• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Correlating mode-I fracture toughness and mechanical properties of heat-treated crystalline rocks

    2018-03-01 03:16:21MyukhTlukdrDebnjnGuhRoySingh

    Myukh Tlukdr,Debnjn Guh Roy,T.N.Singh

    aIndian Institute of Technology Bombay,Powai,Mumbai,400076,India

    bIITB-Monash Research Academy,Indian Institute of Technology Bombay,Powai,Mumbai,400076,India

    *Corresponding author.

    E-mail address:geo.debanjan@gmail.com(D.Guha Roy).

    Peer review under responsibility of Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.

    https://doi.org/10.1016/j.jrmge.2017.09.009

    1674-7755?2018 Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.Production and hosting by Elsevier B.V.This is an open access article under the CC BYNC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    1.Introduction

    Climate change and energy security are the hot topics in the world.Rising economies like China and India are among the biggest consumers of energy in the present era.But concerns regarding the global warming have led to general consensus that greenhouse gas sources such as thermal power plants,cement factories,refineries,and hydrocarbon fuelled transports must be reduced substantially.Therefore,conventional energy must be replaced with renewable energy.In India,coal-based thermal power plant is still the major source of electricity.And the development of multiple renewable energies is the basis of the switch from coal-based power to alternative clean energy sources.Among these clean energy sources,geothermal energy holds a prominent position in India.

    India has seven geothermal provinces with various lithological and tectonic settings.Among them,the Deccan Volcanic Province(DVP),which covers 50,000 km2of area in central and western India,is particularly interesting.Here,18 geothermal springs with temperatures varying from 47°C to 72°C have already been investigated by Varun et al.(2012).Additionally,peninsular gneiss of South India has recently been identified as a new potential geothermal energy source(Singh et al.,2014).These two areas are shown in Fig.1.

    Development of any geothermal energy project needs an indepth understanding of the geochemical and mechanical properties of the host rock.Fracture toughness(FT)and mechanical properties are particularly essential for designing the hydraulic fractures in enhanced geothermal systems.Additionally,these properties have tremendous implications in tunnelling,underground excavation,waste disposal site selection,and various problems in reservoir geomechanics.Therefore,it is required to have a good understanding of the effect of ambient geological conditions on FT and mechanical properties of crystalline rocks.One important geological parameter is the subsurface temperature.It is well documented that in geothermal systems,temperature can rise up to 200°C;in underground nuclear disposal sites,temperature varies from 100°C to 300°C,if not properly sealed;and in drilling operations down-hole,temperature can be as high as 1000°C(Paquet and Fran?ois,1980;Heuze,1983;Maheshwar et al.,2015;Shao et al.,2015;Verma et al.,2015;Zhao,2016).

    Fig.1.(a)Geological map of Maharashtra(modified after Geological Survey of India,2018a),and(b)Geological map of Karnataka(modified after Geological Survey of India,2018b).

    Several researchers have investigated the temperature dependent mechanical properties and FT of sedimentary and crystalline rocks(Funatsu et al.,2004,2014;Nasseri et al.,2007;Kim and Kemeny,2008;Meier et al.,2009;Vishal et al.,2011;Yin et al.,2012;Ranjith et al.,2012;Liu and Xu,2014;Guha Roy and Singh,2016).Meredith and Atkinson(1985)measured the FT value of the double torsion specimens of Westerlygranite and Black gabbro.They reported that in both the rocks,FT increased slightlyat the beginning,and then decreased steadily at temperature above 200°C.Duclos and Paquet(1991)reported a similar decreasing trend of mode-I FT of basalt with increasing temperature.Nasseri et al.(2007)suggested that the FT of Westerly granite decreased by more than 90%from room temperature to 800°C.Such pattern was also observed by Yin et al.(2015)for Laurentian granite at several loading rates.Investigation on the temperature-dependent strength of crystalline rocks also revealed similar pattern.Bauer and Johnson(1979),Homand-Etienne and Houpert(1989),Dwivedi et al.(2008),and Vishal et al.(2011)conducted experiments on different types of crystalline rocks and they all reported that the strength of rock decreased with increasing ambient temperature.Dwivedi et al.(2008)showed that the tensile strength(TS)of Indian granite decreased by nearly 27%from room temperature to 150°C,whereas Vishal et al.(2011)reported that TS of khondalite initially increased till 100°C,and then declined steadily.Similar reduction in Young’s modulus(YM)and ultrasonic velocities(P-and S-wave)has also been reported by other researchers for various kinds of rock(Heuze,1983;Rao et al.,2007;Wu et al.,2013;Zhang et al.,2015).

    In spite of great progress made in the laboratory studies concerning the temperature-dependent behaviours of rock properties,major limitations exist in terms of practical and field-scale applications.Sometimes rock cores cannot be retrieved fromgeothermal wells due to adverse drilling,geological,or economic situations.Even in the cases where rock cores are available,the measurement of FT could be very complex and time-consuming.Additionally,preparation of specimens as per the standard is extremely difficult in fragile and low-strength rocks.Therefore,it is essential to develop indirect prediction method,by which the mechanical properties measured from the traditional well-log data can be used to predict the FT.Past research shows that empirical correlations can be developed between FT and mechanical properties for dry rocks at room temperature(Guha Roy et al.,2017).But no investigation has been done so far to evaluate whether such relationship still exists at elevated temperatures.This issue will be investigated in this work with crystalline rock as a sample.

    In this paper,three different types of crystalline rocks,i.e.massive basalt and giant plagioclase basalt(GPB)collected from DVP,as well as tonalite collected from the peninsular gneiss,have been experimentally investigated at temperatures varying from room temperature(25°C)to 600°C.The measurement of FT and mechanical properties as per the International Society for Rock Mechanics(ISRM)standards were conducted at each temperature level.This investigation tries to understand the extent of damage,degradation of stiffness,and change in FT value with temperature.Also,the correlation between FT and other mechanical properties have been established to develop prediction models.

    2.Laboratory investigation

    2.1.Petrography

    The petrographic study was conducted under a Leica microscope with representative samples of the rocks prepared in to 30μm thick slides.Minerals were identified based on their optical properties under plane-and cross-polarized light(see Fig.2).Based on the observations,the mineralogical contents in the specimens were calculated.Results show that GPB consists of plagioclase,pyroxene,olivine, biotite,clay and opaque minerals;tonalite contains plagioclase(Plag), micro-cline(Mic),opaque minerals,biotite(Bt),and muscovite;and massive basalt is composed of plagioclase,pyroxene,biotite,olivine and opaque minerals(OM),in decreasing order.GPB samples have conspicuous euhedral plagioclase laths in a fine-grained groundmass of olivine and pyroxene called porphyritic texture.Tonalite samples are enriched in microcline with formation of triple junctions at the boundaries.Basalt samples are very fine grained where plagioclase laths enclose mainly pyroxene with some traces of olivine,biotite,and opaque.

