蔣琴素,成琪璐,徐禮根,周啟發(fā)
(1.浙江大學(xué) 農(nóng)業(yè)與生物技術(shù)學(xué)院,浙江 杭州310058; 2.浙江大學(xué) 生命科學(xué)學(xué)院,浙江 杭州310058)
水稻是全球23億農(nóng)民的主要生活來源[1],全球85%的水稻分布在亞洲[2]。在水稻生產(chǎn)中,產(chǎn)量預(yù)測對于農(nóng)業(yè)決策的成功具有重要意義[3]。谷類作物產(chǎn)量預(yù)測的常用方法是分析測定產(chǎn)量的構(gòu)成組分,如穗形態(tài)、單位面積穗數(shù)、單穗粒數(shù)、千粒重、營養(yǎng)轉(zhuǎn)運與分布等[4-7]。這種方法通常費時費力,而光譜遙感方法可快速和低成本地分析植物產(chǎn)量相關(guān)性狀[8]。歸一化差值指數(shù)(normalized vegetation index,NDVI)是應(yīng)用最為廣泛的作物估產(chǎn)植被指數(shù)[9-13],然而,該指數(shù)具有內(nèi)在缺陷(信號飽和)和多源誤差[14]。近年來,光化學(xué)反射指數(shù)(photochemical reflectance index,PRI)越來越多地用于反演作物的光合效率,在反演綠色生物量方面的表現(xiàn)也較好[15]。然而,應(yīng)用PRI進(jìn)行作物產(chǎn)量預(yù)估的研究仍十分有限[16-21]。在水稻光譜估產(chǎn)研究中,冠層光譜反射的應(yīng)用最為廣泛[22-24],作物冠層光譜測定方便,能反映群體信息,但受土壤背景影響大。近年來,有少量研究試圖用葉片光譜反射直接進(jìn)行水稻估產(chǎn)[3]。水稻地上部頂端孕育帶有花序的穗[25],水稻穗部NDVI和PRI對供氮水平的響應(yīng)比較靈敏,同時,氮素狀況是決定水稻產(chǎn)量的關(guān)鍵因子之一[26]。陳維君等[27]的研究結(jié)果表明,mSR705、mND705和PRI等指數(shù)可用于估算穗的色素含量,可作為水稻成熟度的監(jiān)測指標(biāo)。因此,水稻穗部植被指數(shù)具有估產(chǎn)潛能。水稻穗部的色素含量顯著低于葉片,不存在紅波區(qū)域的信號飽和問題,而且,水稻穗部性狀與產(chǎn)量的相關(guān)性比葉片性狀更直接。迄今尚無利用穗部植被指數(shù)進(jìn)行水稻估產(chǎn)的研究報道,本研究旨在探索通過穗部植被指數(shù)進(jìn)行水稻估產(chǎn)的可行性。
以水稻常規(guī)品種浙粳22和雜交品種兩優(yōu)培九為試驗材料,生育期分別為140、145 d左右。
于2015年6—10月在浙江大學(xué)實驗農(nóng)場(30°14′ N,120°10′ E)進(jìn)行田間試驗。土壤為沙壤土(pH 7.2),含有機(jī)碳12.2 g·kg-1、交換性磷6.5 mg·kg-1、交換性鉀38.6 mg·kg-1、全氮1.4 g·kg-1。設(shè)置3個氮水平(0、120、240 kg·N hm-2,分別以N0、N1和N2表示),完全隨機(jī)區(qū)組設(shè)計,3次重復(fù)。小區(qū)面積為4.76 m × 4.68 m,株行距為0.18 m × 0.17 m。50%氮肥(尿素)用作基肥,35%施于分蘗期,15%施于抽穗期。于2015年6月10日播種,7月9日移栽,10月28日收獲。
移栽后第95、98、101天,每小區(qū)取1株水稻帶回實驗室測定光譜。從稻株中隨機(jī)取倒2葉1片和主莖上的穗1枝,用帶積分球(Model LI- 1800,LiCor Inc.,Lincoln,NE,USA)的FieldSpec野外光譜儀(Analytical Spectral Devices,Boulder,CO,USA)測定其在350~2 500 nm的反射光譜,測定時探頭對準(zhǔn)葉片和穗的中心點,每次測定前進(jìn)行白板校正。
光譜測定后,立即取0.20 g葉片和0.50 g穗進(jìn)行光合色素含量測定。用體積比為4.5∶4.5∶1的丙酮∶乙醇∶水混合液提取,按照Chen等[28]的方法測定葉綠素和類胡蘿卜素含量。
收獲時每小區(qū)取1 m2水稻,測定穗長、每穗粒數(shù)、千粒重和籽粒產(chǎn)量。
