中文字幕在线视频| 国产又色又爽无遮挡免| 午夜免费鲁丝| 夫妻性生交免费视频一级片| 老司机深夜福利视频在线观看 | 天天躁日日躁夜夜躁夜夜| 精品酒店卫生间| 日本av手机在线免费观看| 亚洲男人天堂网一区| 久久久久精品国产欧美久久久 | 在线观看免费日韩欧美大片| 国产精品嫩草影院av在线观看| 99精国产麻豆久久婷婷| 夜夜骑夜夜射夜夜干| 久久人妻熟女aⅴ| 免费在线观看视频国产中文字幕亚洲 | 久久久国产精品麻豆| 国产av国产精品国产| 国产探花极品一区二区| 久久久久久久精品精品| 久久鲁丝午夜福利片| 中文字幕av电影在线播放| 19禁男女啪啪无遮挡网站| 99久久综合免费| 在线看a的网站| 国产日韩欧美视频二区| 操出白浆在线播放| 国产亚洲av片在线观看秒播厂| 熟女少妇亚洲综合色aaa.| 亚洲国产精品999| 国产免费视频播放在线视频| 精品国产一区二区三区四区第35| 男女边吃奶边做爰视频| 久久久欧美国产精品| 精品少妇久久久久久888优播| 免费观看av网站的网址| 久久精品久久久久久久性| bbb黄色大片| 久久狼人影院| 观看美女的网站| 国产av精品麻豆| 侵犯人妻中文字幕一二三四区| 精品国产乱码久久久久久小说|