    2.2.Preparation of specimens

    The semi-circular bend(SCB)specimens for FT testing were prepared following the ISRM standard(Kuruppu et al.,2014)and are shown in Fig.3.First,cores were retrieved from the homogenous rock blocks and checked for the damage.Then,undamaged specimens were dried for 72 h.These undamaged specimens were further cut into halves and notched as per dimensions recommended in the standard.Following the recommendations of both ISRM and American Society for Testing and Materials(ASTM),mechanical properties,including TS(ASTM D2845-08,2008),ultrasonic velocities,and YM(ASTM D3967-08,2008),were tested.The specimen dimensions used for the experiments are shown in Table 1.The average mechanical properties of the untreated rocks are shown in Table 2.At each temperature level,specimens were treated for 30 d.A constant heating rate of 5°C/min and cooling rate of 5.3°C/min were maintained for all the temperature levels.The treated specimens were air-cooled to room temperature for 24 h before testing.Slow rates of heating and cooling help in avoiding thermal shock and making the temperature distribution uniform.For each data point,at least three specimens were tested and the average value was used.

    2.3.Mode-I FT calculation

    FT represents the resistance of any material against crack propagation.It helps to define the stress distribution in front of a crack tip(Liu,1983;Kanninen and Popelar,1985).Therefore,FT is considered as a material property.Many kinds of specimens with different geometries and test configurations have been proposed to correctly calculate different modes of FT,such as cracked chevron notched Brazilian disc(Fowell,1995;Khan and Al-Shayea,2000;Chang et al.,2002),short rod specimen(Matsuki et al.,1991),chevron bend specimen(Ouchterlony,1990),and SCB specimen(Kuruppu et al.,2014).Among them,SCB specimen has beenwidely used to measure the mode-I FT of different rocks due to its easier specimen preparation,simple instrumental configuration,and convenient experimental set-up(Funatsu et al.,2004,2014;Ayatollahi and Aliha,2006;Kuruppu and Chong,2012;Ayatollahi et al.,2016).

    For mode-I FT testing,SCB specimens are prepared with a notch maintaining 0°angle with loading direction.These specimens are then placed in a three-point bend set-up,loaded in a universal testing machine and compressed up to failure.Schematic diagram of the loading unit and a SCB specimen is shown in Fig.4.A slow and steady displacement rate of 0.2 mm/min was maintained to avoid the effect of impact.The calculation of FT for such specimens is based on the work of Kuruppu et al.(2014).Here,mode-I FT is calculated as

    whereKICis the fracture toughness,Y′is the dimensionless stress intensity factor,ais the notch length,Ris the radius of the specimen,andBis the thickness of the specimen.

    For mode-I FT calculation,Y′is calculated as

    whereβ=a/Randsis the span between the bottom two rollers.

    Fig.3.Semi-circular bend specimens of(a)massive basalt,(b)giant plagioclase basalt,and(c)tonalite.

    Table 1Geometry specification for the specimens.

    Table 2Average mechanical properties of untreated rocks.

    Fig.4.(a)Universal testing machine and(b)Three-point bend set-up.

    3.Results and discussion

    3.1.Effect of temperature on FT

    Effects of heat treatment on mode-I FT of massive basalt,GPB and tonalite are shown in Fig.5,where the dimensionless FT has been plotted as a function of the treatment temperature.Here,the dimensionless FT was calculated by dividing the FT at any temperature with the FT at room temperature.The results suggest that the temperature increase has an overall negative effect on FT.Mode-I FT values of GPB and tonalite decreased continuously as temperature increased from room temperature to 200°C,remained almost constant at temperature between200°Cand400°C-500°C,and then continued to decrease until temperature up to 600°C.From room temperature to 200°C,the FT values of GPB and tonalite decreased by nearly 45%and 64%,respectively,whereas FT values of massive basalt increased by 29%.FT values of massive basalt decreased rapidly at temperature above 200°C,and the decrease rate was higher at temperature between 200°C and 400°C than that between 400°C and 600°C.Similar to the present three rocks,degrading values of FT have been reported for gabbro,basalt,and Westerly granite(Meredith and Atkinson,1985;Duclos and Paquet,1991).Such decreasing trend indicates that the size of thermal damage zone in rocks is increasing gradually(Balme et al.,2004;Yin et al.,2012).Similar to the behaviour of massive basalt,Meredith and Atkinson(1985),Funatsu et al.(2004),and Rao et al.(2007)also reported an initial increase in toughness till 100°C-200°C and a subsequent reduction in higher temperatures.Various researchers have attributed the initial increasing trend to the increase in rock stiffness due to thermal expansion of minerals,and absence of pore water.Balme et al.(2004)explained that thermal expansion of minerals leads to micro crack closure,and this suppression in micro crack linkage causes the increase in toughness.The continuous reduction of toughness in GPB and tonalite and the reduction of toughness in massive basalt above temperature 200°C are likely due to the development of numerous micro cracks throughout the specimens.Increase in treatment temperature causes the development of differential stress at the grain boundaries.And if the differential stress is greater than the TS,new cracks initiate.As explained by Meredith and Atkinson(1985)and Funatsu et al.(2014),generation of a large number of thermal micro cracks reduces the shear resistance and effective stress intensity factor of rocks.As the treatment temperature increases,micro crack density increases and pre-existing cracks become wider.In many cases,these cracks mayexp and and merge with each other,creating irreversible thermal damage to the material,and leading to a drastic reduction in stiffness(Somerton,1992;Tian et al.,2012).

    Fig.5.Change in dimensionless FT with temperature.

    3.2.Relationship between FT and TS

    TS parameter is one of the most easily determined properties in the laboratory and log analysis.Moreover,both FT and TS indicate resistance against material failure.Previous researches showed that TS was strongly affected by temperature,and most rocks showed an overall decreasing trend(Bauer and Johnson,1979;Homand-Etienne and Houpert,1989;Vishal et al.,2011;Liu and Xu,2014).Also,at room temperature,TS and FT were determined to be strongly linearly correlated with each other(Zhang,2002;Jin et al.,2011).But no work explores whether such relationship holds true in crystalline rocks at elevated temperatures.In this paper,mode-I FT values of the three rocks have been plotted along with TS in Fig.6.The results suggest that,FT is exponentially correlated with TS in all the rocks.And the exact trend is strongly controlled by the rock type.The relationships can be expressed as below:

    Subsequently,results from Duclos and Paquet(1991)and Yin et al.(2012,2015)on glassy basalt and Laurentian granite have also been plotted along with present data for comparison purpose.The plots suggest that both of them confirm the exponential relationship between the mode-I FT and TS at elevated temperatures.

    3.3.Relationship between FT and ultrasonic velocities

    Dimensionless ultrasonic velocities(P-and S-waves)of the heat-treated specimens as measured by the PUNDIT(portable ultrasonic non-destructive imaging tester)instrument have been plotted along with the dimensionless FT in Fig.7.Similar to the TS,ultrasonic velocities also maintain exponential relationship with the mode-I FT of crystalline rocks.As the figure suggests,compared to massive basalt,the relationships between FT and P-wave velocity are more obvious in GPB and tonalite.Also,the dispersion of data points suggests that across different temperatures,S-wave velocities vary more than P-wave velocities.The relationships between FT and P-wave velocity of the three crystalline rocks are expressed as below:

    Fig.6.Relationship between dimensionless FT and dimensionless TS at elevated temperatures.

