• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of lime addition on geotechnical properties of sedimentary soil in Curitiba,Brazil

    2018-03-01 03:16:35JairBaldovinoEclesielterMoreiraWagnerTeixeiraRonaldoIzzoJulianaRose

    Jair A.Baldovino,Eclesielter B.Moreira,Wagner Teixeira,Ronaldo L.S.Izzo,Juliana L.Rose

    Department of Civil Construction,Federal University of Technology-Paraná,Campus Curitiba,Curitiba,Brazil

    1.Introduction

    In the field of civil engineering,various methods are adopted in order to improve the geotechnical properties of soils to meet the requirements for mechanical stability and maintenance cost reduction.Clayey soil stabilization by different additives may be considered as one of these methods,because the substitution of inappropriate soils by adequate ones has become increasingly expensive and ecologically unsafe.Besides,stabilization by cement is not preferable due to its growing cost and environmental concerns related to its production(al-Swaidani et al.,2016).Luting materials such as lime have been successfully employed in geotechnical engineering for soil stabilization and mechanical improvement,especially for clayey and silty soils.

    Lime types commonly used for fine-grained soil stabilization include high-calcium hydrated lime,calcite lime,monohydrated dolomitic lime and dolomitic quicklime.When the lime is added to clayey soils,there are two pozzolanic reactions:cation exchange and flocculation-agglomeration.Soil improvement techniques may also be used in the foundation of small buildings and in soils that present low support capacity or low volumetric stability as such soils may cause severe construction events(Ingles and Metcalf,1972).

    Researchers have been trying to understand the influence of different amounts of lime on the mechanical behaviors of these types of soils.Table 1 summarizes the effect of lime stabilization on the behavior of some soils reported in the literature.Usually,the amount of lime used to improve soils is between 3%and 9%,and the curing time used ranges from 7 d to 360 d.The most used tests to study the mechanical behavior of soils improved with lime include splitting tensile strength,unconfined compressive strength,California bearing ratio,and direct shear and triaxial tests.

    The soils of the Guabirotuba geological formation are located in Curitiba City(Brazil)and its metropolitan region,and are predominantly fine-grained.Most of these soils cannot be directly employed for sub-base and base pavement layers,support of shallow foundations and protection of hillsides,because their physico-mechanical properties do not meet the specificities of current regulations.

    The study of soil improvement in regions such as Curitiba under investigation in this paper is fundamental,given that its utilization in pavement layers would entail lower costs,both financially and environmentally.Since the unused soil is placed in landfills,which generates costs on excavation and transportation to dumps,whether regular or irregular,thus diminishing the service life of dumps.This also creates a need for exploitation of(non-renewable)natural materials in mineral deposits of good quality to serve as structural materials for pavement layers.

    Table 1Summary of the effect of lime stabilization on the behavior of some soils reported in the literature.

    This research intends to determine the influence of different lime contents on the unconfined compressive strength(qu)and splitting tensile strength(qt)of a soil from the Guabirotuba formation at different curing times.

    2.Materials and methods

    2.1.Materials preparation

    2.1.1.Soil

    The soil used for the present study is mainly observed in the third horizon of the Guabirotuba formation,which covers the area of Curitiba City and its metropolitan region.Specifically,the soil specimens were also sampled in a neighboring city,Fazenda Rio Grande,in the state of Paraná (PR),Brazil(25°41′3.9′′S and 49°18′32.5′′W).The soil is composed of 35.5%lime(<0.002 mm),39.5%silt(0.002-0.075 mm)and 25%fine sand(0.074-0.42 mm)(Fig.1).The natural moisture content of the soil found in the field is approximately 40%.

    Table 2 presents the physical properties of the soil.According to the unified soil classification system(USCS),this soil is classified as thick sandy clay.

    2.1.2.Lime

    This study employed hydrated dolomitic lime(CH-III),mainly composed by calcium and magnesium hydroxides(Ca(OH)2and Mg(OH)2)produced in the city of Almirante Tamandaré(PR,Brazil).The accumulated percentage of lime grains retained in the#200 sieve was 9%,which was in accordance the standard with NBR 7175(2003),specifying that 15%of this type of material must be retained by the#200 sieve.The density of the lime is 2.39 g/cm3.

    2.1.3.Soil-lime

    Lime contents of 3%,5%,7%and 9%were used in relation to the soil’s dry weight.

    2.1.4.Water

    Distilled water was used for both specimen molding and soil characterization tests.

    Fig.1.Grain size distribution curve of soil studied.

    2.1.5.Physical indices

    ASTM D4318-10e1(2010)was used for the determination of liquid limit(LL),plastic limit(PL),and plasticity index(IP)of soil.ASTM D854-14(2014)was used to obtain the specific weight of soil(Gs).

    2.1.6.pH tests

    Beforemixing the soil with lime,an investigation was conducted to define the minimum lime content as a function of pH value.The methodology,called ICL(initial consumption of lime)method,proposed by Rogers et al.(1997)was used,which creates avariation curve of pH value versus lime content.

    The ideal pH value is obtained when it reaches a maximum constant value.Fig.2 presents the variation of pH value in relation to the lime content used.

