余海燕, 劉德生, 王 云
(青海省人民醫(yī)院麻醉科, 青海 西寧 810001)
大腸癌是常見的消化道腫瘤之一,近些年隨著人民膳食結(jié)構(gòu)及生活方式的改變,大腸癌的發(fā)病率呈上升趨勢,對人們的生命健康造成了嚴(yán)重的威脅,主要治療手段為外科手術(shù),但相當(dāng)多的患者就診時(shí)已處于晚期,錯(cuò)失了最佳的治療時(shí)機(jī),造成術(shù)后的復(fù)發(fā)率高,且5年生存率低[1-2]。因此,尋找新的治療方法具有重要意義。腫瘤手術(shù)中麻醉是不可或缺的部分,麻醉過程中使用的藥物可能對腫瘤有有害或有益的作用,從而影響腫瘤的預(yù)后及治療。丙泊酚(propofol)是常用的一種靜脈麻醉藥物,廣泛用于麻醉維持、麻醉誘導(dǎo)及重癥監(jiān)護(hù)室[3]。近些年的研究發(fā)現(xiàn),丙泊酚有抑制腫瘤細(xì)胞增殖、侵襲及誘導(dǎo)細(xì)胞凋亡的作用[4-5],若在手術(shù)治療過程中,采用丙泊酚麻醉患者,可能具有抑制腫瘤細(xì)胞生長和促凋亡作用。目前,關(guān)于丙泊酚對結(jié)直腸癌的影響機(jī)制尚不清楚。本研究擬在離體條件下,探討丙泊酚對結(jié)直腸癌細(xì)胞活力、侵襲和凋亡的影響,并探討其可能的分子機(jī)制。
1細(xì)胞、主要試劑和儀器
大腸癌LoVo細(xì)胞株購自濟(jì)南賽爾生物科技有限公司。
丙泊酚購自AstraZeneca;胎牛血清和RPMI-1640培養(yǎng)基均購自Gibco;Transwell小室購自Millipore;CCK-8試劑盒、二喹啉甲酸(bicinchoninic acid,BCA)試劑盒和膜聯(lián)蛋白 V(Annexin V)-FITC凋亡試劑盒購自碧云天生物技術(shù)研究所;抗基質(zhì)金屬蛋白酶2(matrix metalloproteinase-2,MMP-2)、基質(zhì)金屬蛋白酶9(matrix metalloproteinase 9,MMP-9)、活化的胱天蛋白酶3(cleaved caspase-3)、Notch1和發(fā)狀分裂相關(guān)增強(qiáng)子1(hairy and enhancer of split 1,Hes1)抗體均購自Abcam。酶標(biāo)儀購自Bio-Rad;流式細(xì)胞儀購自Becton Dickinson。
2方法
2.1細(xì)胞培養(yǎng) LoVo細(xì)胞在37 ℃、5% CO2、95%飽和濕度的恒溫培養(yǎng)箱中,用含有10%胎牛血清、1×105U/L青霉素和100 mg/L鏈霉素的RPMI-1640培養(yǎng)液中培養(yǎng)。每2~3 d傳代1次。實(shí)驗(yàn)取對數(shù)生長期的細(xì)胞。
2.2CCK-8法檢測細(xì)胞活力 取生長至對數(shù)期的 LoVo細(xì)胞制成細(xì)胞懸液,以1×107/L密度每孔加入200 μL接種至96孔細(xì)胞培養(yǎng)板中,37 ℃、5% CO2的培養(yǎng)箱中培養(yǎng)24 h后,將細(xì)胞分為丙泊酚組和對照組。丙泊酚組分別加入10、25、50和100 μmol/L的丙泊酚處理細(xì)胞72 h,或用100 μmol/L的丙泊酚處理細(xì)胞12、24、48和72 h;對照組加入等量的培養(yǎng)液。每組設(shè)置5個(gè)復(fù)孔,并設(shè)立調(diào)零孔。各組細(xì)胞作用至規(guī)定時(shí)點(diǎn)后,每孔加入CCK-8試劑10 μL,37 ℃、5% CO2繼續(xù)培養(yǎng)2 h。用空白對照孔調(diào)零,酶標(biāo)儀測定各個(gè)孔在450 nm波長處的吸光度(A)值,計(jì)算細(xì)胞活力。細(xì)胞活力(%)=實(shí)驗(yàn)組細(xì)胞A值/對照組細(xì)胞A值×100%。
2.3Transwell小室檢測細(xì)胞侵襲能力 4 ℃融化Matrigel,于冰上將Matrigel用磷酸鹽緩沖液(phosphate-buffered saline,PBS)按照1∶6稀釋,取35 μL鋪在小室內(nèi),常溫放置10~15 min風(fēng)干,Transwell小室的上室中加入200 μL的丙泊酚(100 μmol/L)處理72 h的細(xì)胞懸液(密度為1×108/L),下室中加入含有10%胎牛血清的RPMI-1640培養(yǎng)基,37 ℃、5% CO2培養(yǎng)箱中經(jīng)過24 h培養(yǎng),膜清洗,甲醛固定30 min,結(jié)晶紫染色5 min,顯微鏡下拍照,隨機(jī)取6個(gè)不同的視野(×200)觀察并記錄穿膜的細(xì)胞數(shù),實(shí)驗(yàn)重復(fù)3次,計(jì)算每組小室細(xì)胞的平均數(shù)。