    Fig.7.Dimensionless fracture toughness versus(a)dimensionless P-wave velocity and(b)dimensionless S-wave velocity.

    The results suggest that P-wave velocity is more sensitive than S-wave velocity,and can well represent simultaneous changes in mechanical properties.This explained why the relationship between S-wave velocity and FT is less obvious in massive basalt and tonalite.

    3.4.Relationship between FT and YM

    YM represents the stiffness of a material and the ability to deform under axial stress applied.As discussed previously,thermal damage causes initiation of numerous micro-fractures.With continuous exposure,these cracks expand and merge with each other,reducing the stiffness of the rocks.Therefore,heat-treatment temperature has an immense effect on this parameter.In Fig.8,the relationship between the mode-I FT and YM of the heat-treated crystalline rocks has been plotted.Across all the temperature levels,these two rock parameters maintain an exponential relationship.Among the three rocks,the relationship in GPB is most obvious,followed by massive basalt and tonalite.The relationships can be expressed as follows:

    Fig.8.Relationship between dimensionless FT and dimensionless YM.

    3.5.Degradation degree(DD)

    Thermal damage of any material due to prolonged exposure to high temperature can be expressed as a change in‘degradation degree’(DD).DD indicates the change in the material stiffness and strength.The YM,TS and mode-I FT based on DD have been used in the past to measure the changes in rock strength due to wetting drying cyclic,freeze-thaw cyclic,and thermal treatment(Li et al.,2012;Jia et al.,2015;Hua et al.,2015,2016;Gautam et al.,2016).Among them,YM-based method is considered as a standard,and the other two methods have been used sporadically as an attempt to replace it.Here,these three methods are compared to see if TS-and FT-based methods can accurately predict the DD calculated by the YM-based method.These are calculated as

    whereDYM,DFTandDTSare the DDs of YM,FT,and TS,respectively;YMt,σtandKICtare the YM,TS and mode-I FT at a certain temperature,respectively;YM0,σt0andKIC0are the YM,TS,and mode-I FT at room temperature,respectively.

    The evolution of the DD,as displayed in Fig.9a,indicates that all the three rocks have undergone continuous but different degrees of degradation when subjected to high temperatures.As explained before,although the GPB and tonalite samples have undergone continuous degradation,massive basalt sample showed an increase in stiffness initially.This behaviour of massive basalt is also reflected in DD calculation by all the methods,albeit to different extents.In all the three methods,there is a drop in DD values for massive basalt from room temperature to 300°C.While TS and YM have computed low but positive DD values for this temperature range,mode-I FT gave calculated negative values.Fig.9b shows that,according to the YM-based method,the DD values of massive basalt,GPB,and tonalite are 74%,69.3%,and 82.7%,respectively,when subjected to temperatures from room temperature to 600°C.TS-based method made a closer estimate to DD than FT-based method.Therefore,TS can be considered a suitable candidate for DD calculation.

    3.6.X-ray diffraction(XRD)and scanning electron microscopy(SEM)

    Fig.9.(a)Evolution of degradation degree with temperature,and(b)Ultimate degradation degree.

    Besides the mechanical properties,chemical composition and rock texture are also affected by high temperature,which is confirmed by XRD analyses of untreated rock and heat-treated rock(at 600°C).At temperature of 600°C,some phases of mica in massive basalt,such as muscovite,phologopite,and biotite,disappeared.Such changes led to higher volumetric fraction of Fe and Ti oxide minerals like magnetite and ilmenite. Similar changes have also been reported by other researchers(Poshusta et al.,1999;Ranjith et al.,2012).Similarly,at high temperature,phyllosilicates and hornblende in tonalite also broke down by releasing the hydroxyl ion.At room temperature,zeolite in tonalite has a chemical formula of Al92(Cs,Li)66O384Si100,whereas at 600°C,zeolite’s chemical formula is H0.44Al0.8Cs0.78Li0.02O12.22Si5.2,which suggests that zeolite is a good absorbent exposed to hydroxyl ions(Xu et al.,2007).These chemical and mineralogical changes also lead to the changes in the appearance of the minerals and rock grains and textures.SEM images of the untreated and heat-treated rocks are shown in Fig.10.As shown in Fig.10a,e and i,the crystalline rock specimens at the room temperature are smooth and crystals are intact,without any holes,inter-or intra-grain cracks.As the treatment temperatureis raised to 200°C,crystal structure remains undisturbed,but surfaces become slightly rough.From 200°C to 600°C,numerous cracks appear in the samples,and mineral surfaces become rougher and more irregular.These cracks initially appear at the grain boundaries.At higher temperature,cracking and pulverization of the whole grains are visible.Especially in GPB,intra-and trans-granular cracks are clearly visible at 600°C.Previous SEM studies of the heat-treated rocks have also revealed the appearance of micro cracks at elevated temperatures(Yin et al.,2012;Zhang et al.,2015).These micro cracks begin at the grain boundaries due to the differential thermal expansion of the adjacent minerals.As the treatment temperature increases,both micro crack density and crack length increase(David et al.,2012;Ranjith et al.,2012).Mahanta et al.(2016)reported highly dense micro cracks in multiple Indian rocks at 500°C-600°C.Fig.10 shows similar observations in the present cases.It is observed that,above 200°C,massive basalt undergoes more cracking compared to GPB and tonalite,which can explain the steep drop in the mode-I FT of massive basalt above 200°C.Additionally,the higher FT value of massive basalt compared to GPB and tonalite can also be explained with the generation and propagation of micro cracks.In finegrained rocks,such as massive basalts,cracks encounter grains frequently,leading to the crack diversion in multiple directions,therefore forming relatively curvilinear or irregular fractures(Wu et al.,1978;Kranz,1983).This crack pattern maximises the strain energy release rate,which explains the higher FT of massive basalt relative to GPB and tonalite.At temperature of 600°C,extreme micro cracking,aided by the structural disintegration,can cause pulverization of the minerals.Such changes are the main reasons accounting for the irreversible thermal damage of the rocks.

    4.Conclusions

    In this context,an attempt has been made to evaluate the temperature-dependent mode-I FT of three crystalline rocks with respect to their relationship with key mechanical properties.Rock specimens were treated at temperatures ranging from room temperature(25°C)to 600°C.The key conclusions drawn from this experimental study are:

    (1)Temperature has an overall negative effect on the mode-I FT of the rocks,which is strongly controlled by the lithology and grain size.

    (2)As the heat-treatment temperature increases,stiffness of the massive basalt increases until temperature up to 200°C.Beyond 200°C,a continuous and steep decline is observed.Whereas,both GPB and tonalite display continuous degradation with increasing temperature.

    Fig.10.SEM images of untreated and heat-treated rocks:(a-d)GPB,(e-h)tonalite,and(i-l)massive basalt.