    It can be observed that after the pH value reaches 12.5 at 3%lime content,the pH value remains constant,regardless of the increase in lime content.Therefore,the initial lime content used in this research was considered as 3%.Taking into account the research on soil-lime behavior and the pH stabilization value resulting from lime addition,the lime contents of 5%,7%and 9%were selected in this study.

    2.1.7.Standard Proctor test

    Soil compaction tests were undertaken with the application of standard effort according to ASTM D698-12e2(2012).

    Fig.3 presents clay compaction curves subjected to standard effort.For the clay under study,compaction with standard effort resulted in a maximum dry unit weight of 13.8 kN/m3and an optimum moisture content of 31%.These values were used for the remaining specimens.

    Table 3 shows that there are variations in the maximum dry unit weight and the optimum moisture content for different lime contents(3%,5%,7%and 9%).As the lime contents were low,the variations observed were very small.

    2.1.8.Molding of tested specimens

    For unconfined compression and splitting tension tests,specimens of 100 mm in height and 50 mm in diameter were molded.The clay was first dried in a hothouse with a temperature of(100 ± 5)°C,and then mixed with different lime contents(0%,3%,5%,7%and 9%).Subsequently,static compaction was applied to the mixture for the molding of specimens at the optimum moisture,in two layers in a stainless steel mold(50 mm in internal diameter,100 mm in height,and 5 mm in thickness).The specimens were wrapped by transparent plastic to prevent loss of moisture.Then they were placed into the moist chamber to be cured for 15 d,30 d,60 d and 90 d at an average temperature of 25°C.For the unconfined compression test,the specimens had to follow a set of conditions:the specimen dimensions with tolerances of±0.5 mm in diameter and±1 mm in height,the apparent dry unit weight(γd)with a tolerance of±1%of target value,and the moisture content(w)with a tolerance of±0.5%of target value.

    One hundred and twenty specimens were tested with standard effort,60 for unconfined compression tests and 60 for splitting tension tests.For each of the four curing times and four lime contents,as least three specimens were tested,and the results obtained could not differ by 10%.For both the unconfined compression and the splitting tension tests,a load frame(WILLE GEOTECHNIK UL60)was used with the maximum capacity of 5 kN,as well as calibrated rings with the axial load of 4.5 kN,axial loading capacity of 5 kN,and loading speed of 1 mm/min.

    2.2.Testing methods

    2.2.1.Unconfined compression tests

    The procedures for unconfined compression tests were in accordance with the standard ASTM D2166/D2166M-16(2016).

    Unconfined compressive strength is the material’s ultimate loading bearing capacity,or the pressure at which a specific cylinder strain of 20%is reached when the axial stress-strain curve does not present a maximum peak.The unconfined compressive strength(qu)is calculated according to the following expression when the axial stress-strain curve reaches a maximum peak:

    wherePRis the failure load at the peak of the axial stress-strain curve,andATis the corrected cross-sectional area of specimen.

    2.2.2.Splitting tensile tests

    The procedures for splitting tension tests were in accordance with the Brazilian standard NBR 7222(2011).

    The splitting tensile strength(qt)is calculated according to the following expression:

    whereDandHare respectively the diameter and height of specimen.

    2.2.3.qt/quratio

    One important reference for the mechanical behavior of limestabilized soils is the ratio of porosity to the volumetric lime content(η/Lv),whereLvis defined as the ratio of lime volume to the total volume of specimen,and the porosityηis calculated by the following equation(Consoli et al.,2012):

    whereVsis the total volume of specimen;γdis the dry unit weight of specimen;Ssis the soil content;andGsandGlare the specific weights of soil and lime grains,respectively.

    Table 2Physical properties of the soil.

    Fig.2.Results of pH test.

    Fig.3.Clay compaction curves with different lime contents.

    Table 3Dry unit weight and optimum moisture content values for soil-lime mixtures in compaction with standard effort.

    3.Results

    3.1.Unconfined compressive strength

    The unconfined compressive strength(qu)obtained as a function of lime contentLat curing times of 15 d,30 d,60 d and 90 d are presented in Fig.4.

    Fig.4.Unconfined compressive strength(qu)versus lime content(L)curves.

    As shown in Fig.4,an increase in the ultimate compressive strength can be observed for the soil-lime mixtures with higher lime content.Small addition of lime can significantly increase the unconfined compressive strength,indicating that the lime has an major influence on the strengthqu.Meanwhile,quincreases with the curing time.

    The unconfined compressive strength presents an exponential relation with the lime content.Comparing the lime contents of 3%and 9%,as shown in Fig.4,it can be found that for a 90-d curing time,thequvalues increase by 115%on average,and for 60-d and 30-d curing times,quincreases by 110%,and for a 15-d curing time,quincreases by 80%.

    The curing time also has an influence on the increase inquas a function of lime content,as shown in Fig.5.The unconfined compressive strengthqudisplays a linear relationship with the logarithm of curing time.Fitting curves are obtained withR2=0.87 at worst andR2=0.98 at best.The most significant increase inquwas obtained with the addition of 9%lime,followed in turn by 7%,5%and 3%.

