張 哲,陶明皓,李俊峰,趙 麗,張 蓉,趙曙光,王景杰
空軍軍醫(yī)大學(xué)唐都醫(yī)院消化內(nèi)科,陜西 西安 710038
炎癥性腸病(inflammatory bowel diseases, IBD)是一種特發(fā)性慢性腸道炎癥性疾病,其病因及發(fā)病機(jī)制復(fù)雜,目前尚未完全闡明。美國(guó)一項(xiàng)流行病學(xué)調(diào)查數(shù)據(jù)顯示,2015年美國(guó)約有100萬(wàn)人罹患IBD[1],且患者數(shù)量逐年上升,發(fā)病年齡逐漸降低[2]。IBD嚴(yán)重影響患者的生活質(zhì)量,給家庭和社會(huì)帶來(lái)沉重的負(fù)擔(dān)。因此,對(duì)于IBD的預(yù)防顯得尤為重要。長(zhǎng)期以來(lái),以“免疫細(xì)胞主導(dǎo)”思路而開展的研究[3-5]尚不能闡明IBD復(fù)雜的發(fā)病機(jī)制,導(dǎo)致診治手段有限。近年來(lái),隨著研究的不斷深入,腸道神經(jīng)膠質(zhì)細(xì)胞(enteric glial cells, EGC)在IBD發(fā)病中的作用引起越來(lái)越多學(xué)者的關(guān)注[6]。EGC作為腸道神經(jīng)系統(tǒng)(enteric nervous system, ENS)中重要的細(xì)胞組成成分,能夠連接腸道神經(jīng)元、免疫細(xì)胞及上皮細(xì)胞,發(fā)揮細(xì)胞間信息傳遞的橋梁作用,在IBD發(fā)生、發(fā)展過(guò)程中發(fā)揮重要的調(diào)控功能[7]。本文針對(duì)近年來(lái)EGC調(diào)控IBD研究的最新進(jìn)展作一概述。
ENS素有“腸腦”之稱,作為外周神經(jīng)系統(tǒng)較為獨(dú)立的機(jī)構(gòu),在維持腸道正常功能中發(fā)揮重要作用。ENS是由多種細(xì)胞構(gòu)成的內(nèi)在網(wǎng)絡(luò),主要包括腸道神經(jīng)元胞體、位于腸道平滑肌層間的Cajal細(xì)胞、中間神經(jīng)元、動(dòng)力神經(jīng)元及EGC。近年研究[8-9]表明,EGC作為一類非神經(jīng)類細(xì)胞,同普通初級(jí)神經(jīng)細(xì)胞一樣,其胞體主要分布于腸道神經(jīng)節(jié)中,但在腸道平滑肌層及黏膜層也有極少數(shù)分布。分布于腸道不同位置的EGC從形態(tài)學(xué)上可分為四型:Ⅰ型為星形膠質(zhì),位于神經(jīng)節(jié)內(nèi);Ⅱ型為神經(jīng)節(jié)之間的EGC;Ⅲ型為黏膜型;Ⅳ型為平滑肌層內(nèi)的EGC[10]。EGC與腸道神經(jīng)元存在廣泛的聯(lián)系,且EGC在形態(tài)上和功能上均與中樞神經(jīng)系統(tǒng)(central nervous system, CNS)的星形膠質(zhì)細(xì)胞功能相似[11]。EGC包繞在相鄰腸道神經(jīng)元的胞體及其軸突突起之間的神經(jīng)元間隙,對(duì)腸道神經(jīng)細(xì)胞起支持、保護(hù)、營(yíng)養(yǎng)和分隔的作用。
2.1EGC介導(dǎo)的“自分泌”調(diào)控機(jī)制既往研究證實(shí),EGC在潰瘍性結(jié)腸炎的慢性炎癥持續(xù)狀態(tài)中發(fā)揮重要作用。因此,與EGC相關(guān)的分子機(jī)制成為研究熱點(diǎn)[12-13]。S100β蛋白是S100超家族中的一員,由2個(gè)同源性的亞基構(gòu)成的二聚體,且是EGC特異性的標(biāo)記物之一。正常狀態(tài)下,EGC即可表達(dá)S100β[14],而其家族中的S100α8、S100α9等僅在炎癥條件下由吞噬細(xì)胞和腸道上皮細(xì)胞合成[15]。新近研究[16-17]表明,活化的EGC可以使S100β的表達(dá)增加,而S100β可以通過(guò)糖基化終產(chǎn)物受體激活相鄰EGC內(nèi)P38絲裂原激活的蛋白激酶信號(hào)通路,而P38的磷酸化進(jìn)而激活核因子NF-κB信號(hào)通路,下游分子P65或P50入核上調(diào)NO、IL-1β及TNF-α等促炎癥因子表達(dá),加劇腸道病變區(qū)域的炎癥反應(yīng)。