2.4流式細(xì)胞術(shù)檢測細(xì)胞周期 以2×108/L的密度將 LoVo細(xì)胞接種至6孔細(xì)胞培養(yǎng)板中,每孔2 mL,每組設(shè)置3個(gè)復(fù)孔,100 μmol/L的丙泊酚處理細(xì)胞72 h,離心收集細(xì)胞,預(yù)冷的PBS洗滌后迅速用預(yù)冷的70%乙醇固定,-20 ℃過夜后,離心去除乙醇,預(yù)冷的PBS洗滌,碘化丙錠(propidium iodide,PI)避光染色20 min,流式細(xì)胞術(shù)檢測各組細(xì)胞的周期分布。
2.5流式細(xì)胞術(shù)檢測細(xì)胞凋亡 以2×108/L的密度將 LoVo細(xì)胞接種至6孔細(xì)胞培養(yǎng)板中,每孔2 mL, 100 μmol/L的丙泊酚處理細(xì)胞72 h,胰蛋白酶消化細(xì)胞,離心后收集細(xì)胞,采用Annexin V-FITC/PI 雙標(biāo)記試劑盒用流式細(xì)胞儀檢測各組細(xì)胞的凋亡情況。
2.6Western blot法檢測蛋白表達(dá) 取100 μmol/L的丙泊酚處理72 h的細(xì)胞,加入適量的細(xì)胞裂解液于冰上充分裂解,離心,收集上清,取少量蛋白用BCA試劑盒檢測蛋白濃度。每泳道30μg的上樣量經(jīng)12% SDS-PAGE電泳分離,再轉(zhuǎn)移至硝酸纖維素膜,5%脫脂奶粉封閉,分別加入抗MMP-2、MMP-9、cleaved caspase-3、Notch1、Hes1(均按1∶500稀釋)和GAPDH(1∶1 000稀釋) I 抗,4 ℃過夜,TBST洗滌3次,每次10 min,加入1∶5 000稀釋的HRP標(biāo)記的羊抗鼠IgG,室溫孵育1 h,ECL化學(xué)發(fā)光后,X線顯像。
3統(tǒng)計(jì)學(xué)處理
所有實(shí)驗(yàn)數(shù)據(jù)采用SPSS 21.0軟件進(jìn)行分析,計(jì)量資料用均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示,兩組間比較采用獨(dú)立樣本t檢驗(yàn),多組間比較采用單因素方差分析,兩兩比較采用LSD-t檢驗(yàn),以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
1丙泊酚抑制LoVo細(xì)胞的活力
CCK-8實(shí)驗(yàn)結(jié)果顯示,0、10、25、50和100 μmol/L的丙泊酚處理LoVo細(xì)胞72 h后,細(xì)胞活力分別為(100.00±4.44)%、(96.88±4.12)%、(91.79±4.39)%、(80.22±3.44)%和(62.48±3.54)%,細(xì)胞活力隨劑量的增加而減少,50和100 μmol/L的丙泊酚可顯著抑制細(xì)胞的活力(P<0.01),見圖1A;100 μmol/L的丙泊酚處理細(xì)胞0、12、24、48和72 h后,細(xì)胞活力分別為(100.00±5.12)%、(95.31±5.02)%、(85.12±4.75)%、(71.18±4.22)%和(60.09±3.78)%,細(xì)胞活力可隨著時(shí)間的延長降低,從24 h起可顯著抑制細(xì)胞活力(P<0.01),見圖1B。
Figure 1. The effect of propofol on the viability of the LoVo cells. A: the viability of the LoVo cells treated with propofol at different doses; B: the viability of LoVo cells treated with propofol at different time. Mean±SD.n=3.**P<0.01vs0 μmol/L group;##P<0.01vs0 h group.