    3.2.Splitting tensile strength

    The splitting tensile strength(qt)obtained as a function of lime content for curing times of 15 d,30 d,60 d and 90 d is presented in Fig.6.

    Similar to the unconfined compressive strengthqu,it was observed that forqt,lime addition has a significant impact on the finalqtvalues of soil-lime mixtures,and the fitting curves also present exponential trends.The curing time also influences the splitting tensile strength,as shown in Fig.7.

    By comparing 3%and 9%lime contents,it can be seen that for the 90-d curing time,the splitting tensile strengthqtincreases by 260%;and for 60-d,30-d,and 15-d curing times,qtincreases by 230%,140%and 130%,respectively.

    Based on the previous data,it can be found that bothquandqtincrease as the lime content and the curing time increase.

    3.3.qt/quratio

    Figs.8 and 9 present respectively the unconfined compressive strengthquand the splitting tensile strengthqtin relation toη/Lvfor different lime contents and curing times.

    A decreasing exponential behavior can be noted in Figs.8 and 9 due to an increase inLvand,consequently,an increase in theη/Lvratio.

    Fig.5.Unconfined compression strength(qu)versus logarithm curing time curves.

    Fig.6.Splitting tensile strength(qt)versus lime content(L)curves of specimens.

    According to these results,qu/qtcan be calculated for different curing times,as listed in Table 4.

    Thus,the ratios ofquto η/Lvandqtto η/Lvcan be taken as the parameters to evaluate principally theqt/quratio for various lime contents used.As indicated above,theqt/quratio increases with the curing time.Theqt/quratio may also be visualized by the functiony=f(x)orqt=f(qu).As a result,the ratio may be obtained depending on the type of soil and the curing time of luting material.The ratio varies from 0.1 to 0.15 according to Thompson(1965).Consoli et al.(2010,2012)found values of 0.15 and 0.16 for sandcement mixture and lime-treated silt cured for 28 d,respectively.

    Fig.10 presents the variation inqtas a function ofqufor the specimens in the present study.

    Fig.7.Splitting tensile strength(qt)versus logarithm curing time curves.

    Fig.8.Relations between quandη/Lvfor different lime contents and curing times.

    Fig.9.Relations between qtandη/Lvfor different lime contents and curing times.

    Table 4qu/qtvalues for different curing times.

    Fig.10.quversus qtratio.

    Table 5Effect of lime stabilization on the behavior of some soils reported in the literature.

    In the present study,theqt/quratio was calculated for different curing times.Exponential curves forquin Fig.8 present different correlation coefficients varying fromR2=0.8(at worst)toR2=0.97(at best);likewise,forqt(Fig.9)curves,the correlation coefficients vary fromR2=0.78 toR2=0.89.Taking these correlation coefficients into consideration,theqt/quratio for a 15-d curing time may be calculated.

    A linear tendency is observed for all lime contents and curing times used withR2=0.93,which follows the equationqt=0.2698qu-59.31.The equation can be used as mix design relationship.For the sandy clay studied,any values of splitting tensile and compressive strengths can be obtained if the lime content is increased or the porosity is reduced.In addition,any value of compressive strength can be calculated if the splitting tensile strength is known,which can be time-effective and reduce the cost in materials for other tests.

    For example,in the construction of pavement layers,where it is intended to achieve a defined resistance in a required time,the equations in Figs.5-10 can be used to determine the porosities(compaction energy)and the minimum lime content,depending on the curing time to achieve the planned strength,taking into account the lowest cost.

    4.Discussion

    Table 5 shows the effect of different lime contents and curing times on the unconfined compressive strength(qu),splitting tensile strength(qt)andqt/quvalues of several soils reported in the literature for comparison with the results in this paper.As shown in Table 5,the researchers used lime contents between 1%and 12%of specimens molded with dry unit weights of 14-19.5 kN/m3and curing times of up to 360 d.

    The maximum compressive and tensile strengths were obtained at higher lime content,longer curing time and higher unit weight.According to Consoli et al.(2012,2014),the increase of soil-lime mixture strength is directly related with the decrease of pores and the increase of lime volume.Thompson(1965)obtained the compressive strength of 11,156 kPa and tensile strength of 1427 kPaat 7%lime content.These are due to the high dry weight in compaction test,around 18 kN/m3.

    Other authors such as Consoli et al.(2012)and Calik and Sadoglu(2014)obtained higher values of strengths compared with results in this paper.This is explained by the dry weight of compaction used by the researchers mentioned above,being higher than that in this paper.Another explanation may be the amount of clay particles,due to the reaction between lime and clay.A final argument would be the differences of lime applied,differing from the calcium and magnesium contents according to each of local manufacturers.

    Ghobadi et al.(2014),by testing a clayey soil of low plasticity,obtained the unconfined compressive strength of only 6%of the

    result in this research.The difference may be illustrated by the reaction between clay and soil.In Ghobadi et al.(2014),the soil has only 12%of clay,whereas 35.5%of clay is reported in the present study.