2.2EGC介導(dǎo)的“旁分泌”調(diào)控機(jī)制
2.2.1 EGC-腸道神經(jīng)元:EGC-免疫細(xì)胞和腸道神經(jīng)元共同組成ENS。在ENS中,EGC與腸道神經(jīng)元的個(gè)數(shù)比約為4∶1,相鄰的EGC與神經(jīng)元具有豐富的縫隙連接,其構(gòu)成類似于合胞體樣的結(jié)構(gòu),且有大量的轉(zhuǎn)運(yùn)蛋白表達(dá)在細(xì)胞膜上。因此,EGC對(duì)于腸道黏膜細(xì)胞外神經(jīng)遞質(zhì)的調(diào)節(jié)、腸道黏膜微環(huán)境穩(wěn)態(tài)的維持具有非常重要的作用。在形態(tài)學(xué)上,激活的EGC具有體積肥大、S100β蛋白和中間纖維如膠質(zhì)酸性原纖維(glial fibrillary acidic protein, GFAP)合成增加等特性。既往研究[18-19]表明,EGC可以給腸道神經(jīng)元提供三磷酸腺苷(adenosinetriphosphate, ATP),以保證其發(fā)揮生理功能。而腸道神經(jīng)元表達(dá)有大量的嘌呤受體,其中有關(guān)P2X7受體的研究最為廣泛。ATP作為P2X7受體的拮抗劑,在機(jī)體組織損傷或局部炎癥時(shí),發(fā)揮信號(hào)分子的作用。GULBRANSEN等[20]研究表明,在IBD動(dòng)物模型中腸肌層神經(jīng)元密度明顯減少,而給予嘌呤受體P2X7的拮抗劑ATP則可有效減少神經(jīng)元的凋亡,反過(guò)來(lái),給予P2X7受體的激動(dòng)劑BzATP可加速腸肌層神經(jīng)元密度降低。也有研究[21]表明,表達(dá)血細(xì)胞凝集素的EGC轉(zhuǎn)基因小鼠與正常小鼠相比,血細(xì)胞凝集素特異性結(jié)合的CD8+T細(xì)胞能顯著減少EGC的數(shù)量,進(jìn)一步加劇腸道神經(jīng)元的減少。綜上所述,IBD時(shí)腸道炎癥及免疫系統(tǒng)激活均會(huì)誘使腸肌層神經(jīng)元的減少,而活化的EGC可以釋放ATP減少腸道神經(jīng)元凋亡,維持神經(jīng)元的正常功能。
大量研究[22-24]表明,IBD患者腸黏膜內(nèi)大量的肥大細(xì)胞和淋巴細(xì)胞浸潤(rùn),且腸道免疫細(xì)胞如樹突狀細(xì)胞,T、B淋巴細(xì)胞胞膜上存在大量由EGC分泌的神經(jīng)源性營(yíng)養(yǎng)因子受體,提示EGC與腸道免疫細(xì)胞間有緊密聯(lián)系。新近研究[25]表明,在IBD狀態(tài)下,EGC的激活會(huì)伴隨炎癥因子、P物質(zhì)、神經(jīng)肽A及神經(jīng)源性營(yíng)養(yǎng)因子的釋放,這些物質(zhì)作用于免疫細(xì)胞上的相應(yīng)受體,如激活肥大細(xì)胞脫顆粒釋放許多炎癥介質(zhì),如蛋白酶、前列腺素、組胺及細(xì)胞因子等而加劇局部炎癥反應(yīng),促使IBD的發(fā)生與發(fā)展。ESPOSITO等[26]研究表明,EGC表達(dá)的S100β可通過(guò)作用于巨噬細(xì)胞表面的Toll樣受體,進(jìn)而通過(guò)myd88途徑激活NF-κB、MAPK等信號(hào)通路,上調(diào)促炎因子的表達(dá),加劇IBD進(jìn)展。研究[27]報(bào)道,神經(jīng)源性營(yíng)養(yǎng)因子可以作用于NK細(xì)胞表面相關(guān)受體TrkA結(jié)合,特異性抑制NK細(xì)胞脫顆粒,但對(duì)NK細(xì)胞增生與炎癥因子釋放無(wú)影響,為研究EGC與NK細(xì)胞的相互作用在IBD發(fā)生、發(fā)展過(guò)程中的作用提供了新思路。