繪制光譜曲線,對光譜特性進(jìn)行目視解譯。NDVI和PRI分別根據(jù)Rouse等[29]和Peuelas等[30]的公式計算。用SPSS 16.0進(jìn)行方差分析,并計算變量間的相關(guān)系數(shù)。植被指數(shù)與產(chǎn)量間的關(guān)系用線性、冪、指數(shù)和對數(shù)方程擬合,選取具有最高決定系數(shù)(R2)的回歸方程式為最佳關(guān)系式,并計算回歸方程式的均方根誤差(root mean square error,RMSE)。
如表1所示,浙粳22和兩優(yōu)培九的產(chǎn)量均隨施氮水平的增加而提高,證明氮素狀況是產(chǎn)量的決定因素之一。雜交稻兩優(yōu)培九穗長、穗粒數(shù)、籽粒產(chǎn)量均極顯著(P<0.01)高于常規(guī)品種浙粳22。
表1三個施氮水平下供試水稻的產(chǎn)量構(gòu)成及籽粒產(chǎn)量
Table1Yield components and grain yield of rice grown under three N levels (n=3)
品種Genotypes氮水平Nlevel/(kg·hm-2)穗長Paniclelength/cm穗粒數(shù)Grainsperpanicle千粒重1000grain-weight/g籽粒產(chǎn)量Grainyield/(kg·hm-2)ZJ22017.2±0.3B174±4B26.3±0.2A6054.2±100.3B12016.8±0.4B188±3B26.1±0.1A7002.2±143.4B24016.8±0.3B191±2B26.2±0.1A7196.3±72.0BLYPJ024.4±0.9A196±7A26.6±0.1A6906.4±48.5A12024.8±1.0A225±6A26.2±0.2A8062.2±133.3A24024.5±0.7A254±5A25.9±0.1A9617.7±253.7A
ZJ22,浙粳22;LYPJ,兩優(yōu)培九。相同供氮水平下,同列數(shù)據(jù)后無相同大寫字母分別表示差異極顯著(P<0.01)。
ZJ22, Zhejing 22; LYPJ, Liangyoupei 9. Values without the same uppercase letters at the same N level are significantly different atP<0.01.
圖1表明,在由葉綠素主導(dǎo)的可見光區(qū)域,葉片的反射光譜在550 nm附近有尖銳的綠峰,而穗的反射光譜中此綠峰消失,這可能與穗葉綠素含量較低有關(guān)。另外,在由葉片結(jié)構(gòu)主導(dǎo)的近紅外區(qū)域,穗在970和1 180 nm附近的反射谷明顯比葉片深,而在由水分主導(dǎo)的短波紅外區(qū)域,二者的光譜特性相似。
水稻葉片葉綠素含量(圖2)比穗葉綠素含量(圖3)高1個量級左右。葉片和穗的葉綠素含量均隨施氮水平的提高而提高,而葉片和穗的類胡蘿卜素含量隨施氮水平的變化不顯著。兩優(yōu)培九與浙粳22的葉片葉綠素含量差異不顯著(P>0.05),但兩優(yōu)培九穗的葉綠素含量極顯著(P<0.01)高于浙粳22。比較圖2和圖3的結(jié)果可發(fā)現(xiàn),穗的葉綠素和類胡蘿卜素含量均極顯著(P<0.01)低于葉片。
表2表明,葉片和穗的NDVI均與葉綠素含量、葉綠素/類胡蘿卜素呈極顯著(P<0.01)正相關(guān),而且穗部的相關(guān)性高于葉片。葉片和穗的PRI與葉綠素含量、葉綠素/類胡蘿卜素也呈極顯著(P<0.01)正相關(guān),而且PRI與葉綠素/類胡蘿卜素的相關(guān)性明顯強(qiáng)于NDVI,這與前人的研究結(jié)果相符[16-18]。由于PRI可測量綠峰兩側(cè)的相對反射,因此,可用來指示葉綠素/類胡蘿卜素以及光合效率[15]。
圖1 水稻葉片和穗的平均反射光譜(n=54)Fig.1 Mean (n=54) reflectance spectra of leaves and panicles in rice plants
方差分析結(jié)果表明,品種、氮素水平和生育時期對NDVI、PRI均有顯著影響(表3)。由表4