    5.Concluding remarks

    The goal of the present study was to measure the influence of hydrated lime addition on unconfined compressive and splitting tensile strengths of a sedimentary soil of the Guabirotuba geological formation(Curitiba,Brazil).Bothquandqtvalues increase as the curing time increases.For 90-d curing time,the maximumquandqtvalues were obtained.At 90-d curing time,the unconfined compressive strengthquincreases by 400%for 9%lime content,260%for 7%lime,240%for 5%lime,and 170%for 3%lime.In the same condition,the splitting tensile strengthqtwas also observed to increase by 600%for 9%lime,440%for 7%lime,240%for 5%lime and 170%for 3%lime.The results show increasing strengths of the soil-lime mixtures like some soils reported in the literature listed in Table 1.

    The increasing rate ofqtis higher than that ofqufor 7%and 9%lime contents,but it is the same for 3%and 5%lime contents,which shows that the lime content and curing time have greater influences onqtthan onqu.

    Using theη/Lvratio to calculatequ/qtvalue was considered to be satisfactory.It was verified that this ratio(qu/qt)ranged from 0.17 to 0.2(for 15-d and 90-d curing times,respectively).Finally,the use of lime for stabilization of soils with low mechanical resistance was observed to be an efficient technique in geotechnical engineering.

    Conflicts of interest

    The authors wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

    The authors are thankful to Universidade Tecnológica Federal do Paraná and to the financial support given by CAPES-Brasil,Funda??o Araucária do Paraná and CNPq.

    al-Swaidani A,Hammoud I,Meziab A.Effect of adding natural pozzolana on geotechnical properties of lime-stabilized clayey soil.Journal of Rock Mechanics and Geotechnical Engineering 2016;8(5):714-25.

    ASTM D2166/D2166M-16.Standard test method for unconfined compressive strength of cohesive soil.West Conshohocken,USA:ASTM International;2016.

    ASTM D4318-10e1.Standard test methods for liquid limit,plastic limit,and plasticity index of soils.West Conshohocken,USA:ASTM International;2010.

    ASTM D698-12e2.Standard test methods for laboratory compaction characteristics of soil using standard effort(12,400 ft-lbf/ft3(600 kN-m/m3)).West Conshohocken,USA:ASTM International;2012.

    ASTM D854-14.Standard test methods for specific gravity of soil solids by water pycnometer.West Conshohocken,USA:ASTM International;2014.

    Calik U,Sadoglu E.Classification,shear strength,and durability of expansive clayey soil stabilized with lime and perlite.Natural Hazards 2014;71(3):1289-303.

    Consoli NC,Cruz RC,Floss MF,Festugato L.Parameters controlling tensile and compressive strength of artificially cemented sand.Journal of Geotechnical and Geoenvironmental Engineering 2010;136(5):759-63.

    Consoli NC,Dolla Rosa A,Gauer EA,dos Santos VR,Moretto RL,Corte MB.Key parameters for tensile and compressive strength of silt-lime mixtures.Geotechnique Letters 2012;2(3):81-5.

    Consoli NC,Prietto PDM,da Silva Lopes L,Winter D.Control factors for the long term compressive strength of lime treated sandy clay soil.Transportation Geotechnics 2014;1(3):129-36.

    Ghobadi MH,Abdilor Y,Babazadeh R.Stabilization of clay soils using lime and effect of pH variations on shear strength parameters.Bulletin of Engineering Geology and the Environment 2014;73(2):611-9.

    Ingles OG,Metcalf JB.Soil stabilization:principles and practice.Sydney,Australia:Butterworths;1972.

    Khemissa M,Mahamedi A.Cement and lime mixture stabilization of an expansive over consolidated clay.Applied Clay Science 2014;95:104-10.

    NBR 7175.Hydrated lime for mortars.Rio de Janeiro,Brazil:Brazilian Association of Technical Standards(ABNT);2003(in Portuguese).

    NBR 7222.Concrete and mortar:determination of tensile strength by cylindrical splitting tensile.Rio de Janeiro,Brazil:ABNT;2011(in Portuguese).

    Negawo WJ,Di Emidio G,Bezuijen A,Verastegui Flores RD,Fran?ois B.Lime-stabilisation of high plasticity swelling clay from Ethiopia.European Journal of Environmental and Civil Engineering 2017.https://doi.org/10.1080/19648189.2017.1304272.

    Rogers CDF,Glendinning S,Roff TEJ.Lime modification of clay soils for construction expediency.Proceedings of the Institution of Civil Engineers-Geotechnical Engineering 1997;125(4):242-9.

    Thompson MR.Split-tensile strength of lime-stabilized soils.Highway Research Record 1965;92:69-82.

