彭洪 林中超 彭明沙 祝秀華 劉娟(南充市中心醫(yī)院中西醫(yī)結(jié)合肛腸科, 四川 南充 637000)
結(jié)直腸癌是亞太地區(qū)最常見(jiàn)的惡性腫瘤之一, 死亡率較高[1], 其病因尚不明確。目前外科手術(shù)是直腸癌的主要治療方式, 但是30%的患者術(shù)后可出現(xiàn)復(fù)發(fā)或轉(zhuǎn)移[2]。因此探索新的治療方式, 已成為治療直腸癌的熱點(diǎn)。
黃連素是一種喹啉生物堿, 很多重要的藥用植物比如刺芒和紫葉小檗都含有黃連素, 并且黃連素還具有止瀉、降壓、降血糖和抗炎等作用[3-5]。近年的研究發(fā)現(xiàn)黃連素對(duì)多種腫瘤細(xì)胞均表現(xiàn)出抗腫瘤效果, 如神經(jīng)膠質(zhì)瘤、食管癌、肺癌、前列腺癌和卵巢癌[6-10]。黃連素可通過(guò)誘導(dǎo)細(xì)胞凋亡, 抑制腫瘤細(xì)胞增殖和阻止腫瘤侵襲、轉(zhuǎn)移來(lái)發(fā)揮抗癌作用, 這些研究結(jié)果提示黃連素未來(lái)在臨床上有望作為一種化療藥物而加以使用。但黃連素抗腫瘤的具體作用機(jī)制卻知之甚少。本研究的目的是觀察黃連素對(duì)直腸癌SW480細(xì)胞增殖的抑制效果并探討其可能的作用機(jī)制。
1.1 細(xì)胞培養(yǎng)與試劑 人直腸癌SW480細(xì)胞株購(gòu)自重慶醫(yī)科大學(xué)基礎(chǔ)研究所, 在含有10%胎牛血清, 1%青霉素和1%鏈霉素的RPMI-1640培養(yǎng)基里培養(yǎng)。黃連素(C20H18ClNO4)購(gòu)自圣元公司(鄭州, 河南)。Ang-2 ELISA試劑盒購(gòu)自晶美生物工程有限公司(深圳, 中國(guó))。
1.2 方法
1.2.1 細(xì)胞增殖檢測(cè) 直腸癌SW480細(xì)胞株以每孔1×105個(gè)接種于96孔板, 培養(yǎng)24小時(shí)后分別加入濃度為0mol/L、25μmol/L、50μmol/L、100μmol/L、150μmol/L、200μmol/L的黃連素, 繼續(xù)培養(yǎng)48小時(shí)。每孔加MTT 20ul, 4小時(shí)后棄上清液。然后每孔加二甲基亞砜(DMSO)150ul, 震蕩10分鐘后于490nm處測(cè)定吸光度(A)值。實(shí)驗(yàn)重復(fù)進(jìn)行3次。抑制率公式: 抑制率(%)=(對(duì)照組A值-治療組A值)/對(duì)照組A值×100%。治療組黃連素濃度分為6個(gè)亞型, 分別為0mol/L 、25μmol/L、50μmol/L、100μmol/L、150μmol/L、200μmol/L, 并計(jì)算不同亞型的抑制率。結(jié)果示黃連素作用48小時(shí)后的最佳抑制濃度為150μmol/L, 因此在后續(xù)實(shí)驗(yàn)中我們選用150μmol/L的黃連素作為治療組用藥。
1.2.2 細(xì)胞周期檢測(cè) 直腸癌SW480細(xì)胞株以每孔2×105個(gè)接種于6孔板過(guò)夜, 當(dāng)細(xì)胞80%融合時(shí)治療組用150μmol/L黃連素干預(yù)48小時(shí), 對(duì)照組用RPMI-1640培養(yǎng)基。48小時(shí)后收集各組細(xì)胞, 按照說(shuō)明進(jìn)行流式細(xì)胞分析。
1.2.3 細(xì)胞凋亡檢測(cè) 直腸癌SW480細(xì)胞株以每孔2×105個(gè)接種于6孔板過(guò)夜, 當(dāng)細(xì)胞80%融合時(shí)治療組用150μmol/L黃連素干預(yù)48小時(shí), 對(duì)照組用RPMI-1640培養(yǎng)基。48小時(shí)后收集各組細(xì)胞, 參照說(shuō)明書(shū), 按照Annexin V凋亡分析法進(jìn)行染色(碧云天生物技術(shù)有限公司, 上海, 中國(guó))。然后凋亡指數(shù)通過(guò)計(jì)算Annexin V陽(yáng)性細(xì)胞(紅染色)數(shù)進(jìn)行分析, 每組10個(gè)樣本。