X軸中95、98和101分別表示移栽后95、98和101 d,N0、N1和N2分別表示N水平為0、120、240 kg·hm-2。Chl和Car分別表示葉綠素和類胡蘿卜素,ZJ22和LYPJ分別表示浙粳22和兩優(yōu)培九。圖3同In X axis, 95, 98 and 101 represented 95, 98 and 101 d after transplant, respectively, and N0,N1 and N2 represented 0, 120 and 240 kg·hm-2 N level. Chl and Car represented chlorophyll and carotenoid, respectively, while ZJ22 and LYPJ represented Zhejing 22 and Liangyoupeijiu, respectively. The same as in Fig. 3圖2 不同氮水平下兩個水稻品種的葉片色素含量Fig.2 Chlorophyll and carotenoid contents in rice leaves of two genotypes rice grown under three N levels
圖3 不同氮水平下兩個水稻品種的稻穗色素含量Fig.3 Chlorophyll and carotenoid contents in rice panicle of two genotypes rice grown under three N levels
可知,葉片和穗的NDVI與PRI均隨著氮水平增加而增加,本研究結(jié)果與Zhou等[26]的研究結(jié)果相符。兩優(yōu)培九的葉片NDVI在3個氮水平間差異不顯著(P>0.05);浙粳22的葉片NDVI在3個氮水平下有差異,處理N0顯著(P<0.05)低于處理N1和N2,處理N1和N2差異不顯著(P>0.05)。3個氮水平下兩優(yōu)培九的葉片PRI差異均顯著(P<0.05);浙粳22的葉片PRI與葉片NDVI相似,處理N0顯著(P<0.05)低于處理N1和N2,處理N1和N2差異不顯著(P>0.05)。兩優(yōu)培九、浙粳22的穗NDVI和PRI在3個氮水平間的差異均顯著(P<0.05)(表5)。
表6為基于NDVI和PRI的產(chǎn)量預(yù)測結(jié)果。葉片指數(shù)-產(chǎn)量間最佳關(guān)系式為線性方程式或指數(shù)方程式,而穗NDVI-產(chǎn)量和穗PRI-產(chǎn)量的最佳關(guān)系式均為指數(shù)方程式。葉片NDVI和穗NDVI可分別解釋1%~40%和56%~64%的產(chǎn)量變異,而葉片PRI和穗PRI可分別解釋38%~61%和69%~77%的產(chǎn)量變異。葉片NDVI和PRI預(yù)測產(chǎn)量的RSME分別為873.4~1 125.0、723.3~889.4 kg·hm-2,而穗NDVI和PRI預(yù)測產(chǎn)量的RSME分別為681.7~743.1、515.0~637.8 kg·hm-2,表明穗光譜指數(shù)對產(chǎn)量的預(yù)測精度高于葉片光譜指數(shù)。其中,用移栽后101 d的穗PRI預(yù)測產(chǎn)量,精度最高,其RMSE為515.0 kg·hm-2,R2=0.77(n=18)。
表2水稻葉片和穗光譜指數(shù)與色素含量的相關(guān)性
Table2The correlation coefficients between the vegetation indices (VIs) and the pigment concentrations in the rice leaves and panicles(n=54)
植被指數(shù)Vegetationindices葉綠素Chlorophyll葉片Leaf穗Panicle類胡蘿卜素Carotenoid葉片Leaf穗Panicle葉綠素/類胡蘿卜素Chlorophyll/Carotenoid葉片Leaf穗PanicleNDVI0.56**0.71**-0.240.42**0.54**0.63**PRI0.60**0.73**-0.55**0.170.72**0.82**
*和**分別表示在0.05和0.01水平顯著相關(guān)。下同。
* and ** were significantly correlated at 0.05 and 0.01 levels, respectively.The same as below.