    桃色一区二区三区在线观看| 有码 亚洲区| 嫁个100分男人电影在线观看| 亚洲专区国产一区二区| 国产av麻豆久久久久久久| 小蜜桃在线观看免费完整版高清| 级片在线观看| 日本在线视频免费播放| 亚洲一区高清亚洲精品| 日本撒尿小便嘘嘘汇集6| 亚洲欧美日韩高清专用| 99国产精品一区二区蜜桃av| 国内揄拍国产精品人妻在线| 午夜日韩欧美国产| 国产精品日韩av在线免费观看| 在线观看免费视频日本深夜| 99热这里只有是精品50| 国产精品亚洲av一区麻豆| 免费看十八禁软件| 在线免费观看的www视频| 国产一区二区在线观看日韩 | 蜜桃亚洲精品一区二区三区| 禁无遮挡网站| 免费av毛片视频| 亚洲国产欧美人成| 久久久久久久午夜电影| 日韩免费av在线播放| 99久久精品国产亚洲精品| 免费人成视频x8x8入口观看| 男女做爰动态图高潮gif福利片| 亚洲无线观看免费| 国产aⅴ精品一区二区三区波| x7x7x7水蜜桃| 一本久久中文字幕| 波多野结衣高清作品| 丁香欧美五月| 国内精品美女久久久久久| 日韩国内少妇激情av| 久久人妻av系列| 成年版毛片免费区| 啪啪无遮挡十八禁网站| 99精品久久久久人妻精品| 亚洲欧美精品综合久久99| 一级毛片女人18水好多| 人人妻人人看人人澡| 一区二区三区国产精品乱码| 人妻丰满熟妇av一区二区三区| 久久人妻av系列| 国产精品永久免费网站| 久久久久免费精品人妻一区二区| 国产一级毛片七仙女欲春2| 男女午夜视频在线观看| 国产高清视频在线观看网站| 欧美激情在线99| 51午夜福利影视在线观看| 好男人在线观看高清免费视频| 黄色女人牲交| 国语自产精品视频在线第100页| 蜜桃亚洲精品一区二区三区| 别揉我奶头~嗯~啊~动态视频| 综合色av麻豆| 成年女人永久免费观看视频| 午夜a级毛片| 久久这里只有精品中国| www.999成人在线观看| 长腿黑丝高跟| 极品教师在线免费播放| 国产精品久久视频播放| 色精品久久人妻99蜜桃| 最近最新免费中文字幕在线| 两个人视频免费观看高清| 精品久久久久久久毛片微露脸| 国产精品 国内视频| 欧美成狂野欧美在线观看| 亚洲欧美日韩高清专用| 欧美丝袜亚洲另类 | 国产精品乱码一区二三区的特点| 国产高清videossex| 一卡2卡三卡四卡精品乱码亚洲| 日本三级黄在线观看| 国产又黄又爽又无遮挡在线| 国产在线精品亚洲第一网站| 久久精品亚洲精品国产色婷小说| 不卡一级毛片| 久久久久亚洲av毛片大全| 美女免费视频网站| 日韩欧美在线乱码| 国产精品野战在线观看| 啦啦啦韩国在线观看视频| 中文字幕久久专区| 天堂av国产一区二区熟女人妻| 国产aⅴ精品一区二区三区波| 蜜桃久久精品国产亚洲av| 亚洲国产精品久久男人天堂| 特大巨黑吊av在线直播| 18禁黄网站禁片午夜丰满| 日日干狠狠操夜夜爽| 国产精品自产拍在线观看55亚洲| 九色成人免费人妻av| 18禁国产床啪视频网站| 欧美日本亚洲视频在线播放| 亚洲一区二区三区色噜噜| 精品福利观看| 99国产精品一区二区三区| 日韩大尺度精品在线看网址| 日本三级黄在线观看| 亚洲国产中文字幕在线视频| 久久久国产成人免费| 色播亚洲综合网| 别揉我奶头~嗯~啊~动态视频| 校园春色视频在线观看| 淫妇啪啪啪对白视频| 精品一区二区三区av网在线观看| aaaaa片日本免费| 女警被强在线播放| 日韩欧美在线二视频| 操出白浆在线播放| 久久这里只有精品中国| 1000部很黄的大片| 日本黄色视频三级网站网址| 国产99白浆流出| 三级国产精品欧美在线观看| 国产精品99久久99久久久不卡| 国语自产精品视频在线第100页| 久久精品国产综合久久久| 欧美乱码精品一区二区三区| 久久久精品大字幕| 久久久精品大字幕| 色综合欧美亚洲国产小说| 99久久精品国产亚洲精品| 成人鲁丝片一二三区免费| 成人性生交大片免费视频hd| 久久久久九九精品影院| 亚洲欧美激情综合另类| 狂野欧美白嫩少妇大欣赏| 桃色一区二区三区在线观看| 女人被狂操c到高潮| 校园春色视频在线观看| 欧美绝顶高潮抽搐喷水| av专区在线播放| 九色国产91popny在线| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产av一区在线观看免费| 女人被狂操c到高潮| 99精品久久久久人妻精品| 久久天躁狠狠躁夜夜2o2o| 日韩欧美免费精品| 噜噜噜噜噜久久久久久91| 国产欧美日韩精品亚洲av| 天堂动漫精品| 香蕉av资源在线| 