    (3)At elevated temperatures,regardless of rock lithology,all key mechanical properties,such as TS,P-wave velocity,S-wave velocity,and YM are exponentially related with FT.Besides,P-wave velocity is a better predictive indicator than the S-wave.

    (4)The reduction in stiffness and the extent of thermal damage can be quantified using the ‘degradation degree’.Along with the YM,TS is also found to provide reasonably accurate degradation prediction in these three kinds of crystalline rocks.

    (5)XRD and SEM studies identify both the chemical and physical changes responsible for the observed changes in FT.At elevated temperatures,water-bearing minerals(i.e.mica)become unstable and break down by releasing the structural water.Such reaction leads to the pulverization of the minerals.In addition,differential thermal expansion of the minerals grains causes the generation and expansion of numerous micro cracks.The increasing micro crack density and pulverization of the minerals are the main two mechanisms accounting for the reduced stiffness and toughness of the rocks.

    Conflict of interest

    The authors wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

    List of symbols

    ASTM D2845-08.Standard test method for laboratory determination of pulse velocities and ultrasonic elstic constants of rock.West Conshohocken,PA,United States:ASTM International;2008.

    ASTM D3967-08.Standard test method for splitting tensile strength of intact rock core specimens.West Conshohocken,PA,USA:ASTM International;2008.

    Ayatollahi MR,Aliha MRM.On determination of mode II fracture toughness using semi-circular bend specimen.International Journal of Solids and Structures 2006;43(17):5217-27.

    Ayatollahi MR,Mahdavi E,Alborzi MJ,Obara Y.Stress intensity factors of semicircular bend specimens with straight-through and chevron notches.Rock Mechanics and Rock Engineering 2016;49(4):1161-72.

    Balme M,Rocchi V,Jones C,Sammonds P,Meredith P,Boon S.Fracture toughness measurements on igneous rocks using a high-pressure,high-temperature rock fracture mechanics cell.Journal of Volcanology and Geothermal Research 2004;132(2-3):159-72.

    Bauer SJ,Johnson B.Effects of slow uniform heating on the physical properties of the Westerly and charcoal granites.In:Proceedings of the 20th U.S.Symposium on rock mechanics.Austin,Texas,USA:American Rock Mechanics Association;1979.

    Chang SH,Lee CI,Jeon S.Measurement of rock fracture toughness under modes I and II and mixed-mode conditions by using disc-type specimens.Engineering Geology 2002;66(1-2):79-97.

    David EC,Brantut N,Schubnel A,Zimmerman RW.Sliding crack model for nonlinearity and hysteresis in the uniaxial stress-strain curve of rock.International Journal of Rock Mechanics and Mining Sciences 2012;52:9-17.

    Duclos R,Paquet J.High-temperature behaviour of basalts-role of temperature and strain rate on compressive strength and KIC toughness of partially glassy basalts at atmospheric pressure.International Journal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts 1991;28(1):71-6.

    Dwivedi RD,Goel RK,Prasad VVR,Sinha A.Thermo-mechanical properties of Indian and other granites.International Journal of Rock Mechanics and Mining Sciences 2008;45(3):303-15.

    Fowell RJ.Suggested method for determining mode I fracture toughness using cracked chevron notched Brazilian disc(CCNBD)specimens.International Journal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts 1995;32(1):59-64.

    Funatsu T,Seto M,Shimada H,Matsui K,Kuruppu M.Combined effects of increasing temperature and confining pressure on the fracture toughness of clay bearing rocks.International Journal of Rock Mechanics and Mining Sciences 2004;41(6):927-38.

    Funatsu T,Kuruppu M,Matsui K.Effects of temperature and confining pressure on mixed-mode(I-II)and mode II fracture toughness of Kimachi sandstone.International Journal of Rock Mechanics and Mining Sciences 2014;67:1-8.

    Gautam PK,Verma AK,Jha MK,Sarkar K,Singh TN,Bajpai RK.Study of strain rate and thermal damage of Dholpur sandstone at elevated temperature.Rock Mechanics and Rock Engineering 2016;49:3805-15.

    Geological Survey of India.Geological map of Maharashtra.accessed on 5th January,2018a at 02.42 pm.https://employee.gsi.gov.in/cs/groups/public/documents/document/b3zp/mti3/~edisp/dcport1gsigovi127215.gif.

    Geological Survey of India.Geological and mineral map of Karnataka&Goa.accessed on 5th January,2018bat02.42pm.https://employee.gsi.gov.in/cs/groups/public/documents/document/b3zp/mti3/~edisp/dcport1gsigovi127202.gif.

    Guha Roy D,Singh TN,Kodikara J,Talukdar M.Correlating the mechanical and physical properties with mode-i fracture toughness of rocks.Rock Mechanics and Rock Engineering 2017;50:1941-6.

    Guha Roy D,Singh TN.Effect of heat treatment and layer orientation on the tensile strength of a crystalline rock under Brazilian test condition.Rock Mechanics and Rock Engineering 2016;49:1663-77.

    Heuze FE.High-temperature mechanical,physical and thermal properties of granitic rocks-a review.International Journal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts 1983;20(1):3-10.

    Hom and-Etienne F,Houpert R.Thermally induced micro cracking in granites:characterization and analysis.International Journal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts 1989;26(2):125-34.

    Hua W,Dong S,Li Y,Xu J,Wang Q.The influence of cyclic wetting and drying on the fracture toughness of sandstone.International Journal of Rock Mechanics and Mining Sciences 2015;78:331-5.

    Hua W,Dong S,Li Y,Wang Q.Effect of cyclic wetting and drying on the pure mode II fracture toughness of sandstone.Engineering Fracture Mechanics 2016;153:143-50.

    Jia H,Xiang W,Krautblatter M.Quantifying rock fatigue and decreasing compressive and tensile strength after repeated freeze-thaw cycles.Permafrost and Periglacial Processes 2015;26(4):368-77.

    Jin Y,Yuan J,Chen M,Chen KP,Lu Y,Wang H.Determination of rock fracture toughnessKIICand its relationship with tensile strength.Rock Mechanics and Rock Engineering 2011;44:621.

    Kanninen MF,Popelar CH.Advanced fracture mechanics.1st ed.New York:Oxford Engineering Science Series,Oxford University Press;1985.

    Khan K,Al-Shayea NA.Effect of specimen geometry and testing method on mixed mode i-ii fracture toughness of a limestone rock from Saudi Arabia.Rock Mechanics and Rock Engineering 2000;33(3):179-206.

    Kim KM,Kemeny J.Effect of thermal loading on compressional wave velocity,mode i fracture toughness and tensile strength.In:Proceedings of the 42nd US rock mechanics Symposium.San Francisco,California:American Rock Mechanics Association;2008.

    Kranz RL.Microcracks in rocks:a review.Tectonophysics 1983;100(1-3):449-80.

    Kuruppu MD,Chong KP.Fracture toughness testing of brittle materials using semicircular bend(SCB)specimen.Engineering Fracture Mechanics 2012;91:133-50.