1.2.4 免疫印跡分析 直腸癌SW480細(xì)胞株以每孔2×105個(gè)接種于6孔板過(guò)夜, 當(dāng)細(xì)胞80%融合時(shí)用不同方式進(jìn)行處理。治療組用150μmol/L黃連素干預(yù)48小時(shí), 對(duì)照組用RPMI-1640培養(yǎng)基。48小時(shí)后收集各組細(xì)胞, 按照說(shuō)明進(jìn)行免疫印跡分析。Livin、Ykl-40、AKT and Cyclin D1蛋白的表達(dá)用Quantity One圖像分析軟件進(jìn)行吸光度分析。
1.2.5 Ang-2 表達(dá)的檢測(cè) 直腸癌SW480細(xì)胞株以每孔2×105個(gè)接種于24孔板過(guò)夜, 當(dāng)細(xì)胞80%融合時(shí)治療組用150μmol/L黃連素作用48小時(shí), 對(duì)照組用RPMI-1640培養(yǎng)基。48小時(shí)后按照說(shuō)明進(jìn)行酶聯(lián)免疫吸附測(cè)定。于450nm處測(cè)定吸光度(A)值。以標(biāo)準(zhǔn)品濃度為橫坐標(biāo)、A值作縱坐標(biāo)繪制標(biāo)準(zhǔn)曲線。通過(guò)標(biāo)準(zhǔn)品的A值可在標(biāo)準(zhǔn)曲線上查出Ang-2的濃度。
2.1 細(xì)胞增殖比較 隨著黃連素作用濃度的增高(0~200μmol/L), SW480細(xì)胞增殖率明顯降低。但是當(dāng)黃連素作用濃度在150~200μmol/L之間時(shí), 抑制率無(wú)明顯差異(P>0.05), 說(shuō)明黃連素作用于SW480細(xì)胞48小時(shí)后最佳抑制濃度為150μmol/L, 因此在后續(xù)實(shí)驗(yàn)中選用150μmol/L的黃連素作為治療組的用藥, 見(jiàn)表1。
Table1CellproliferationafterculturewithdifferentBBRconcentration
組別OD值抑制率(×10-2)0mol/L0.68±0.04(-)25μmol/L0.58±0.0314.750μmol/L0.48±0.0429.4100μmol/L0.40±0.0241.2150μmol/L0.36±0.0247.1200μmol/L0.34±0.0250.0
2.2 兩組細(xì)胞周期比較 結(jié)果顯示治療組中78.98%的細(xì)胞被阻滯在G1期, 而對(duì)照組有65.76%的細(xì)胞被阻滯在G1期。說(shuō)明黃連素可通過(guò)阻滯細(xì)胞周期在G1期而抑制SW480細(xì)胞增殖, 見(jiàn)表2、圖1。
表2 細(xì)胞周期分析Table 2 Cell cycle analysis
圖1 細(xì)胞周期分析Figure 1 Cell cycle analysis注:A.治療組;B.對(duì)照組
2.3 兩組細(xì)胞凋亡比較 結(jié)果顯示, 與對(duì)照組相比, 治療組細(xì)胞存在更大比例的凋亡。結(jié)果說(shuō)明黃連素對(duì)SW480細(xì)胞具有明顯的抑制作用, 見(jiàn)表3、圖2。
表3 SW480細(xì)胞凋亡率Table 3 Apoptpsis index of SW480 cells
圖2 SW480細(xì)胞凋亡Figure 2 Apoptpsis of SW480 cells注: A.治療組; B.對(duì)照組