国产免费av片在线观看野外av| 3wmmmm亚洲av在线观看| 午夜福利在线在线| 91字幕亚洲| 日本黄大片高清| 成人高潮视频无遮挡免费网站| 香蕉久久夜色| 在线观看舔阴道视频| 欧美高清成人免费视频www| 久久久久久久久中文| 免费av不卡在线播放| 亚洲精品成人久久久久久| 国产免费男女视频| 色老头精品视频在线观看| 精品福利观看| av在线蜜桃| 2021天堂中文幕一二区在线观| 日韩 欧美 亚洲 中文字幕| 欧美av亚洲av综合av国产av| 日本五十路高清| 国产高潮美女av| 两个人的视频大全免费| 亚洲一区二区三区色噜噜| 亚洲中文字幕一区二区三区有码在线看| 在线观看66精品国产| 手机成人av网站| 天堂网av新在线| 天堂网av新在线| 久久精品国产亚洲av涩爱 | 一进一出好大好爽视频| 18禁国产床啪视频网站| 一区二区三区免费毛片| 国产精品久久电影中文字幕| 亚洲欧美日韩东京热| 成年版毛片免费区| 我的老师免费观看完整版| 女人高潮潮喷娇喘18禁视频| 婷婷六月久久综合丁香| 老熟妇仑乱视频hdxx| 人人妻,人人澡人人爽秒播| 色噜噜av男人的天堂激情| 91久久精品电影网| 97碰自拍视频| 日韩欧美国产一区二区入口| av中文乱码字幕在线| av天堂在线播放| 亚洲国产精品999在线| eeuss影院久久| 亚洲精品成人久久久久久| 亚洲自拍偷在线| 少妇丰满av| 草草在线视频免费看| 免费高清视频大片| 国产一区二区亚洲精品在线观看| АⅤ资源中文在线天堂| 最近视频中文字幕2019在线8| 天美传媒精品一区二区| 欧美成人a在线观看| 黄片大片在线免费观看| 成人鲁丝片一二三区免费| 国产精品 欧美亚洲| 在线播放国产精品三级| 男插女下体视频免费在线播放| aaaaa片日本免费| 淫妇啪啪啪对白视频| 丁香六月欧美| 成年版毛片免费区| 精品电影一区二区在线| 久久精品国产亚洲av香蕉五月| 国产精品一区二区三区四区久久| 天美传媒精品一区二区| 欧美丝袜亚洲另类 | 香蕉久久夜色| 国产午夜福利久久久久久| 一级a爱片免费观看的视频| 99久久精品热视频| 亚洲成人中文字幕在线播放| 99久国产av精品| 国产免费男女视频| 亚洲片人在线观看| 超碰av人人做人人爽久久 | 狂野欧美白嫩少妇大欣赏| 内地一区二区视频在线| 国产伦一二天堂av在线观看| 免费av不卡在线播放| 精品久久久久久,| 久久精品影院6| 午夜老司机福利剧场| 国产精品久久电影中文字幕| 国产免费男女视频| 国产乱人视频| 丰满人妻一区二区三区视频av | 亚洲人成电影免费在线| 97超级碰碰碰精品色视频在线观看| 蜜桃久久精品国产亚洲av| 99热精品在线国产| 亚洲精品一卡2卡三卡4卡5卡| 午夜福利欧美成人| 色综合站精品国产| a在线观看视频网站| 欧美成人免费av一区二区三区| 成人精品一区二区免费| 久久久久久人人人人人| 一区福利在线观看| 在线观看美女被高潮喷水网站 | 欧美一区二区国产精品久久精品| 在线观看日韩欧美| 国产伦一二天堂av在线观看| 欧美激情久久久久久爽电影| 国产极品精品免费视频能看的| 亚洲自拍偷在线| 久久久久久国产a免费观看| 热99re8久久精品国产| 久久人妻av系列| 国产黄片美女视频| 男人舔奶头视频| 久久久久久国产a免费观看| 国产成人aa在线观看| 中文字幕av在线有码专区| 国产一区二区三区视频了| 国产高清视频在线观看网站| 午夜老司机福利剧场| 一本精品99久久精品77| 免费av不卡在线播放| 国产真人三级小视频在线观看| 亚洲自拍偷在线| АⅤ资源中文在线天堂| 69av精品久久久久久| 国产精品美女特级片免费视频播放器| 国产 一区 欧美 日韩| 香蕉久久夜色| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品成人久久久久久| 丝袜美腿在线中文| 高清在线国产一区| 精品一区二区三区视频在线观看免费| 人人妻人人澡欧美一区二区| 搡老妇女老女人老熟妇| 午夜久久久久精精品| 日本黄色视频三级网站网址| 伊人久久大香线蕉亚洲五| 无遮挡黄片免费观看| 亚洲精品色激情综合| 国产伦人伦偷精品视频| 亚洲欧美激情综合另类| 日本一本二区三区精品| 一级毛片高清免费大全| 91麻豆av在线| 美女高潮的动态| 天堂av国产一区二区熟女人妻| 亚洲精品一区av在线观看| 十八禁网站免费在线| 中亚洲国语对白在线视频| 国产欧美日韩一区二区精品| www.