2.2.2 EGC-腸道上皮細(xì)胞:EGC除了對(duì)腸道神經(jīng)元的營(yíng)養(yǎng)和保護(hù)作用之外,還促進(jìn)腸道黏膜屏障的穩(wěn)定和完整[28]。腸道屏障是通過(guò)調(diào)節(jié)腸道內(nèi)容物來(lái)預(yù)防微生物或病原體的入侵以達(dá)到保護(hù)腸黏膜的一種自身保護(hù)機(jī)制。EGC作為腸道黏膜的監(jiān)視細(xì)胞,可以釋放一些調(diào)節(jié)因子,如膠質(zhì)細(xì)胞衍生的神經(jīng)營(yíng)養(yǎng)因子(glial-derived neurotrophic factor, GDNF)直接調(diào)控腸道上皮細(xì)胞的功能,進(jìn)而影響腸道屏障的穩(wěn)定。對(duì)于EGC如何影響腸道黏膜上皮細(xì)胞屏障的機(jī)制目前尚不明確。既往研究[29-30]表明,GDNF具有抗炎作用,當(dāng)腸道發(fā)生炎性病變時(shí),GDNF即可通過(guò)自分泌方式防止周圍EGC凋亡,也可下調(diào)腸道內(nèi)促炎癥細(xì)胞因子(如IL-1β、IL-6、TNF-α)的表達(dá)水平,降低炎癥反應(yīng),促進(jìn)腸道恢復(fù)。也有研究[31]表明,將EGC與腸道上皮細(xì)胞共培養(yǎng)可以有效提高腸道上皮細(xì)胞的屏障功能,與正?;颊呦啾?,潰瘍性結(jié)腸炎患者的病變部位EGC明顯減少。對(duì)EGC基因敲除小鼠使用GFAP的啟動(dòng)子啟動(dòng)皰疹病毒包裝的胸苷激酶,當(dāng)給予抗病毒藥物更昔洛韋時(shí),小鼠會(huì)因?yàn)榧毙钥漳c回腸炎而迅速死去。同樣利用此轉(zhuǎn)基因小鼠,SAVIDGE等[32]證實(shí),EGC可以分泌S-亞硝基谷胱甘肽來(lái)調(diào)節(jié)相鄰腸道上皮細(xì)胞間的緊密連接,提示EGC在IBD的發(fā)生、發(fā)展中發(fā)揮重要作用。但也有報(bào)道[14,33]稱,當(dāng)腸道的炎性病變轉(zhuǎn)為長(zhǎng)期慢性狀態(tài)時(shí),黏膜內(nèi)EGC會(huì)處于過(guò)度活化狀態(tài),此時(shí)的EGC會(huì)釋放一些促炎神經(jīng)營(yíng)養(yǎng)因子、生長(zhǎng)因子及促炎細(xì)胞因子等反過(guò)來(lái)激活腸道黏膜的免疫細(xì)胞(如巨噬細(xì)胞、中性粒細(xì)胞及肥大細(xì)胞等),釋放組胺及白三烯等促炎物質(zhì),加劇腸道病變。因此,EGC在IBD的發(fā)病過(guò)程中起重要作用。
近年來(lái),隨著研究的不斷深入,IBD與EGC功能紊亂間的關(guān)系愈加肯定。腸道黏膜屏障受損、免疫細(xì)胞功能失調(diào)、腸道神經(jīng)元功能紊亂都在IBD的發(fā)生、發(fā)展中起到重要作用。EGC除了調(diào)節(jié)自身功能外,對(duì)腸道屏障功能、免疫細(xì)胞趨化、神經(jīng)元所處微環(huán)境穩(wěn)態(tài)的維持均發(fā)揮關(guān)鍵作用。深入研究EGC有助于明確其在IBD不同時(shí)期所發(fā)揮的作用,為將EGC的雙向調(diào)節(jié)作用應(yīng)用于IBD的防治提供依據(jù)。通過(guò)對(duì)EGC的進(jìn)一步認(rèn)識(shí),將來(lái)或許可以通過(guò)調(diào)控 EGC而實(shí)現(xiàn)對(duì)IBD的治療甚至治愈的目的。
[1] ANANTHAKRISSHNAN A N. Epidemiology and risk factors for IBD [J]. Nat Rev Gastroenterol Hepatol,2015,12(4):205-217. DOI: 10.1038/nrgastro.2015.34.