    Kuruppu MD,Obara Y,Ayatollahi MR,Chong KP,Funatsu T.ISRM-suggested method for determining the mode i static fracture toughness using semi-circular bend specimen.Rock Mechanics and Rock Engineering 2014;47(1):267-74.

    Li W,Pour-Ghaz M,Castro J,Weiss J.Water absorption and critical degree of saturation relating to freeze-thaw damage in concrete pavement joints.Journal of Materials in Civil Engineering 2012;24(3):299-307.

    Liu H.On the fundamental basis of fracture mechanics.Engineering Fracture Mechanics 1983;17(5):425-38.

    Liu S,Xu J.Mechanical properties of Qinling biotite granite after high temperature treatment.International Journal of Rock Mechanics and Mining Sciences 2014;71:188-93.

    Mahanta B,Singh TN,Ranjith PG.Influence of thermal treatment on mode I fracture toughness of certain Indian rocks.Engineering Geology 2016;210:103-14.

    Maheshwar S,Verma AK,Singh TN,Bajpai RK.Study of thermo-hydro-mechanical processes at a potential site of an Indian nuclear waste repository.Journal of Earth System Science 2015;124(8):1693-708.

    Matsuki K,Hasibuan SS,Takahashi H.Specimen size requirements for determining the inherent fracture toughness of rocks according to the ISRM suggested methods.International Journal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts 1991;28(5):365-74.

    Meier T,Backers T,Stephansso O.The influence of temperature on mode ii fracture toughness using the punch-through shear with confining pressure experiment.In:Proceedings of Intetnational Symposium on rock mechanics-SINOROCK 2009,the University of Hong Kong.China:International Society for Rock Mechanics;2009.ISRM-SINOROCK-2009-041.

    Meredith PG,Atkinson BK.Fracture toughness and subcritical crack growth during high-temperature tensile deformation of Westerly granite and Black gabbro.Physics of the Earth and Planetary Interiors 1985;39(1):33-51.

    Nasseri MHB,Schubnel A,Young RP.Coupled evolutions of fracture toughness and elastic wave velocities at high crack density in thermally treated Westerly granite.International Journal of Rock Mechanics and Mining Sciences 2007;44(4):601-16.

    Ouchterlony F.Fracture toughness testing of rock with core based specimens.Engineering Fracture Mechanics 1990;35(1-3):351-66.

    Paquet J,Fran?ois P.Experimental deformation of partially melted granitic rocks at 600-900°C and 250 MPa confining pressure.Tectonophysics 1980;68(1-2):131-46.

    Poshusta JC,Noble RD,Falconer JL.Temperature and pressure effects on CO2and CH4permeation through MFI zeolite membranes.Journal of Membrane Science 1999;160(1):115-25.

    Ranjith PG,Viete DR,Chen BJ,Perera MSA.Transformation plasticity and the effect of temperature on the mechanical behaviour of Hawkesbury sandstone at atmospheric pressure.Engineering Geology 2012;151:120-7.

    Rao Q,Wang Z,Xie H,Xie Q.Experimental study of mechanical properties of sandstone at high temperature.Journal of Central South University of Technology 2007;14(Supp.1):478-83.

    Shao S,Ranjith PG,Wasantha PLP,Chen BK.Experimental and numerical studies on the mechanical behaviour of Australian Strathbogie granite at high temperatures:an application to geothermal energy.Geothermics 2015;54:96-108.

    Singh HK,Kumar Y,Chandrasekharam D,Gurav T,Singh B.High-heat-producing granites of East Dharwar Craton around Gugi,Karnataka,and their possible influence on the evolution of Rajapur thermal springs,Deccan Volcanic Province,India.Geothermal Energy 2014;2(2).https://doi.org/10.1186/s40517-014-0002-4.

    Somerton WH.Thermal properties and temperature-related behavior of rock/fluid systems.1st ed.Elsevier;1992.

    Tian H,Kempka T,Xu NX,Ziegler M.Physical properties of sandstones after high temperature treatment.Rock Mechanics and Rock Engineering 2012;45:1113-7.

    Varun C,Chandrasekharam D,Singh H,Das S.Geologic setting of the Unkeshwar thermalsprings,eastern Deccan Volcanic Province,Maharashtra, India.Geothermal Resources Council Transactions 2012;36:799-802.

    Verma AK,Gautam P,Singh TN,Bajpai RK.Numerical simulation of high level radioactive waste for disposal in deep underground tunnel.In:Lollino G,Manconi A,Clague J,Shan W,Chiarle M,editors.Engineering Geology for Society and Territory-volume 1:climate change and engineering Geology.Cham:Springer International Publishing;2015.p.499-504.

    Vishal V,Pradhan SP,Singh TN.Tensile strength of rock under elevated temperatures.Geotechnical and Geological Engineering 2011;29:1127.

    Wu CC,Freiman SW,Rice RW,Mecholsky JJ.Microstructural aspects of crack propagation in ceramics.Journal of Materials Science 1978;13(12):2659-70.

    Wu G,Wang Y,Swift G,Chen J.Laboratory investigation of the effects of temperature on the mechanical properties of sandstone.Geotechnical and Geological Engineering 2013;31(2):809-16.

    Xu R,Pang W,Yu J,Huo Q,Chen J.Chemistry of zeolites and related porous materials:Synthesis and structure.John Wiley&Sons(Asia)Pte Ltd.;2007.

    Yin T,Li X,Cao W,Xia K.Effects of thermal treatment on tensile strength of laurentian granite using Brazilian test.Rock Mechanics and Rock Engineering 2015;48(6):2213-23.

    Yin T,Li X,Xia K,Huang S.Effect of thermal treatment on the dynamic fracture toughness of Laurentian granite.Rock Mechanics and Rock Engineering 2012;45(6):1087-94.

    Zhang W,Qian H,Sun Q,Chen Y.Experimental study of the effect of high temperature on primary wave velocity and microstructure of limestone.Environmental Earth Sciences 2015;74(7):5739-48.

    Zhang ZX.An empirical relation between mode-I fracture toughness and the tensile strength of rock.International Journal of Rock Mechanics and Mining Sciences 2002;39:401-6.

    Zhao Z.Thermal Influence on mechanical properties of Granite:a microcracking perspective.Rock Mechanics and Rock Engineering 2016;49(3):747-62.