2.4 兩組YKL-40、AKT、Cyclin D1蛋白表達(dá)比較 進(jìn)一步研究是否YKL-40/AKT/Cyclin D1信號(hào)通路參與黃連素介導(dǎo)的細(xì)胞周期阻滯, 結(jié)果顯示與對(duì)照組相比, 治療組中YKL-40(幾丁質(zhì)酶-3樣蛋白-1)、pAKT(phosphorylated protein kinase B, 磷酸化蛋白激酶B, 為AKT的活性形式)、Cyclin D1(特異性周期蛋白D1)在SW480細(xì)胞內(nèi)的表達(dá)明顯下降, 但是總AKT(protein kinase B, 蛋白激酶B)表達(dá)無(wú)明顯變化。結(jié)果說(shuō)明YKL-40/AKT/Cyclin D1信號(hào)通路參與黃連素介導(dǎo)的SW480細(xì)胞周期阻滯及抑制細(xì)胞增殖,見(jiàn)圖3。
圖3 YKL-40 表達(dá)AKT及pAKT、Cyclin D1 表達(dá)
Figure3YKL-40expression,AKTexpressionandCyclinD1expression
注:A、C、F為對(duì)照組;B、D、E為治療組
2.5 兩組Livin蛋白表達(dá)比較 為進(jìn)一步研究黃連素誘導(dǎo)細(xì)胞凋亡的機(jī)制, 檢測(cè)凋亡相關(guān)基因表達(dá)。結(jié)果顯示與對(duì)照組相比, 抗凋亡基因Livin(凋亡抑制蛋白)在治療組細(xì)胞中的表達(dá)明顯下降。說(shuō)明黃連素可通過(guò)抑制Livin蛋白的表達(dá)而誘導(dǎo)細(xì)胞凋亡,見(jiàn)圖4。
圖4 Livin 表達(dá)Figure 4 Livin expression注:A.治療組.B.對(duì)照組
2.6 兩組Ang-2表達(dá)水平比較 用ELISA方法檢測(cè)兩組Ang-2(血管生成素-2)表達(dá)情況, 結(jié)果顯示治療組中Ang-2表達(dá)水平(28.9±2.47)ng/mL明顯較對(duì)照組(40.2±2.35)ng/mL下降(t=10.49,P<0.05), 上述結(jié)果證實(shí)抑制腫瘤血管的生成是黃連素抗腫瘤的作用機(jī)制之一。
既往研究證實(shí)黃連素對(duì)多種腫瘤均具有明顯的抑制作用。但其抑制直腸癌SW480細(xì)胞的具體作用機(jī)制卻罕見(jiàn)。本研究結(jié)果顯示隨著黃連素作用濃度的增加(25~200μmol/L), SW480細(xì)胞增殖率明顯降低, 其部分原因可能是因?yàn)?8.98%的SW480細(xì)胞被阻滯在G1期。接下來(lái)我們研究了導(dǎo)致細(xì)胞周期阻滯的具體機(jī)制。YKL-40是哺乳動(dòng)物甲殼質(zhì)酶樣蛋白家族的一員, 現(xiàn)有研究證實(shí)其與多種腫瘤(包括直腸癌)的發(fā)病密切相關(guān)[11-15]。近來(lái)有研究發(fā)現(xiàn)Brp-39(小鼠YKL-40基因所編碼的蛋白)能直接作用于管狀細(xì)胞啟動(dòng)PI 3-K/Akt信號(hào)通路, 同時(shí)有研究證實(shí)在結(jié)腸上皮細(xì)胞中YKL-40的幾丁質(zhì)結(jié)合域可特異性激活A(yù)KT信號(hào)通路[16-17]。并且沉默YKL-40基因可通過(guò)阻滯細(xì)胞在G1期而抑制細(xì)胞增殖[18]。所以我們推測(cè)是否YKL-40/AKT信號(hào)通路參與了黃連素介導(dǎo)的SW480細(xì)胞周期阻滯。本實(shí)驗(yàn)中黃連素可明顯抑制YKL-40、AKT和它的靶基因Cyclin D1蛋白的表達(dá), 其結(jié)果證實(shí)了黃連素可通過(guò)抑制YKL-40/AKT/Cyclin D1信號(hào)通路阻滯SW480細(xì)胞周期。有研究發(fā)現(xiàn)低劑量的YKL-40作用于SW480細(xì)胞可導(dǎo)致明顯的β-catenin核轉(zhuǎn)位并激活c-Myc和cyclin D1等靶基因的轉(zhuǎn)錄, 隨后通過(guò)調(diào)節(jié)細(xì)胞周期G0/G1期從而促進(jìn)SW480細(xì)胞的增殖[19]??偟恼f(shuō)來(lái), 我們的研究證實(shí)黃連素可抑制SW480細(xì)胞增殖, 其機(jī)制可能部分通過(guò)抑制YKL-40/AKT/Cyclin D1信號(hào)通路和誘導(dǎo)細(xì)胞周期阻滯而實(shí)現(xiàn)的。