表3葉片和穗光譜指數(shù)的方差分析
Table3The ANOVA results of the rice leaf and panicle vegetation indices
來源Sourcesdf葉片Leaf穗PanicleNDVI的F值FvaluesforNDVI葉片Leaf穗PaniclePRI的F值FvaluesforPRI葉片Leaf穗Panicle品種Genotype114.177*25.352***11.134**238.135***N水平Nlevel2217.552***25.996***34.091***31.814***生育時期Date224.540*35.072***22.467***79.074***Genotype×Nlevel224.685*1.6845.891**0.849Genotype×Date222.3411.3623.737*2.750Nlevel×Date440.1130.3130.4501.158Genotype×Nlevel×Date440.6850.5830.3211.350誤差Error3636總和Total5454
***表示在0.001水平差異顯著。
*** represented significant differences at levels ofP<0.001.
表4兩個水稻品種葉片在不同時期不同氮水平下的NDVI和PRI
Table4Leaf NDVI and PRI in two genotypes rice plants grown under three N levels at different dates
移栽后天數(shù)Daysaftertransplant氮水平Nlevel/(kg·hm-2)NDVIZJ22LYPJPRIZJ22LYPJ9500.690b0.684a0.013b0.004c1200.695a0.704a0.019a0.018b2400.697a0.716a0.019a0.033a9800.710b0.682a0.008b-0.010c1200.728a0.716a0.017a0.007b2400.734a0.724a0.023a0.017a10100.704b0.690a-0.002b-0.023c1200.724a0.706a0.009a-0.003b2400.733a0.714a0.014a0.012a
相同移栽天數(shù)同列數(shù)據(jù)后無相同小寫字母的表示差異顯著(P<0.05)。下同。
Date marked by no same letters within the same colunn after the same transplantation days indicated significant difference atP<0.05. The same as below.
表5兩個水稻品種穗在不同時期不同氮水平下的NDVI和PRI
Table5Panicle NDVI and PRI in of two genotypes rice plants grown under three N levels at different dates
移栽后天數(shù)Daysaftertransplant氮水平Nlevel/(kg·hm-2)NDVIZJ22LYPJPRIZJ22LYPJ9500.385c0.404c-0.073c-0.051c1200.422b0.463b-0.064b-0.045b2400.476a0.515a-0.055a-0.037a9800.312c0.362c-0.085c-0.062c1200.365b0.425b-0.080b-0.049b2400.401a0.472a-0.074a-0.039a10100.258c0.281c-0.083c-0.074c1200.309b0.386b-0.079b-0.064b2400.340a0.434a-0.071a-0.058a
表6基于水稻葉片和穗光譜指數(shù)的產(chǎn)量預(yù)測結(jié)果
Table6Rice grain yield prediction equations based on leaf vegetation indices and panicle vegetation indices
植被指數(shù)Index器官Organ移栽后天數(shù)Daysaftertransplant產(chǎn)量預(yù)測式Y(jié)ieldpredictionequationR2RMSE/(kg·hm-2)NDVI葉Leaf95y=25038x-9950.20.40873.4葉Leaf98y=18220x-55990.141049.4葉Leaf101y=5010.1e0.5504x0.011125.0穗Panicle95y=2953.1e2.0655x0.56743.1穗Panicle98y=3583.7e1.8592x0.64681.7穗Panicle101y=3854.4e2.4409x0.59708.8PRI葉Leaf95y=66789x+6290.00.38889.4葉Leaf98y=6692.3e9.6085x0.61723.3葉Leaf101y=7355.1e7.5075x0.53808.4穗Panicle95y=12398e9.5362x0.70630.1穗Panicle98y=13658e8.9831x0.69637.8穗Panicle101y=19783e13.468x0.77515.0
水稻穗的反射光譜曲線中出現(xiàn)綠峰缺失現(xiàn)象,與葉片光譜指數(shù)相比,穗光譜指數(shù)與葉綠素含量、葉綠素/類胡蘿卜素間的相關(guān)性更強(qiáng),能更準(zhǔn)確地區(qū)分氮素水平,因此,可用于水稻產(chǎn)量預(yù)測。葉片NDVI和PRI預(yù)測產(chǎn)量的RSME分別為873.4~1 125.0、723.3~889.4 kg·hm-2,而穗NDVI和PRI預(yù)測產(chǎn)量的RSME分別為681.7~743.1和515.0~637.8 kg·hm-2。在中高濃度的葉綠素條件下,葉片反射在675 nm附近區(qū)域出現(xiàn)飽和[31],這可能是葉片光譜指數(shù)區(qū)分氮素水平效果不佳的原因。穗的葉綠素含量低,不會出現(xiàn)信號飽和問題。由于氮素狀況是決定產(chǎn)量的關(guān)鍵因子之一,穗光譜植被指數(shù)在產(chǎn)量預(yù)測方面的表現(xiàn)可能優(yōu)于葉片光譜植被指數(shù)。本研究還表明,在3個測產(chǎn)時期(移栽后95、98、101 d)中,用移栽后101 d的穗PRI預(yù)測產(chǎn)量的精度最高,這可能是因為在移栽后101 d穗的葉綠素含量較低(0.05~0.13 mg·g-1),能更敏感地指示水稻產(chǎn)量。目前,人工水稻測產(chǎn)方法主要是測量水稻產(chǎn)量性狀(如株數(shù)、穗部形態(tài)、每穗粒數(shù)、千粒重等),通常費時費力。作物冠層光學(xué)遙感提供了一種快速而廉價的水稻測產(chǎn)方法,并可提供育種所需的產(chǎn)量相關(guān)性狀的信息[8]。在先前谷類作物的光譜估產(chǎn)研究中,絕大多數(shù)研究聚焦于營養(yǎng)生長期,因此,所獲取的光譜信息不能反映穗部特征。近年來有少量研究用生殖生長期的光譜進(jìn)行估產(chǎn),獲得了較高的估產(chǎn)精度[8,32-33]。本研究首次嘗試用單穗的高光譜特性進(jìn)行水稻估產(chǎn),結(jié)果表明,水稻穗部高光譜反射特征在水稻測產(chǎn)方面有應(yīng)用潛力,能直接反映穗部結(jié)構(gòu)特征和生化組成,可為品種選育提供重要技術(shù)參數(shù)。