熟女人妻精品国产| 91在线观看av| 精品福利观看| 国产三级在线视频| 免费电影在线观看免费观看| 九色成人免费人妻av| 欧美激情在线99| 无人区码免费观看不卡| 人妻丰满熟妇av一区二区三区| 久久精品人妻少妇| 免费观看人在逋| 国产精品三级大全| 18禁裸乳无遮挡免费网站照片| aaaaa片日本免费| 精品人妻一区二区三区麻豆 | 狠狠狠狠99中文字幕| 久久性视频一级片| 国产精品久久电影中文字幕| 在线播放无遮挡| 搞女人的毛片| 日韩欧美国产一区二区入口| 国产精品三级大全| 免费看十八禁软件| 国产亚洲欧美98| 精品国内亚洲2022精品成人| 人人妻人人澡欧美一区二区| 国产精品精品国产色婷婷| 精品人妻一区二区三区麻豆 | 老司机午夜福利在线观看视频| 又黄又粗又硬又大视频| 99久久精品热视频| 欧美在线一区亚洲| 成熟少妇高潮喷水视频| 亚洲精品一卡2卡三卡4卡5卡| 久久这里只有精品中国| 久久久久久久午夜电影| 非洲黑人性xxxx精品又粗又长| 日韩欧美在线乱码| 99国产极品粉嫩在线观看| 99国产综合亚洲精品| 亚洲最大成人手机在线| svipshipincom国产片| 亚洲专区国产一区二区| 久久精品国产亚洲av香蕉五月| 天美传媒精品一区二区| 亚洲人与动物交配视频| 欧美最黄视频在线播放免费| 欧美日韩综合久久久久久 | 成人特级av手机在线观看| 国内精品久久久久久久电影| 真人做人爱边吃奶动态| 99国产极品粉嫩在线观看| 香蕉丝袜av| 99热这里只有精品一区| 国产激情欧美一区二区| 成年女人看的毛片在线观看| 深夜精品福利| 午夜精品久久久久久毛片777| 97超级碰碰碰精品色视频在线观看| 中文资源天堂在线| 日韩 欧美 亚洲 中文字幕| 18禁裸乳无遮挡免费网站照片| 精品一区二区三区av网在线观看| 久久精品人妻少妇| 国产私拍福利视频在线观看| 在线看三级毛片| 手机成人av网站| 老汉色av国产亚洲站长工具| 最新在线观看一区二区三区| 欧美日本视频| 人人妻,人人澡人人爽秒播| 极品教师在线免费播放| 欧美3d第一页| 熟妇人妻久久中文字幕3abv| 18禁黄网站禁片免费观看直播| 一个人免费在线观看电影| 又爽又黄无遮挡网站| 手机成人av网站| 国产私拍福利视频在线观看| 在线观看免费午夜福利视频| 国产亚洲精品一区二区www| 久久精品国产自在天天线| 一本久久中文字幕| 亚洲av中文字字幕乱码综合| 精品电影一区二区在线| 亚洲av电影在线进入| 特大巨黑吊av在线直播| 又紧又爽又黄一区二区| 久久这里只有精品中国| 色精品久久人妻99蜜桃| 高潮久久久久久久久久久不卡| 网址你懂的国产日韩在线| 男女做爰动态图高潮gif福利片| 一本久久中文字幕| 天堂网av新在线| 日韩欧美国产一区二区入口| 国产黄色小视频在线观看| 午夜福利成人在线免费观看| 亚洲人成网站在线播放欧美日韩| 亚洲精品成人久久久久久| 男人的好看免费观看在线视频| 真人做人爱边吃奶动态| 日韩 欧美 亚洲 中文字幕| 俺也久久电影网| 久久精品亚洲精品国产色婷小说| 在线观看一区二区三区| www.www免费av| 91九色精品人成在线观看| 久久久成人免费电影| 欧美日韩福利视频一区二区| 亚洲va日本ⅴa欧美va伊人久久| www.999成人在线观看| 亚洲第一欧美日韩一区二区三区| 久久精品91蜜桃| 无限看片的www在线观看| 国产精品影院久久| 亚洲精华国产精华精| 波多野结衣巨乳人妻| avwww免费| 少妇人妻精品综合一区二区 | 99久久无色码亚洲精品果冻| 一级毛片女人18水好多| 亚洲成人中文字幕在线播放| 操出白浆在线播放| 少妇高潮的动态图| 一二三四社区在线视频社区8| 亚洲av电影不卡..在线观看| 美女大奶头视频| 日本a在线网址| 看片在线看免费视频| avwww免费| 亚洲精品456在线播放app | 国产精品永久免费网站| 久久精品人妻少妇| 亚洲五月天丁香| 久久精品国产综合久久久| 宅男免费午夜| 亚洲第一欧美日韩一区二区三区| 亚洲一区二区三区色噜噜| 最近最新中文字幕大全免费视频| 成人欧美大片| 亚洲激情在线av| 久久久国产成人精品二区| 久久香蕉精品热| 免费看美女性在线毛片视频| xxx96com| 一区福利在线观看| 久久久久性生活片| 亚洲中文字幕一区二区三区有码在线看| 搡老妇女老女人老熟妇| 国产av麻豆久久久久久久| 久久99热这里只有精品18| 97超级碰碰碰精品色视频在线观看| 欧美日韩黄片免| 母亲3免费完整高清在线观看| 小蜜桃在线观看免费完整版高清| 午夜免费观看网址| 久久精品国产99精品国产亚洲性色| 