圖1丙泊酚對LoVo細(xì)胞活力的影響
2丙泊酚抑制LoVo細(xì)胞的侵襲能力
Transwell小室檢測100 μmol/L的丙泊酚處理LoVo細(xì)胞72 h后細(xì)胞侵襲能力的變化,并以Wes-tern blot檢測侵襲相關(guān)蛋白MMP-2和MMP-9的蛋白表達(dá)水平,結(jié)果顯示,與對照組相比,丙泊酚組相對侵襲細(xì)胞明顯減少(P<0.01),細(xì)胞侵襲能力及MMP-2和MMP-9的蛋白表達(dá)均顯著降低(P<0.01),見圖2。
3丙泊酚阻滯LoVo細(xì)胞周期
流式細(xì)胞術(shù)檢測各組細(xì)胞的周期變化,結(jié)果顯示,丙泊酚組G0/G1期細(xì)胞顯著高于對照組(P<0.01),S期細(xì)胞顯著低于對照組(P<0.01),G2/M期細(xì)胞兩組間差異無統(tǒng)計(jì)學(xué)顯著性(P>0.05),見圖3。
Figure 2. The effect of propofol on the invasion ability of LoVo cells. A: the results of Transwell assay (crystal violet staining,×100); B: the protein expression of MMP-2 and MMP-9 was detected by Western blot. Mean±SD.n=3.**P<0.01vscontrol group.
圖2丙泊酚對LoVo細(xì)胞侵襲能力的影響
Figure 3. The effect of propofol on the cell cycle distribution of the LoVo cells. Mean±SD.n=3.**P<0.01vscontrol group.
圖3丙泊酚對LoVo細(xì)胞周期分布的影響
4丙泊酚促進(jìn)LoVo細(xì)胞凋亡
流式細(xì)胞術(shù)檢測LoVo細(xì)胞凋亡結(jié)果顯示,對照組和丙泊酚組細(xì)胞凋亡率分別為(5.18±0.67)%和(19.63±1.22)%,丙泊酚組細(xì)胞凋亡率顯著高于對照組(P<0.01),見圖4。
5丙泊酚對LoVo細(xì)胞cleavedcaspase-3、Notch1和Hes1蛋白表達(dá)的影響
Western blot檢測凋亡相關(guān)蛋白cleaved caspase-3及Notch1信號(hào)通路相關(guān)蛋白Notch1和Hes1的蛋白水平,結(jié)果顯示,丙泊酚組cleaved caspase-3的蛋白水平顯著高于對照組,而Notch1和Hes1的蛋白水平顯著低于對照組(P<0.01),見圖5。
近年來的研究顯示,一些麻醉藥物除了有鎮(zhèn)靜作用外,還能抗腫瘤和調(diào)節(jié)機(jī)體免疫反應(yīng),其中最典型的是丙泊酚。丙泊酚的有效成分為2,6-二異丙酚,是臨床上常用的靜脈麻醉藥,在各種手術(shù)的麻醉誘導(dǎo)中廣泛使用,其特有的結(jié)構(gòu)能抑制炎癥細(xì)胞聚集、增殖、活化及減少釋放炎癥因子,從而達(dá)到抗炎作用[6-7]。新近的研究顯示,丙泊酚可通過直接或間接作用抑制腫瘤細(xì)胞的增殖、侵襲、遷移和生存能力,并促進(jìn)細(xì)胞凋亡,從而達(dá)到有效的抗腫瘤作用[8-10]。