    18禁观看日本| 成熟少妇高潮喷水视频| 久久久久久久精品吃奶| 国内揄拍国产精品人妻在线 | 少妇被粗大的猛进出69影院| 国产在线观看jvid| 久久久久久人人人人人| 欧美成人午夜精品| 亚洲精品一卡2卡三卡4卡5卡| 在线国产一区二区在线| 国内精品久久久久精免费| 91大片在线观看| 国产精品永久免费网站| 色尼玛亚洲综合影院| 一边摸一边抽搐一进一小说| 国产一区二区三区在线臀色熟女| 国产又爽黄色视频| 日本 av在线| 久久精品aⅴ一区二区三区四区| 午夜福利欧美成人| avwww免费| 国产不卡一卡二| 国产精品久久久人人做人人爽| 日韩欧美三级三区| 亚洲精品美女久久av网站| 美女高潮喷水抽搐中文字幕| 十八禁网站免费在线| 88av欧美| АⅤ资源中文在线天堂| 在线天堂中文资源库| videosex国产| 亚洲狠狠婷婷综合久久图片| 久久中文字幕人妻熟女| 香蕉丝袜av| 啪啪无遮挡十八禁网站| www.www免费av| 一区二区三区精品91| 国产熟女午夜一区二区三区| 桃红色精品国产亚洲av| 中文字幕人妻熟女乱码| 国产97色在线日韩免费| 精品午夜福利视频在线观看一区| 成人18禁高潮啪啪吃奶动态图| 男男h啪啪无遮挡| 色婷婷久久久亚洲欧美| 国产熟女xx| 亚洲国产精品合色在线| 亚洲精品一卡2卡三卡4卡5卡| 麻豆成人av在线观看| 精品国产亚洲在线| 亚洲国产欧美日韩在线播放| 欧美亚洲日本最大视频资源| 女人高潮潮喷娇喘18禁视频| 美女大奶头视频| 国产av一区二区精品久久| 午夜免费观看网址| 天堂动漫精品| 久久久国产精品麻豆| 久久中文字幕一级| 成人午夜高清在线视频 | 99热这里只有精品一区 | 一级黄色大片毛片| 国产一级毛片七仙女欲春2 | 大香蕉久久成人网| 精品欧美国产一区二区三| 在线观看免费日韩欧美大片| 亚洲人成电影免费在线| 久久精品国产99精品国产亚洲性色| 成熟少妇高潮喷水视频| 日本一本二区三区精品| 男男h啪啪无遮挡| 欧美性长视频在线观看| 精品不卡国产一区二区三区| 免费在线观看影片大全网站| 女人高潮潮喷娇喘18禁视频| 巨乳人妻的诱惑在线观看| 午夜免费观看网址| 亚洲无线在线观看| 亚洲av第一区精品v没综合| www.www免费av| 亚洲一卡2卡3卡4卡5卡精品中文| 免费在线观看亚洲国产| 欧美丝袜亚洲另类 | 免费观看精品视频网站| 日本熟妇午夜| 国产99白浆流出| 久久国产乱子伦精品免费另类| 午夜福利欧美成人| 亚洲熟妇中文字幕五十中出| 90打野战视频偷拍视频| cao死你这个sao货| 午夜精品在线福利| 亚洲成a人片在线一区二区| 中出人妻视频一区二区| 特大巨黑吊av在线直播 | 国产91精品成人一区二区三区| 国产高清有码在线观看视频 | 波多野结衣av一区二区av| 一区二区日韩欧美中文字幕| 亚洲精品美女久久久久99蜜臀| 国内毛片毛片毛片毛片毛片| 欧美成人一区二区免费高清观看 | 97碰自拍视频| 99国产极品粉嫩在线观看| 中文字幕人成人乱码亚洲影| 香蕉av资源在线| 黑丝袜美女国产一区| 男女视频在线观看网站免费 | 日韩有码中文字幕| 性欧美人与动物交配| 国产久久久一区二区三区| 日日夜夜操网爽| 欧美 亚洲 国产 日韩一| 精品不卡国产一区二区三区| 国产亚洲精品第一综合不卡| 日韩欧美一区视频在线观看| 亚洲熟妇熟女久久| 欧美日韩亚洲综合一区二区三区_| 日韩大码丰满熟妇| 久久这里只有精品19| 亚洲国产中文字幕在线视频| 窝窝影院91人妻| 手机成人av网站| 国产成人欧美| 日本 av在线| 亚洲狠狠婷婷综合久久图片| 亚洲成av人片免费观看| 精品午夜福利视频在线观看一区| 怎么达到女性高潮| 又黄又爽又免费观看的视频| 韩国精品一区二区三区| 国产蜜桃级精品一区二区三区| 久久亚洲精品不卡| 久久久国产精品麻豆| 亚洲成av人片免费观看| 精品久久久久久成人av| 看黄色毛片网站| 侵犯人妻中文字幕一二三四区| 亚洲全国av大片| 丰满的人妻完整版| 国产高清有码在线观看视频 | 神马国产精品三级电影在线观看 | 日本精品一区二区三区蜜桃| 成人午夜高清在线视频 | 亚洲av五月六月丁香网| 老司机靠b影院| 国产主播在线观看一区二区| 一个人免费在线观看的高清视频| 黄片大片在线免费观看| 首页视频小说图片口味搜索| 亚洲精品av麻豆狂野| 亚洲专区国产一区二区| 久久久国产欧美日韩av| 国产一卡二卡三卡精品| 亚洲狠狠婷婷综合久久图片| 99国产精品一区二区蜜桃av| 三级毛片av免费| 久久久久精品国产欧美久久久| 韩国av一区二区三区四区| 亚洲精品国产区一区二| 亚洲片人在线观看| 琪琪午夜伦伦电影理论片6080| 在线观看免费日韩欧美大片| 精品久久久久久成人av| 可以在线观看毛片的网站| 国产精品国产高清国产av| 天天躁夜夜躁狠狠躁躁| 一进一出好大好爽视频| 久久中文字幕人妻熟女| 一边摸一边抽搐一进一小说| 首页视频小说图片口味搜索| 黄色毛片三级朝国网站| 亚洲欧美精品综合一区二区三区| 女人高潮潮喷娇喘18禁视频| 久久久水蜜桃国产精品网| 这个男人来自地球电影免费观看| 女人被狂操c到高潮| 看片在线看免费视频| 黄网站色视频无遮挡免费观看| 丁香欧美五月| 国产精品爽爽va在线观看网站 | 我的亚洲天堂| 手机成人av网站| 国产亚洲精品第一综合不卡| 国产三级黄色录像| 又大又爽又粗| 狂野欧美激情性xxxx| 中文字幕高清在线视频| 动漫黄色视频在线观看| 国产免费av片在线观看野外av| 久久精品国产亚洲av高清一级| 国产精品亚洲av一区麻豆| 真人做人爱边吃奶动态| 国产午夜福利久久久久久| 宅男免费午夜| 最近最新免费中文字幕在线| 亚洲免费av在线视频| 99国产精品99久久久久| 欧美+亚洲+日韩+国产| 日韩欧美三级三区| 国产精品 国内视频| 婷婷丁香在线五月| 亚洲中文日韩欧美视频| 欧美日韩黄片免| 午夜免费鲁丝| 国产成人精品久久二区二区免费| 色哟哟哟哟哟哟| 国产精品二区激情视频| 视频在线观看一区二区三区| 