[2] SAWCZENKO A, SANDHU B K, LOGAN R F, et al. Prospective survey of childhood inflammatory bowel disease in the British Isles [J]. Lancet, 2001, 357(9262): 1093-1094.
[3] SHOUVAL D S, OUAHED J, BISWAS A, et al. Interleukin 10 receptor signaling: master regulator of intestinal mucosal homeostasis in mice and humans [J]. Adv Immunol, 2014, 122: 177-210.DOI: 10.1016/B978-0-12-800267-4.00005-5.
[4] LI Y, WANG Y, LIU Y, et al. The possible role of the novel cytokines il-35 and il-37 in inflammatory bowel disease [J]. Mediators Inflamm, 2014, 2014: 136329.DOI: 10.1155/2014/136329.
[5] LI C, KUEMMERLE J F. Mechanisms that mediate the development of fibrosis in patients with Crohn’s disease [J]. Inflamm Bowel Dis, 2014, 20(7): 1250-1258.DOI: 10.1097/MIB.0000000000000043.
[6] MARGOLIS K G, GERSHON M D. Enteric neuronal regulation of intestinal inflammation [J]. Trends Neurosci, 2016, 39(9): 614-624. DOI: 10.1016/j.tins.2016.06.007.
[7] YU Y B, LI Y Q. Enteric glial cells and their role in the intestinal epithelial barrier[J]. World J Gastroenterol,2014, 20(32):11273-11280. DOI: 10.3748/wjg.v20.i32.11273.
[8] GOYAL R K, HIRANO I. The enteric nervous system [J]. N Engl J Med, 1996, 334(17): 1106-1115. DOI: 10.1056/NEJM199604253341707.
[9] HOFF S, ZELLER F, VON WEYHERN C W, et al. Quantitative assessment of glial cells in the human and guinea pig enteric nervous system with an anti-Sox8/9/10 antibody [J]. J Comp Neurol, 2008, 509(4): 356-371. DOI: 10.1002/cne.21769.
[10] BOESMANS W, LASRADO R, VANDEN BERGHE P, et al. Heterogeneity and phenotypic plasticity of glial cells in the mammalian enteric nervous system [J]. Glia, 2015, 63(2): 229-241. DOI: 10.1002/glia.22746.
[11] SHARKEY K A. Emerging roles for enteric glia in gastrointestinal disorders [J]. J Clin Invest, 2015, 125(3): 918-925. DOI: 10.1172/JCI76303.
[12] VON BOYEN G, STEINKAMP M. The role of enteric glia in gut inflammation [J]. Neuron Glia Biol, 2010, 6(4): 231-236. DOI: 10.1017/S1740925X11000068.
[13] VON BOYEN G B, STEINKAMP M, REINSHAGEN M, et al. Proinflammatory cytokines increase glial fibrillary acidic protein expression inenteric glia [J]. Gut, 2004, 53(2): 222-228.
[14] CIRILLO C, SAMELLI G, ESPOSITO G, et al. S100B protein in the gut: the evidence for enteroglial-sustained intestinal inflammation [J]. World J Gastroenterol, 2011, 17(10): 1261-126. DOI: 10.3748/wjg.v17.i10.1261.
[15] LEACH S T, YANG Z, MESSINA I, et al. Serum and mucosal S100 proteins, calprotectin (S100A8/S100A9) and S100A12, are elevated at diagnosis in children with inflammatory bowel disease [J]. Scand J Gastroenterol, 2007, 42(11): 1321-1331.DOI: 10.1080/00365520701416709.
[16] ESPOSITO G, DE FILIPPIS D, CIRILLO C, et al. The astroglial-derived S100beta protein stimulates the expression of nitric oxide synthase in rodent macrophages through p38 MAP kinase activation [J]. Life Sci,2006, 78(23):2707-2715. DOI: 10.1016/j.lfs.2005.10.023.