有報(bào)道顯示,丙泊酚可抑制胃癌細(xì)胞增殖和侵襲[11];通過下調(diào)ERK-VEGF/MMP-9信號(hào)通路抑制食管癌細(xì)胞的增殖[12];通過調(diào)控miR-9/NF-κB信號(hào)抑制卵巢癌細(xì)胞的增殖和侵襲[13];通過激活GABA-A受體使MDA-MB-468乳腺癌細(xì)胞侵襲能力增強(qiáng)[14]。以上的研究說明丙泊酚可通過不同作用途徑抑制不同腫瘤細(xì)胞的增殖、凋亡和侵襲等過程。本研究以大腸癌細(xì)胞為研究對象,檢測了丙泊酚對大腸癌細(xì)胞增殖、凋亡和侵襲的影響,結(jié)果顯示,丙泊酚可顯著抑制大腸癌細(xì)胞的增殖和侵襲,阻滯細(xì)胞周期,并促進(jìn)細(xì)胞的凋亡。侵襲是惡性腫瘤的標(biāo)志之一,受到多種基因和蛋白的調(diào)控及其它多種因素的影響?;|(zhì)金屬蛋白酶(matrix metalloproteinases,MMPs)可使細(xì)胞外的基質(zhì)及基膜中的大多數(shù)蛋白質(zhì)降解,正常情況下在組織中以平衡狀態(tài)存在,而在腫瘤中平衡被打破,表達(dá)增強(qiáng),降解細(xì)胞外的基質(zhì),進(jìn)而促進(jìn)細(xì)胞的轉(zhuǎn)移、侵襲能力[15-16]。食管癌和肝癌等腫瘤中MMP基因的表達(dá)升高與腫瘤預(yù)后及轉(zhuǎn)移相關(guān)[17-18]。MMP-2和MMP-9在MMPs家族中被研究得較多。有研究指出,大腸癌中MMP-2和MMP-9的表達(dá)顯著升高,其表達(dá)與大腸癌的發(fā)生及侵襲轉(zhuǎn)移密切相關(guān),抑制其表達(dá)可顯著降低大腸癌細(xì)胞的侵襲能力[19-20]。細(xì)胞的增殖和凋亡不平衡是引起腫瘤發(fā)生的原因,caspase家族在細(xì)胞凋亡過程中發(fā)揮重要作用。本研究中已檢測丙泊酚可促進(jìn)結(jié)直腸細(xì)胞的凋亡,是否是通過調(diào)控caspase家族引起的凋亡還未可知。Caspase-3的基因定位于人染色體4q32~35.1,是細(xì)胞凋亡過程中的關(guān)鍵酶,也是caspase家族最重要的凋亡執(zhí)行者之一,在受到凋亡信號(hào)刺激后被激活,降解多種蛋白底物,從而誘導(dǎo)細(xì)胞發(fā)生凋亡,作為凋亡過程中的效應(yīng)蛋白,是多種凋亡刺激信號(hào)的匯聚點(diǎn),其活性將使凋亡進(jìn)入不可逆階段[21-23]。本研究的結(jié)果說明,丙泊酚可通過下調(diào)MMP-2和MMP-9蛋白表達(dá)而抑制細(xì)胞侵襲,上調(diào)cleaved caspase-3而誘導(dǎo)細(xì)胞凋亡。
Figure 4. The effect of propofol on the apoptosis of LoVo cells. Mean±SD.n=3.**P<0.01vscontrol group.
圖4丙泊酚對LoVo細(xì)胞凋亡的影響
Figure 5. The effect of propofol on the protein levels of cleaved caspase-3, Notch1 and Hes1 in the LoVo cells. Mean±SD.n=3.**P<0.01vscontrol group.