誘導(dǎo)細(xì)胞凋亡是腫瘤治療的重要方法之一。在本實(shí)驗(yàn)中我們發(fā)現(xiàn)黃連素作用后的SW480細(xì)胞凋亡率明顯高于對(duì)照組, 其作用機(jī)制可能歸因于Livin基因表達(dá)的下調(diào)。Livin是凋亡抑制蛋白(IAP)家族的新成員, 其可選擇性的和凋亡調(diào)節(jié)因子比如caspase-3, caspase-7, 和caspase-9等結(jié)合最后阻止細(xì)胞凋亡[20-21]。Livin在多種腫瘤組織中高表達(dá), 但在正常組織中卻幾乎不表達(dá), 并且它和細(xì)胞的增殖、侵襲及運(yùn)動(dòng)密切相關(guān)[22-25]。既往研究發(fā)現(xiàn)在體內(nèi)和體外實(shí)驗(yàn)中siRNA介導(dǎo)的livin表達(dá)下調(diào)可誘導(dǎo)結(jié)腸癌細(xì)胞的凋亡, 不僅如此, 沉默Livin基因還可以增強(qiáng)結(jié)腸癌細(xì)胞的化療敏感性[26-27]。但是黃連素與livin表達(dá)之間的關(guān)系尚卻未見(jiàn)報(bào)道。本研究證實(shí)黃連素誘導(dǎo)SW480細(xì)胞凋亡, 至少部分是通過(guò)Livin所介導(dǎo)的。這些研究結(jié)果說(shuō)明Livin在直腸腫瘤的發(fā)病中扮演著重要的角色, 增加Livin的表達(dá)可作為直腸腫瘤治療的新策略之一。
血管生成是結(jié)直腸癌發(fā)生發(fā)展所必需的[28]。Ang-2是血管生成素家族的一員, 其可與內(nèi)皮特異性受體酪酸激酶2(Tie2)結(jié)合, 通過(guò)調(diào)節(jié)血管穩(wěn)定性來(lái)維持正常血管功能[29]。Ang-2在肺癌、口腔癌、鼻咽癌和腎癌等多種腫瘤中均呈明顯的高表達(dá)[30-33]。Ang-2的表達(dá)在結(jié)腸癌患者及結(jié)直腸動(dòng)物模型中均明顯升高, 并且血清中Ang-2水平對(duì)于預(yù)測(cè)轉(zhuǎn)移性結(jié)直腸癌不良預(yù)后具有重要意義[34-35]。Ang-2在腫瘤進(jìn)展期能夠誘導(dǎo)無(wú)序血管重新組織, 并且還可以快速增加毛細(xì)血管直徑, 重構(gòu)基底膜, 促進(jìn)內(nèi)皮細(xì)胞的增殖和轉(zhuǎn)移和刺激新生血管的生成[36-37]。同時(shí)Ang-2還可通過(guò)誘導(dǎo)異常上皮-間質(zhì)轉(zhuǎn)化促進(jìn)腫瘤的遷移和侵襲[38]。Ang-2在多種人類(lèi)惡性腫瘤中均高表達(dá), 但是在正常人群中卻沒(méi)有明顯表達(dá), 這為抗腫瘤治療提供了新的靶向目標(biāo)。在動(dòng)物模型中阻斷Ang/Tie2信號(hào)通路可以防止髓細(xì)胞的招募, 而阻斷Ang-2的功能則可限制腫瘤的轉(zhuǎn)移[39-40]。目前一種阻斷Ang-2的功能用于治療卵巢癌的抗體目前已進(jìn)入第三期臨床試驗(yàn)[41]。近來(lái)研究證實(shí)黃連素是一種抗血管生成因子, 它不僅可降低乳腺腫瘤的血管密度, 并且還可以通過(guò)抑制PI-3K/AKT信號(hào)通路阻止TPA誘導(dǎo)的血管內(nèi)皮生長(zhǎng)因子(VEGF)的生成[42-43]。但是關(guān)于黃連素和Ang2之間相互作用機(jī)制的研究卻未見(jiàn)報(bào)道。本實(shí)驗(yàn)結(jié)果顯示黃連素能明顯下調(diào)SW480細(xì)胞中Ang2的表達(dá)水平, 證實(shí)了抑制腫瘤血管的生成是黃連素抗腫瘤的作用機(jī)制之一。