国产精品久久久久久久电影 | 韩国av一区二区三区四区| 亚洲av美国av| 久99久视频精品免费| 在线观看66精品国产| 最近最新中文字幕大全免费视频| 真人做人爱边吃奶动态| 欧美午夜高清在线| www国产在线视频色| 久久久久亚洲av毛片大全| 午夜福利视频1000在线观看| 少妇熟女aⅴ在线视频| 亚洲精品国产精品久久久不卡| 最新美女视频免费是黄的| 国产真人三级小视频在线观看| 一进一出抽搐动态| 日本成人三级电影网站| 搡老妇女老女人老熟妇| 亚洲国产欧美网| 亚洲熟妇中文字幕五十中出| 蜜桃久久精品国产亚洲av| 日本与韩国留学比较| 亚洲人成电影免费在线| 精品国产亚洲在线| 欧美成人a在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 琪琪午夜伦伦电影理论片6080| 男女那种视频在线观看| 精品国产美女av久久久久小说| 欧美一级毛片孕妇| 久久欧美精品欧美久久欧美| 99在线视频只有这里精品首页| 欧美日韩综合久久久久久 | 久久久久久久久中文| 免费高清视频大片| 高清在线国产一区| 搡老岳熟女国产| 成人鲁丝片一二三区免费| 又粗又爽又猛毛片免费看| 亚洲av免费高清在线观看| 午夜两性在线视频| 99国产精品一区二区蜜桃av| 欧美乱码精品一区二区三区| 亚洲无线在线观看| 黑人欧美特级aaaaaa片| 国产精品久久久人人做人人爽| 精品午夜福利视频在线观看一区| 亚洲精品一区av在线观看| 黄色片一级片一级黄色片| 嫩草影视91久久| 麻豆国产av国片精品| 伊人久久大香线蕉亚洲五| 欧美色欧美亚洲另类二区| 国产午夜精品久久久久久一区二区三区 | 欧美中文日本在线观看视频| 小说图片视频综合网站| 一个人免费在线观看的高清视频| av黄色大香蕉| 亚洲精品一区av在线观看| 性色avwww在线观看| 亚洲国产日韩欧美精品在线观看 | 又爽又黄无遮挡网站| 国产精品久久久久久久电影 | 高潮久久久久久久久久久不卡| 2021天堂中文幕一二区在线观| 亚洲五月婷婷丁香| 国内精品一区二区在线观看| av在线天堂中文字幕| 一级毛片女人18水好多| 国产免费av片在线观看野外av| 91麻豆av在线| 午夜免费成人在线视频| 久久久色成人| 精品国产亚洲在线| 国产精品 国内视频| 一本综合久久免费| 久久久久久久午夜电影| 淫妇啪啪啪对白视频| 色综合亚洲欧美另类图片| 色综合欧美亚洲国产小说| 无遮挡黄片免费观看| 99热6这里只有精品| 悠悠久久av| 久久午夜亚洲精品久久| 国产精品99久久99久久久不卡| 两个人视频免费观看高清| 亚洲无线观看免费| 丰满乱子伦码专区| 麻豆一二三区av精品| 亚洲av成人av| 国产在线精品亚洲第一网站| 91麻豆精品激情在线观看国产| 亚洲人成网站在线播| 村上凉子中文字幕在线| 女警被强在线播放| 成人av一区二区三区在线看| 青草久久国产| 在线天堂最新版资源| 中国美女看黄片| 亚洲色图av天堂| 久久亚洲真实| 久久久久亚洲av毛片大全| 国产成人aa在线观看| 悠悠久久av| 好男人在线观看高清免费视频| 一区二区三区激情视频| 久久久久九九精品影院| 欧美最新免费一区二区三区 | 久久婷婷人人爽人人干人人爱| 蜜桃久久精品国产亚洲av| 3wmmmm亚洲av在线观看| 首页视频小说图片口味搜索| 我的老师免费观看完整版| 亚洲成av人片免费观看| 午夜两性在线视频| 18禁裸乳无遮挡免费网站照片| 亚洲人成网站在线播放欧美日韩| 一区二区三区免费毛片| 国产精品1区2区在线观看.| 久久精品91无色码中文字幕| 国产精品99久久99久久久不卡| 中亚洲国语对白在线视频| 国产精品99久久99久久久不卡| 一区二区三区免费毛片| 欧美最新免费一区二区三区 | 色吧在线观看| 中文在线观看免费www的网站| 国产成年人精品一区二区| 欧美国产日韩亚洲一区| 日本 av在线| www.熟女人妻精品国产| 免费电影在线观看免费观看| 观看免费一级毛片| 欧美黑人欧美精品刺激| 啦啦啦韩国在线观看视频| 变态另类丝袜制服| 看片在线看免费视频| 午夜福利免费观看在线| 中文字幕av在线有码专区| 香蕉丝袜av| 又黄又粗又硬又大视频| 精品免费久久久久久久清纯| 免费无遮挡裸体视频| 欧美成人一区二区免费高清观看| 国产精品久久久久久久电影 | 又紧又爽又黄一区二区| 成人av在线播放网站| 国产乱人视频| 亚洲五月天丁香| 国产午夜福利久久久久久| 99精品久久久久人妻精品| 久久欧美精品欧美久久欧美|