圖5丙泊酚對LoVo細(xì)胞cleavedcaspase-3、Notch1和Hes1蛋白水平的影響
Notch信號(hào)通路由Notch受體、配體及DNA結(jié)合蛋白組成,在進(jìn)化上高度保守,不僅影響正常細(xì)胞的增殖、發(fā)育、凋亡和分化,而且影響多種腫瘤細(xì)胞的發(fā)生及發(fā)展[24-25]。Notch1是Notch信號(hào)通路的一個(gè)受體,在人類T淋巴母細(xì)胞白血病中被鑒定出來,與腫瘤的發(fā)生存在密切關(guān)系,在多種腫瘤細(xì)胞中有異常表達(dá),如大腸癌、乳腺癌和膠質(zhì)瘤等,該信號(hào)的紊亂可通過直接或間接作用引起腫瘤的發(fā)生[26-28]。有研究指出,抑制Notch1可降低肝癌和膠質(zhì)瘤等多種腫瘤細(xì)胞的發(fā)生及發(fā)展[29-30]。Hes1是Notch1信號(hào)的關(guān)鍵靶基因,是Notch1信號(hào)是否激活的標(biāo)志[31]。本研究檢測丙泊酚對Notch1和Hes1蛋白表達(dá)的影響,結(jié)果顯示,Notch1和Hes1蛋白表達(dá)均顯著下調(diào)。這說明丙泊酚可通過下凋Notch1信號(hào)通路降低大腸癌的發(fā)生和發(fā)展。
綜上所述,丙泊酚可通過下調(diào)Notch1信號(hào)通路降低結(jié)直腸癌細(xì)胞的增殖和侵襲能力,阻滯細(xì)胞周期,并促進(jìn)細(xì)胞的凋亡,提示丙泊酚可能作為腫瘤治療手術(shù)中理想的麻醉藥。但本研究只在細(xì)胞水平檢測丙泊酚的作用,后期將做體內(nèi)實(shí)驗(yàn),以更深入研究丙泊酚在結(jié)直腸癌中的作用。
[1] Tabernero J, Yoshino T, Cohn AL, et al. Ramucirumab versus placebo in combination with second-line FOLFIRI in patients with metastatic colorectal carcinoma that progressed during or after first-line therapy with bevacizumab, oxaliplatin, and a fluoropyrimidine (RAISE): a rando-mised, double-blind, multicentre, phase 3 study[J]. Lancet Oncol, 2015, 16(5):499-508.
[2] Bettington M, Walker N, Clouston A, et al. The serrated pathway to colorectal carcinoma: current concepts and challenges[J]. Histopathology, 2013, 62(3): 367-386.
[3] Cattai A, Pilla T, Cagnardi P, et al. Evaluation and optimisation of propofol pharmacokinetic parameters in cats for target-controlled infusion[J]. Vet Rec, 2016, 178(20):503.
[4] Xu J, Xu W, Zhu J. Propofol suppresses proliferation and invasion of glioma cells by upregulating microRNA-218 expression[J]. Mol Med Rep, 2015, 12(4):4815-4820.
[5] Ye Z, Jingzhong L, Yangbo L, et al. Propofol inhibits proliferation and invasion of osteosarcoma cells by regulation of microRNA-143 expression[J]. Oncol Res, 2014, 21(4):201-207.
[6] Abbasivash R, Aghdashi MM, Sinaei B, et al. The effects of propofol-midazolam-ketamine co-induction on hemodynamic changes and catecholamine response[J]. J Clin Anesth, 2014, 26(8):628-633.
[7] Ma X, Hu YW, Zhao ZL, et al. Anti-inflammatory effects of propofol are mediated by apolipoprotein M in a hepatocyte nuclear factor-1α-dependent manner[J]. Arch Biochem Biophys, 2013, 533(1-2):1-10.
[8] 高偉忠, 但 伶, 田澤丹, 等. 丙泊酚對肝缺血再灌注大鼠肺損傷及 PI3K/Akt 通路的影響[J]. 中國病理生理雜志, 2013, 29(3):488-492.
[9] Zhang D, Zhou X, Zhang J, et al. Propofol promotes cell apoptosis via inhibiting HOTAIR mediated mTOR pathway in cervical cancer[J]. Biochem Biophys Res Commun, 2015, 468(4):561-567.
[10] Xu YB, Jiang W, Zhao FR, et al. Propofol suppresses invasion and induces apoptosis of osteosarcoma cellinvitrovia downregulation of TGF-β1 expression[J]. Eur Rev Med Pharmacol Sci, 2016, 20(7):1430-1435.
[11] Wang ZT, Gong HY, Zheng F, et al. Propofol suppresses proliferation and invasion of gastric cancer cells via downregulation of microRNA-221 expression[J]. Genet Mol Res, 2015, 14(3):8117-8124.
[12] Nonaka S, Kawaguchi Y, Oda I, et al. Safety and effectiveness of propofol-based monitored anesthesia care without intubation during endoscopic submucosal dissection for early gastric and esophageal cancers[J]. Dig Endosc, 2015, 27(6):665-673.
[13] Huang X, Teng Y, Yang H, et al. Propofol inhibits invasion and growth of ovarian cancer cells via regulating miR-9/NF-κB signal[J]. Brazilian J Med Biol Res, 2016, 49(12):e5717.
[14] Ecimovic P, Murray D, Doran P, et al. Propofol and bupivacaine in breast cancer cell functioninvitro: role of theNET1 gene[J]. Anticancer Res, 2014, 34(3):1321-1331.