[1] MOHANTY S. The global rice market: where is it going[J].RiceToday, 2010 (9): 42-43.
[2] ZEIGLER R S. Bringing hope: Improving lives[C]. IRRI. International Rice Research Institutes, 2006: 7-12.
[3] ALI A M, THIND H S, SHARMA S, et al. Prediction of dry direct- seeded rice yields using chlorophyll meter, leaf color chart and GreenSeeker optical sensor in northwestern India[J].FieldCropsResearch, 2014, 161(1385): 11-15.
[4] FISCHER R A, STOCKMAN Y M. Kernel number per spike in wheat (TriticumaestivumL.): Responses to preanthesis shading[J].FunctionalPlantBiology, 1980, 7(2): 169-180.
[5] STOCKMAN Y M, FISCHER R A, BRITTAIN E G. Assimilate supply and floret development within the spike of wheat (TriticumaestivumL.)[J].FunctionalPlantBiology, 1983, 10(6): 585-594.
[6] ABBATE P E, ANDRADE F H, CULOT J P, et al. Grain yield in wheat: effects of radiation during spike growth period[J].FieldCropsResearch, 1997, 54(2/3): 245-257.
[7] ZHANG H C, WANG X Q, DAI Q G, et al. Effects of N- application rate on yield, quality and characters of nitrogen uptake of hybrid rice variety Liangyoupeijiu[J].ScientiaAgriculturaSinica, 2003,36(7): 800-806.
[8] ERDLE K, MISTELE B, SCHMIDHALTER U. Spectral assessments of phenotypic differences in spike development during grain filling affected by varying N supply in wheat[J].JournalofPlantNutritionandSoilScience, 2013, 176(6): 952-963.
[9] SHIBAYAMA M, AKIYAMA T. Estimating grain- yield of maturing rice canopies using high resolution reflectance measurement[J].RemoteSensingofEnvironment, 1991, 36(1): 45-53.
[10] GROTEN S M E. NDVI- crop monitoring and early yield assessment of Burkina Faso[J].InternationalJournalofRemoteSensing, 1993, 14(8): 1495-1515.
[11] HARRELL D L, TUBAA B S, WALKER T W, et al. Estimating rice grain yield potential using normalized difference vegetation index[J].AgronomyJournal, 2011, 103(6):1717-1723.
[12] MERONI M, MARINHO E, SGHAIER N, et al. Remote sensing based yield estimation in a Stochastic framework- Case study of durum wheat in Tunisia[J].RemoteSensing, 2013, 5(2): 539-557.
[13] KOWALIKA W, DABROWSKA- ZIELINSKAA K, MERONIB M, et al. Yield estimation using SPOT- VEGETATION products: A case study of wheat in European countries[J].InternationalJournalofAppliedEarthObservationandGeoinformation, 2014, 32(10): 228-239.
[14] GOBRON N, PINTY B, VERSTRAETE M M. Theoretical limits to the estimation of the leaf area index on the basis of visible and near- infrared remote sensing data[J].IEEETransactionsonGeoscience&RemoteSensing, 1997, 35(6): 1438-1445.