本文資料顯示, 黃連素具有抗腫瘤作用, 不僅能夠抑制SW480細(xì)胞的增殖, 還可以阻滯細(xì)胞周期, 誘導(dǎo)細(xì)胞凋亡及抑制腫瘤血管生成。抑制YKL-40/AKT/Cyclin D1信號(hào)通路, 下調(diào)Livin和Ang-2的表達(dá)可能是黃連素抗腫瘤的重要作用機(jī)制。但還需要采用動(dòng)物實(shí)驗(yàn)評(píng)價(jià)黃連素的抑癌效果, 其具體的作用機(jī)制也有待進(jìn)一步研究。
[1]Zhiqin W, Palaniappan S, Raja AR.Inflammatory Bowel Disease-related Colorectal Cancer in the Asia-Pacific Region: Past, Present, and Future[J].Intestinal Res, 2014, 12(3): 194-204.
[2]Aklilu M, Eng C.The current landscape of locally advanced rectal cancer[J].Nat Rev Clin Oncol, 2011, 8(11): 649-659.
[3]Amripal S, Sanjiv D, Navpreet K,etal.Berberine: alkaloid with wide spectrum of pharmacological activities[J].J Nat Prod, 2010, 3: 64-75.
[4]Abd El-Wahab AE, Ghareeb DA, Sarhan EE,etal.In vitro biological assessment of Berberis vulgaris and its active constituent, berberine: antioxidants, anti-acetylcholinesterase, anti-diabetic and anticancer effects[J].BMC Complement Altern Med, 2013, 9(13): 218.
[5]Qadir SA, Kwon MC, Han JG,etal.Effect of different extraction protocols on anticancer and antioxidant activities of Berberis koreana bark extracts[J].J Biosci Bioeng, 2009, 107(3): 331-339.
[6]Chen Q, Qin R, Fang Y,etal.Berberine Sensitizes Human Ovarian Cancer Cells to Cisplatin Through miR-93/PTEN/Akt Signaling Pathway[J].Cellular physiology and biochemistry, 2015, 36(3): 956-965.
[7]Liu Q, Xu X, Zhao M,etal.Berberine induces senescence of human glioblastoma cells by downregulating the EGFR-MEK-ERK signaling pathway[J].Molecular cancer therapeutics, 2015, 14(2): 355-363.
[8]Lu JJ, Fu L, Tang Z,etal.Melatonin inhibits AP-2beta/hTERT, NF-kappaB/COX-2 and Akt/ERK and activates caspase/Cyto C signaling to enhance the antitumor activity of berberine in lung cancer cells[J].Oncotarget, 2016, 7(3): 2985-3001.