[15] 魏 莉, 徐 盈. 基質(zhì)金屬蛋白酶 9 在老年肺癌中的表達(dá)及臨床意義[J]. 中國老年學(xué)雜志, 2014, 34(1):89-90.
[16] Crisp JL, Savariar EN, Glasgow HL, et al. Dual targeting of integrin αvβ3 and matrix metalloproteinase-2 for optical imaging of tumors and chemotherapeutic delivery[J]. Mol Cancer Ther, 2014, 13(6):1514-1525.
[17] Zhang Y, Pan T, Zhong X, et al. Androgen receptor promotes esophageal cancer cell migration and proliferation via matrix metalloproteinase 2[J]. Tumor Biol, 2015, 36(8): 5859-5864.
[18] Ordonez R, Carbajo-Pescador S, Prieto-Dominguez N, et al. Inhibition of matrix metalloproteinase-9 and nuclear factor kappa B contribute to melatonin prevention of motility and invasiveness in HepG2 liver cancer cells[J]. J Pineal Res, 2014, 56(1):20-30.
[19] Salem N, Kamal I, Al-Maghrabi J, et al. High expression of matrix metalloproteinases: MMP-2 and MMP-9 predicts poor survival outcome in colorectal carcinoma[J]. Future Oncol, 2016, 12(3): 323-331.
[20] Groblewska M, Mroczko B, Gryko M, et al. Serum levels and tissue expression of matrix metalloproteinase 2 (MMP-2) and tissue inhibitor of metalloproteinases 2 (TIMP-2) in colorectal cancer patients[J]. Tumor Biol, 2014, 35(4):3793-3802.
[21] Maellaro E, Leoncini S, Moretti D, et al. Erythrocyte caspase-3 activation and oxidative imbalance in erythrocytes and in plasma of type 2 diabetic patients[J]. Acta Diabetol, 2013, 50(4):489-495.
[22] 袁 磊, 李伯和, 時(shí)冉冉, 等. 沉默JAG1基因?qū)θ巳橄侔?MDA-MB-231 細(xì)胞增殖和凋亡的影響[J]. 中國病理生理雜志, 2014, 30(2):262-267.
[23] Yu Z, Zhang C, Wang H, et al. Multidrug resistance-associated protein 3 confers resistance to chemoradiotherapy for rectal cancer by regulating reactive oxygen species and caspase-3-dependent apoptotic pathway[J]. Cancer Lett, 2014, 353(2):182-193.
[24] Takebe N, Nguyen D, Yang SX. Targeting notch signaling pathway in cancer: clinical development advances and challenges[J]. Pharmacol Ther, 2014, 141(2):140-149.
[25] Kang JH, Kim EG, Kim W, et al. Rhamnetin and cirsiliol induce radiosensitization and inhibition of epithelial-mesenchymal transition (EMT) by miR-34a-mediated suppression of Notch-1 expression in non-small cell lung cancer cell lines[J]. J Biol Chem, 2013, 288(38):27343-27357.
[26] Rodriguez JM, Miranda D, Bunout D, et al. Folates induce colorectal carcinoma HT29 cell line proliferation through Notch1 signaling[J]. Nutrition Cancer, 2015, 67(4):706-711.
[27] Qiu M, Peng Q, Jiang I, et al. Specific inhibition of Notch1 signaling enhances the antitumor efficacy of chemotherapy in triple negative breast cancer through reduction of cancer stem cells[J]. Cancer Lett, 2013, 328(2):261-270.
[28] Guichet PO, Guelfi S, Teigell M, et al. Notch1 stimulation induces a vascularization switch with pericyte-like cell differentiation of glioblastoma stem cells[J]. Stem Cells, 2015, 33(1):21-34.
[29] Wu G, Wilson G, George J, et al. Modulation of Notch signaling as a therapeutic approach for liver cancer[J]. Curr Gene Ther, 2015, 15(2):171-181.
[30] Xu R, Shimizu F, Hovinga K, et al. Molecular and clinical effects of Notch inhibition in glioma patients: a phase 0/I trial[J]. Clin Cancer Res, 2016, 22(19):4786-4796.
[31] Zhang K, Zhang YQ, Ai WB, et al. Hes1, an important gene for activation of hepatic stellate cells, is regulated by Notch1 and TGF-β/BMP signaling[J]. World J Gastroenterol, 2015, 21(3):878-887.