免费看日本二区| 女人爽到高潮嗷嗷叫在线视频| 精品国产超薄肉色丝袜足j| 日韩成人在线观看一区二区三区| 欧美日韩中文字幕国产精品一区二区三区| 午夜精品在线福利| 国产av一区在线观看免费| 亚洲av五月六月丁香网| 久久欧美精品欧美久久欧美| 美女高潮到喷水免费观看| 亚洲色图 男人天堂 中文字幕| 成人18禁高潮啪啪吃奶动态图| 麻豆成人av在线观看| 久久精品夜夜夜夜夜久久蜜豆 | 欧美午夜高清在线| 国产黄色小视频在线观看| 十分钟在线观看高清视频www| 女人爽到高潮嗷嗷叫在线视频| 2021天堂中文幕一二区在线观 | 免费一级毛片在线播放高清视频| 99久久久亚洲精品蜜臀av| 亚洲精品国产精品久久久不卡| 久久久久九九精品影院| 国产成人啪精品午夜网站| 亚洲国产精品合色在线| 国产又色又爽无遮挡免费看| 国产亚洲精品久久久久5区| 可以在线观看的亚洲视频| 精品欧美一区二区三区在线| 成人一区二区视频在线观看| 久久精品国产综合久久久| 国产精品一区二区精品视频观看| 两个人免费观看高清视频| 国产精品久久视频播放| 欧美另类亚洲清纯唯美| 老司机在亚洲福利影院| av欧美777| 中亚洲国语对白在线视频| 精品久久久久久成人av| 国语自产精品视频在线第100页| 午夜a级毛片| 午夜福利在线观看吧| 老司机午夜福利在线观看视频| 久久久久国产精品人妻aⅴ院| 久久狼人影院| 久久亚洲真实| 亚洲男人的天堂狠狠| 757午夜福利合集在线观看| 男女下面进入的视频免费午夜 | 亚洲久久久国产精品| 亚洲色图 男人天堂 中文字幕| 99精品在免费线老司机午夜| 夜夜看夜夜爽夜夜摸| 精品乱码久久久久久99久播| 在线观看免费日韩欧美大片| 男女那种视频在线观看| 亚洲人成网站在线播放欧美日韩| 18禁国产床啪视频网站| 在线观看免费日韩欧美大片| 久久国产精品人妻蜜桃| 亚洲中文字幕一区二区三区有码在线看 | 久久国产乱子伦精品免费另类| 琪琪午夜伦伦电影理论片6080| 欧美乱妇无乱码| 精品国内亚洲2022精品成人| 久久精品亚洲精品国产色婷小说| 欧美av亚洲av综合av国产av| 制服丝袜大香蕉在线| 欧美另类亚洲清纯唯美| 黄色成人免费大全| 黄色女人牲交| 国产精品 国内视频| 欧美中文综合在线视频| 亚洲五月色婷婷综合| 国产精品免费一区二区三区在线| 黄片大片在线免费观看| 免费观看精品视频网站| 91字幕亚洲| 午夜福利免费观看在线| 成年免费大片在线观看| 欧美国产精品va在线观看不卡| 欧美黑人精品巨大| 在线观看午夜福利视频| 人人澡人人妻人| 神马国产精品三级电影在线观看 | 午夜亚洲福利在线播放| www国产在线视频色| 成年版毛片免费区| 久久天堂一区二区三区四区| 午夜精品在线福利| 国产1区2区3区精品| 午夜福利在线在线| 成人午夜高清在线视频 | 一区福利在线观看| 一本久久中文字幕| 亚洲av中文字字幕乱码综合 | 精品一区二区三区四区五区乱码| 亚洲一区二区三区不卡视频| www日本黄色视频网| 久久精品91无色码中文字幕| 亚洲精品国产一区二区精华液| 日本黄色视频三级网站网址| 国产精品二区激情视频| 一级作爱视频免费观看| 一级毛片高清免费大全| 国产三级在线视频| 老鸭窝网址在线观看| 91老司机精品| av天堂在线播放| 亚洲欧美一区二区三区黑人| 亚洲第一电影网av| 久久婷婷成人综合色麻豆| 俄罗斯特黄特色一大片| 熟女少妇亚洲综合色aaa.| 妹子高潮喷水视频| 国产精品自产拍在线观看55亚洲| 亚洲第一欧美日韩一区二区三区| 亚洲专区国产一区二区| 国产欧美日韩精品亚洲av| 亚洲欧美激情综合另类| 天天躁夜夜躁狠狠躁躁| 国产一区二区在线av高清观看| 亚洲一区高清亚洲精品| 麻豆成人av在线观看| 女生性感内裤真人,穿戴方法视频| 无人区码免费观看不卡| 一本综合久久免费| 久久精品aⅴ一区二区三区四区| 亚洲五月婷婷丁香| 国产1区2区3区精品| 国产真人三级小视频在线观看| 最近最新免费中文字幕在线| 亚洲在线自拍视频| 久久欧美精品欧美久久欧美| 亚洲av第一区精品v没综合| 中文在线观看免费www的网站 | 18禁观看日本| 国产成人精品久久二区二区91| 精品久久久久久久久久免费视频| 女人高潮潮喷娇喘18禁视频| 夜夜爽天天搞| 午夜免费鲁丝| 久久久国产欧美日韩av| 欧美成人一区二区免费高清观看 | 成人午夜高清在线视频 | 99精品欧美一区二区三区四区| av片东京热男人的天堂| 亚洲五月色婷婷综合| or卡值多少钱| 国内久久婷婷六月综合欲色啪| 老汉色∧v一级毛片| or卡值多少钱| 国产精品 欧美亚洲| 亚洲精品国产区一区二| 免费女性裸体啪啪无遮挡网站| 伦理电影免费视频| 天天躁夜夜躁狠狠躁躁| 亚洲黑人精品在线| 国内精品久久久久精免费| 国产精品98久久久久久宅男小说| 亚洲男人天堂网一区| 成人国语在线视频| 一二三四在线观看免费中文在| 90打野战视频偷拍视频| 熟女少妇亚洲综合色aaa.| 少妇粗大呻吟视频| 欧美性猛交╳xxx乱大交人| 精品午夜福利视频在线观看一区| 久久香蕉精品热| 99在线人妻在线中文字幕| 欧美黄色淫秽网站| 亚洲五月色婷婷综合| 亚洲精品粉嫩美女一区| 午夜激情福利司机影院| 成人国产综合亚洲| 久久香蕉国产精品| 色综合欧美亚洲国产小说| 国产视频一区二区在线看| 免费高清在线观看日韩| 亚洲第一电影网av| 人人妻人人澡欧美一区二区| 久久久久九九精品影院| 久久久久久久久中文| 久久精品夜夜夜夜夜久久蜜豆 | 国产亚洲欧美在线一区二区| 老司机福利观看| 精品电影一区二区在线| 两个人视频免费观看高清| 成人欧美大片| 精品国产美女av久久久久小说| 国产色视频综合| 国产伦一二天堂av在线观看| 精品乱码久久久久久99久播| 国内精品久久久久久久电影| 久久国产精品影院| 亚洲性夜色夜夜综合| 亚洲人成网站高清观看| 精品久久久久久,| 国产色视频综合| 欧美精品啪啪一区二区三区| 久久久水蜜桃国产精品网| 国产成人啪精品午夜网站| 嫩草影视91久久| 