[9]Mishan MA, Ahmadiankia N, Matin MM,etal.Role of Berberine on molecular markers involved in migration of esophageal cancer cells[J].Cellular and molecular biology (Noisy-le-Grand, France), 2015, 61(8): 37-43.
[10] Tian Y, Zhao L, Wang Y,etal.Berberine inhibits androgen synthesis by interaction with aldo-keto reductase 1C3 in 22Rv1 prostate cancer cells[J].Asian journal of andrology, 2015, 18(4): 607-612.
[11] Chiang YC, Lin HW, Chang CF,etal.Overexpression of CHI3L1 is associated with chemoresistance and poor outcome of epithelial ovarian carcinoma[J].Oncotarget, 2015, 6(37): 39740-39755.
[12] Zheng X, Xing S, Liu XM,etal.Establishment of using serum YKL-40 and SCCA in combination for the diagnosis of patients with esophageal squamous cell carcinoma[J].BMC Cancer, 2014, 7(14): 490.
[13] K rankaya Güne A, Gül , Tutar N,etal.The place of YKL-40 in non-small cell lung cancer[J].Tuberk Toraks, 2014, 62(4): 273-278.
[14] Vom Dorp F, Tschirdewahn S, Niedworok C,etal.Circulating and Tissue Expression Levels of YKL-40 in Renal Cell Cancer[J]. J Urol, 2016, 195(4): 1120-1125.
[15] Johansen JS, Christensen IJ, J rgensen LN,etal. Serum YKL-40 in risk assessment for colorectal cancer: a prospective study of 4, 496 subjects at risk of colorectal cancer[J].Cancer Epidemiol Biomarkers Prev, 2015, 24(3): 621-626.
[16] Schmidt IM1, Hall IE, Kale S,etal.Chitinase-Like Protein Brp-39/YKL-40 Modulates the Renal Response to Ischemic Injury and Predicts Delayed Allograft Function[J].J Am Soc Nephrol, 2013, 24(2): 309-319.
[17] Chen CC, Llado V, Eurich K,etal.Carbohydrate-binding motif in chitinase 3-like 1 (CHI3L1/YKL-40) specifically activates Akt signaling pathway in colonic epithelial cells[J].Clin Immunol, 2011, 140(3): 268-275.
[18] Zhang W, Kawanishi M, Miyake K,etal.Association between YKL-40 and adult primary astrocytoma[J].Cancer, 2010, 116(11): 2688-2697.
[19] .Eurich K, Segawa M, Toei-Shimizu S,etal.Potential role of chitinase 3-like-1 in inflammation-associated carcinogenic changes of epithelial cells[J].World J Gastroenterol, 2009, 15(42): 5249-5259.
[20] Chang H, Schimmer AD.Livin/melanoma inhibitor of apoptosis protein as a potential therapeutic target for the treatment of malignancy[J].Mol Cancer Ther, 2007, 6(1): 24-30.
[21] Salvesen GS, Duckett CS.IAP proteins: blocking the road to death’s door[J].Nat Rev Mol Cell Biol, 2002, 3(6): 401-410.
[22] Xi RC, Sheng YR, Chen WH,etal.Expression of survivin and Livin predicts early recurrence in non-muscle invasive bladder cancer[J].J Surg Oncol, 2013, 107(5): 550-554.
[23] Choi J, Hwang YK, Sung KW,etal.Expression of Livin, an antiapoptotic protein, is an independent favorable prognostic factor in childhood acute lymphoblastic leukemia[J].Blood,2007, 109(2): 471-477.
[24] Xiang Y, Yao H, Wang S,etal.Prognostic value of Survivin and Livin in nasopharyngeal carcinoma[J].Laryngoscope, 2006, 116(1): 126-130.
[25] Liu H, Wang S, Sun H,etal.Inhibition of tumorigenesis and invasion of hepatocellular carcinoma by siRNA-mediated silencing of the livin gene[J].Mol Med Rep, 2010, 3(6): 903-907.
[26] Oh BY, Lee RA, Kim KH.siRNA targeting Livin decreases tumor in a xenograft model for colon cancer[J].World J Gastroenterol, 2011, 17(20): 2563-2571.