[15] GARBULSKY M F, PEUELAS J, GAMON J, et al. The photochemical reflectance index (PRI) and the remote sensing of leaf, canopy and ecosystem radiation use efficiencies: A review and meta- analysis[J].RemoteSensingofEnvironment, 2011, 115(2): 281-297.
[16] APARICIO N, VILLEGAS D, CASADESUS J, et al. Spectral vegetation indices as nondestructive tools for determining durum wheat yield[J].AgronomyJournal, 2000, 92(1): 83-91.
[17] VILLEGAS D. Usefulness of spectral reflectance indices as durum wheat yield predictors under contrasting Mediterranean conditions[J].InternationalJournalofRemoteSensing, 2003, 24(22): 4403-4419.
[18] UNO Y, PRASHER S O, LACROIX R, et al. Artificial neural networks to predict corn yield from compact airborne spectrographic imager data[J].Computers&ElectronicsinAgriculture, 2005, 47(2): 149-161.
[19] STRCHAN I B, PATTEY E, SALUSTRO C, et al. Use of hyperspectral remote sensing to estimate the gross photosynthesis of agricultural fields[J].CanadianJournalofRemoteSensing, 2008, 34(3): 333-341.
[20] YE X J, SAKAI K, SASAO A, et al. Estimation of citrus yield from canopy spectral features determined by airborne hyperspectral imagery[J].InternationalJournalofRemoteSensing, 2009, 30(18): 4621-4642.
[21] LIU J G, PATTEY E, MILLER J R, et al. Estimating crop stresses, aboveground dry biomass and yield of corn using multi- temporal optical data combined with a radiation use efficiency model[J].RemoteSensingofEnvironment, 2010, 114(6): 1167-1177.
[22] CASANOVA D, EPEMA G F, GOUDRIAAN J. Monitoring rice reflectance at field level for estimating biomass and LAI[J].FieldCropsResearch, 1998, 55(1/2): 83-92.
[23] CHANG K W, SHEN Y, LO J C. Predicting rice yield using canopy reflectance measured at booting stage[J].AgronomyJournal, 2005, 97(3): 872-878.
[24] SWAIN KC, THOMSON S J, JAYASURIYA H P W. Adoption of an unmanned helicopter for low- altitude remote sensing to estimate yield and total biomass of a rice crop[J].TransactionsoftheASABE, 2010, 53 (1): 21-27.
[25] DE DATTA S K. Principles and practices of rice production[M].[2017- 01- 11]. New York: Wiley, 1981.
[26] ZHOU Q F, WANG J H. Leaf and spike reflectance spectra of rice with contrasting nitrogen supplemental levels[J].InternationalJournalofRemoteSensing, 2003, 24 (7): 1587-1593.
[27] 陳維君, 周啟發(fā), 黃敬峰. 用高光譜植被指數(shù)估算水稻乳熟后葉片和穗的色素含量[J]. 中國水稻科學(xué), 2006, 20(4): 434-439.
CHEN W J, ZHOU Q F, HUANG J F. Estimating pigment contents in leaves and panicles of rice after milky ripening by hyperspectral vegetation indices[J].ChineseJournalofRiceScience, 2006, 20(4): 434-439. (in Chinese with English abstract).
[28] CHEN L, HUANG J F, WANG F M, et al. Comparison between back propagation neural network and regression models for the estimation of pigment content in rice leaves and panicles using hyperspectral data[J].InternationalJournalofRemoteSensing, 2007, 28 (16): 3457-3478.
[29] ROUSE J W J, HAAS R H, SCHELL J A, et al. Monitoring vegetation systems in the great plains with erts[J].NasaSpecialPublication, 1974, 351:309.
[31] THOMAS J R, GAUSMAN H W. Leaf reflectance vs. leaf chlorophyll and carotenoid concentrations for eight crops1[J].AgronomyJournal, 1977, 69(5): 799-802.
[32] APARICIO N, VILLEGAS D, CASADESUS J, et al. Spectral vegetation indices as nondestructive tools for determining durum wheat yield[J].AgronomyJournal, 2000, 92(1): 83-91.
[33] PRASAD B, CARVER B F, STONE M L, et al. Potential use of spectral reflectance indices as a selection tool for grain yield in winter wheat under great plains conditions[J].CropScience, 2007, 47(4):1426-1440.