亚洲精华国产精华精| 午夜日韩欧美国产| 国产精品久久久久久精品电影 | 97碰自拍视频| 一边摸一边抽搐一进一小说| av电影中文网址| 亚洲精品久久成人aⅴ小说| 欧美日韩一级在线毛片| 亚洲欧美精品综合一区二区三区| 午夜福利免费观看在线| svipshipincom国产片| 免费看a级黄色片| 午夜精品久久久久久毛片777| 亚洲国产精品合色在线| 岛国视频午夜一区免费看| 精品久久蜜臀av无| 999久久久国产精品视频| 色精品久久人妻99蜜桃| 成人精品一区二区免费| 亚洲精品色激情综合| 亚洲国产精品成人综合色| 后天国语完整版免费观看| 国产成人精品久久二区二区免费| 国产av一区二区精品久久| 亚洲成人久久性| 国产黄色小视频在线观看| 一级毛片精品| 宅男免费午夜| 成人三级做爰电影| 久久精品人妻少妇| 日韩高清综合在线| 欧美日本视频| 老汉色av国产亚洲站长工具| 亚洲国产精品久久男人天堂| 午夜福利高清视频| 一级片免费观看大全| 欧美性长视频在线观看| 日韩视频一区二区在线观看| 黑人欧美特级aaaaaa片| 国产不卡一卡二| 国产日本99.免费观看| 亚洲成人久久性| 一区二区三区精品91| 国语自产精品视频在线第100页| 中文字幕另类日韩欧美亚洲嫩草| 50天的宝宝边吃奶边哭怎么回事| 精品国产一区二区三区四区第35| 18禁黄网站禁片午夜丰满| 亚洲一区二区三区色噜噜| 免费搜索国产男女视频| 无限看片的www在线观看| 听说在线观看完整版免费高清| 精品一区二区三区av网在线观看| 午夜a级毛片| 久久久国产成人精品二区| 亚洲全国av大片| 制服诱惑二区| www日本在线高清视频| 久久久久久国产a免费观看| 国产精品一区二区免费欧美| 两个人免费观看高清视频| 亚洲av电影不卡..在线观看| 亚洲美女黄片视频| 精品无人区乱码1区二区| 少妇粗大呻吟视频| 亚洲色图 男人天堂 中文字幕| 成人特级黄色片久久久久久久| av超薄肉色丝袜交足视频| 又黄又爽又免费观看的视频| 国产精品av久久久久免费| 国产1区2区3区精品| АⅤ资源中文在线天堂| 日本一本二区三区精品| 免费av毛片视频| 美女扒开内裤让男人捅视频| 美女大奶头视频| 十分钟在线观看高清视频www| 此物有八面人人有两片| 精品熟女少妇八av免费久了| 亚洲中文字幕一区二区三区有码在线看 | 久久久精品欧美日韩精品| 日日摸夜夜添夜夜添小说| 国产欧美日韩精品亚洲av| 亚洲人成网站高清观看| 欧美黑人精品巨大| 欧美日韩亚洲国产一区二区在线观看| 日韩成人在线观看一区二区三区| 国产日本99.免费观看| 99国产极品粉嫩在线观看| 人人妻人人澡人人看| 好男人电影高清在线观看| 人人妻人人澡人人看| 国产精品久久久久久亚洲av鲁大| 国产麻豆成人av免费视频| 韩国精品一区二区三区| 可以在线观看的亚洲视频| 老熟妇仑乱视频hdxx| 麻豆国产av国片精品| 久久久久久人人人人人| 免费在线观看黄色视频的| 成人精品一区二区免费| 国产精品一区二区三区四区久久 | 亚洲精品国产区一区二| 男人的好看免费观看在线视频 | 日韩欧美 国产精品| 国产精华一区二区三区| 999久久久精品免费观看国产| tocl精华| 亚洲精品国产区一区二| 欧美人与性动交α欧美精品济南到| 久久婷婷成人综合色麻豆| 真人一进一出gif抽搐免费| 亚洲国产欧美日韩在线播放| 亚洲色图 男人天堂 中文字幕| 999精品在线视频| 好男人在线观看高清免费视频 | 亚洲人成电影免费在线| 精品电影一区二区在线| 可以在线观看的亚洲视频| 老熟妇仑乱视频hdxx| 女警被强在线播放| 此物有八面人人有两片| 99久久精品国产亚洲精品| 国产三级在线视频| 欧美中文日本在线观看视频| 亚洲第一av免费看| 欧美另类亚洲清纯唯美| 男人舔女人下体高潮全视频| 午夜成年电影在线免费观看| 国产精品香港三级国产av潘金莲| 欧美另类亚洲清纯唯美| 国产男靠女视频免费网站| 夜夜夜夜夜久久久久| 无遮挡黄片免费观看| 欧美日韩亚洲国产一区二区在线观看| 一区福利在线观看| 亚洲天堂国产精品一区在线| 黄片小视频在线播放| 精品久久久久久久久久免费视频| 啦啦啦 在线观看视频| 真人做人爱边吃奶动态| 一个人免费在线观看的高清视频| 91九色精品人成在线观看| 午夜亚洲福利在线播放| www日本在线高清视频| a级毛片在线看网站| 亚洲中文字幕日韩| 欧美色视频一区免费| 97碰自拍视频| 在线看三级毛片| 巨乳人妻的诱惑在线观看| 法律面前人人平等表现在哪些方面| 两个人免费观看高清视频| 九色国产91popny在线| 99在线人妻在线中文字幕| 久久久久久久久中文| 黄频高清免费视频| 美女国产高潮福利片在线看| 麻豆av在线久日| 妹子高潮喷水视频| 18禁黄网站禁片午夜丰满| 午夜福利18| 精品午夜福利视频在线观看一区| 久久婷婷人人爽人人干人人爱| √禁漫天堂资源中文www| 久久久久久久久久黄片| 亚洲av中文字字幕乱码综合 | 久久久久免费精品人妻一区二区 | 中文字幕最新亚洲高清| 日本精品一区二区三区蜜桃| 一级毛片高清免费大全| 久久人妻福利社区极品人妻图片| 国产精品乱码一区二三区的特点| 99久久无色码亚洲精品果冻| 久久香蕉精品热| 日韩有码中文字幕| 午夜免费成人在线视频| 中出人妻视频一区二区| 少妇被粗大的猛进出69影院| 两个人看的免费小视频| 天堂√8在线中文| 久久久久久久久中文| 51午夜福利影视在线观看| 白带黄色成豆腐渣| 国产精华一区二区三区| 国内少妇人妻偷人精品xxx网站 | 国产精品,欧美在线| 久久青草综合色| 中文字幕另类日韩欧美亚洲嫩草| 手机成人av网站| 国产欧美日韩一区二区精品| 女人高潮潮喷娇喘18禁视频| 欧美另类亚洲清纯唯美| 国产精品二区激情视频| 亚洲午夜理论影院| а√天堂www在线а√下载| 欧美日韩瑟瑟在线播放| 91国产中文字幕| av天堂在线播放| svipshipincom国产片| 啦啦啦 在线观看视频| 国产精品乱码一区二三区的特点| 高清毛片免费观看视频网站|