[27] Ding ZY, Liu GH, Olsson B,etal.Upregulation of the antiapoptotic factor Livin contributes to cisplatin resistance in colon cancer cells[J].Tumour Biol, 2013, 34(2): 683-693.
[28] Mihalache A, Rogoveanu I.Angiogenesis factors involved in the pathogenesis of colorectal cancer[J].Curr Health Sci J, 2014, 40(1): 5-11.
[29] Hu B, Cheng SY.Angiopoietin-2: Development of inhibitors for cancer therapy[J]. Curr Oncol Rep, 2009, 11(2): 111-116.
[30] Fawzy A, Gaafar R, Kasem F,etal.Importance of serum levels of angiopoietin-2 and survivin biomarkers in non-small cell lung cancer[J].J Egypt Natl Cancer Inst, 2012, 24(1): 41-45.
[31] Li C, Sun CJ, Fan JC,etal. Angiopoietin-2 expression is correlated with angiogenesis and overall survival in oral squamous cell carcinoma[J].Med Oncol, 2013, 30(2): 571.
[32] Chen HH, Weng BQ, Cheng KJ,etal. Effect of the vascular endothelial growth factor expression level on angiopoietin-2-mediated nasopharyngeal carcinoma growth[J].Vasc Cell, 2014, 6(1): 4.
[33] Rautiola J, Lampinen A, Mirtti T,etal.Association of Angiopoietin-2 and Ki-67 Expression with Vascular Density and Sunitinib Response in Metastatic Renal Cell Carcinoma[J].PloS One, 2016, 11(4) : e0153745.
[34] Goede V, Coutelle O, Neuneier J,etal.Identification of serum angiopoietin-2 as a biomarker for clinical outcome of colorectal cancer patients treated with bevacizumab-containing therapy[J].Br J Cancer, 2010, 103(9): 1407-1414.
[35] Liu WX, Gu SZ, Zhang S,etal.Angiopoietin and vascular endothelial growth factor expression in colorectal disease models[J].World J Gastroenterol, 2015, 21(9): 2645-2650.
[36] Falcon BL, Hashizume H, Koumoutsakos P,etal.Contrasting actions of selective inhibitors of angiopoietin-1 and angiopoietin-2 on the normalization of tumor blood vessels[J].Am J Pathol, 2009, 175(5): 2159-2170.
[37]Lobov IB, Brooks PC and Lang RA.Angiopoietin-2 displays VEGF-dependent modulation of capillary structure and endothelial cell survival in vivo[J].Proc Natl Acad Sci U S A, 2009, 99(17): 11205-11210.
[38] Li C, Li Q, Cai Y,etal.Overexpression of angiopoietin 2 promotes the formation of oral squamous cell carcinoma by increasing epithelial-mesenchymal transition-induced angiogenesis[J].Cancer Gene Ther, 2016, 23(9): 295-302.
[39] Huang H, Lai J-Y, Do J,etal.Specifically targeting angiopoietin-2 inhibits angiogenesis, Tie2-expressing monocyte infiltration, and tumor growth[J].Clin Cancer Res, 2011, 17(5): 1001 - 1011.
[40] Mazzieri R, Pucci F, Moi D,etal.Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells[J].Cancer cell, 2011, 19(4): 512-526.
[41] Monk BJ, Poveda A, Vergote I,etal.Anti-angiopoietin therapy with trebananib for recurrent ovarian cancer (TRINOVA-1): a randomised, multicentre, double-blind, placebo-controlled phase 3 trial[J].Lancet Oncol, 2014, 15(8): 799 - 808.
[42] Pierpaoli E, Damiani E, Orlando F,etal.Antiangiogenic and antitumor activities of berberine derivative NAX014 compound in a transgenic murine model of HER2/neu-positive mammary carcinoma[J].Carcinogenesis, 2015, 36(10): 1169-1179.
[43] Kim S, Oh SJ, Lee J,etal.Berberine suppresses TPA-induced fibronectin expression through the inhibition of VEGF secretion in breast cancer cells[J].Cell Physiol Biochem, 2013, 32(5): 1541-1550.