[17] LAM A G, KOPPAL T, AKAMA K T, et al. Mechanism of glial activation by S100B: involvement of the transcription factor NFkappaB [J]. Neurobiol Aging, 2001, 22(5): 765-772.
[18] REN T, QIU Y, WU W, et al. Activation of adenosine A3 receptor alleviates TNF-alpha-induced inflammation through inhibition of the NF-kappaB signaling pathway in human colonic epithelial cells [J]. Mediators Inflamm,2014, 2014:818251. DOI: 10.1155/2014/818251.
[19] OCHOA-CORTES F, TURCO F, LINAN-RICO A, et al. Enteric glial cells: anew frontier in neurogastroenterology and clinical targetfor inflammatory bowel diseases [J]. Inflamm Bowel Dis, 2016, 22(2):433-449. DOI: 10.1097/MIB.0000000000000667.
[20] GULBRANSEN B D, BASHASHATI M, HIROTA S A, et al. Activation of neuronal P2X7 receptor-pannexin-1 mediates death of enteric neurons during colitis [J]. Nat Med, 2012, 18(4): 600-604. DOI: 10.1038/nm.2679.
[21] AUBE A C, CABARROCAS J, BAUER J, et al. Changes in enteric neurone phenotype and intestinal functions in a transgenic mouse model of enteric glia disruption [J]. Gut, 2006, 55(5): 630-637. DOI: 10.1136/gut.2005.067595.
[22] CLARKE G, QUIGLEY E M, CRYAN J F, et al. Irritable bowel syndrome: towards biomarker identification[J]. Trends Mol Med, 2009, 15(10): 478-489. DOI: 10.1016/j.molmed.2009.08.001.
[23] CHADWICK V S, CHEN W, SHU D, et al. Activation of the mucosal immune system in irritable bowel syndrome [J]. Gastroenterology, 2002, 122(7): 1778-1783.
[24] GORAL V, KUCUKONER M, BUYUKBAYRAM H. Mast cells count and serum cytokine levels in patients with irritable bowel syndrome [J]. Hepatogastroenterology, 2010, 57(101): 751-754.
[25] SHARKEY K A, NASSER Y, RUHL A. Enteric glia [J]. Gut, 2004, 53(9): 1390.
[26] ESPOSITO G, CAPOCCIA E, TURCO F, et al. Palmitoylethanolamide improves colon inflammation through an enteric glia/toll like receptor 4-dependent PPAR-alpha activation [J]. Gut, 2014, 63(8): 1300-1312. DOI: 10.1136/gutjnl-2013-305005.
[27] ROSS D T, DUHAIME A C. Degeneration of neurons in the thalamic reticular nucleus following transient ischemia due to raised intracranial pressure: excitotoxic degeneration mediated via non-NMDA receptors [J]. Brain Res, 1989, 501(1): 129-143.
[28] YU Y B, LI Y Q. Enteric glial cells and their role in the intestinal epithelial barrier [J]. World J Gastroenterol, 2014, 20(32): 11273-11280. DOI: 10.3748/wjg.v20.i32.11273.
[29] SAVIDGE T C, NEWMAN P, POTHOULAKIS C, et al. Enteric glia regulate intestinal barrier function and inflammation via release of S-nitrosoglutathione [J]. Gastroenterology, 2007, 132(4): 1344-1358.
[30] BUSH T G, SAVIDGE T C, FREEMAN T C, et al. Fulminant jejuno-ileitis following ablation of enteric glia in adult transgenic mice [J]. Cell, 1998, 93(2): 189-201.
[31]CELIKBILEK A, CELIKBILEK M, SABAH S, et al. The serum S100B level as a biomarker of enteroglialactivation in patients with ulcerativecolitis [J].Int J Inflam, 2014, 2014: 986525. DOI: 10.1155/2014/986525.
[32] SAVIDGE T C, NEWMAN P, PATHOULAKIS C, et al. Enteric glia regulate intestinal barrier function and inflammation via release of S-nitrosoglutathione [J]. Gastroenterology, 2007, 132(4): 1344-1358. DOI: 10.1053/j.gastro.2007.01.051.
[33] VON BOYEN G B, SCHULTE N, PFLUGER C, et al. Distribution of enteric glia and GDNF during gut inflammation [J]. BMC Gastroenterol, 2011, 11: 3. DOI: 10.1186/1471-230X-11-3.