• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The validity analysis of ground simulation test for non-ablative thermal protection materials

    2018-02-13 07:57:26WangGuolinMengSongheJinHua
    實驗流體力學(xué) 2018年6期
    關(guān)鍵詞:狀態(tài)參數(shù)駐點風(fēng)洞

    Wang Guolin, Meng Songhe, Jin Hua,*

    (1. National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China; 2. Hypervelocity Aerodynamics Institute of China Aerodynamics Research and Development Center, Mianyang Sichuan 621000, China)

    Abstract:The aerodynamic heat load on the surface of the non-ablative thermal protection materials which served in the chemical non-equilibrium flow field, is controlled by the coupling of chemical non-equilibrium degree of flow field and the surface catalytic reaction of the materials. If the coupled effect is neglected in the performance simulation, the effective service performance cannot be obtained through the ground simulation test. Therefore, according to the stagnation-point heat flux relationship within the boundary layer of the blunt body supersonic vehicle, the present paper analyzes the principal flow field parameters, the characteristics of high-enthalpy supersonic field provided by ground simulation equipment, and the differences between ground and flight environments. The validity of the Three-Parameter-Simulation method is analyzed by the CFD simulation. A Four-Parameter-Simulation method is presented for analyzing the heat transfer of the chemical non-equilibrium stagnation-point boundary layer. Besides, the properties of the thermal protection materials is analyzed and a preliminary solution is proposed when the dissociation enthalpy in the Four-Parameter-Simulation is unable to be simulated.

    Keywords:non-ablative thermal protection materials;ground simulation test;chemical non-equilibrium flow;surface catalytic characteristics;numerical simulation

    0 Introduction

    The reentry vehicle with a large angle of attack and hypersonic speed flies in the chemical non-equilibrium thermal environment for a long time. The thermal environment has four distinctive characteristics, including high enthalpy, low pressure, low heat flux and chemical non-equilibrium flow, which provide favorable conditions for transiting the vehicle’s thermal protection system from ablative to non-ablative type. The surface catalytic and anti-oxidation characteristics of non-ablative thermal protection materials reduce the surface aerodynamic heat load and control the appearance of the vehicle[1-3]. Therefore, the objective and effective evaluations of catalytic and anti-oxidation properties are of utmost important in the selection of thermal protection materials. Moreover, the optimization design of thermal protection systems are based on these criterions.

    At present, the rule of Three-Parameter-Simulation and the method of Stagnation-point-Simulation are generally adopted to investigate the performance of thermal protection materials. The Three-Parameter-Simulation, consisting of total enthalpy at the outer edge of boundary layer,wall pressure and heat flux of stagnation-point, suits with the heat transfer in the chemical equilibrium boundary layer[4-13]. In order to apply Three-Parameter-Simulation to simulate the heat transfer in the chemical frozen or non-equilibrium boundary layer (the flow has reached the chemical equilibrium state at the outer edge of boundary layer), the conception of “l(fā)ocal heat transfer simulation” (LHTS[14]) is presented. The new three-parameters are corrected as total enthalpy, velocity gradient at the outer edge of boundary layer, and wall pressure on the stagnation-point.

    However, if the chemical state is non-equilibrium at the outer edge of boundary layer, the Three-Parameter-Simulation is impossible to obtain the material’s effective service performance from the ground simulation test. Hence, in order to improve the service performance of non-ablative thermal protection materials, the fourth parameter simulation on the chemical non-equilibrium degree of the outer edge of boundary layer should be introduced into the aforementioned Three-Parameter-Simulation.

    The current study analyzes the main flow field parameters and the effect of the stagnation-point heat flux of hypersonic blunt body on the basis of Fay-Riddell formula[15]and Goulard formula[16]. Subsequently, the paper introduces the simulated environmental characteristics provided by ground high-enthalpy simulation facility and highlights main differences from real flight environment. By combining the differences between simulation and flight tests, the validity of Three- and Four-Parameter-Simulations are theoretically analyzed. Moreover, the validity of simulation parameters selection has been demonstrated by a numerical simulation method. If the ratio of dissociation and total enthalpy at the outer edge of boundary layer cannot be simulated in the high enthalpy simulation facility, the stagnation-point heat flux of spacecraft cannot be simulated by the simulation test.

    1 Analysis of the influence parameters of the stagnation-point heat flux for hypersonic vehicle

    1.1 Influence parameters of the stagnation-point heat flux

    For an axisymmetric blunt body, its stagnation-point heat flux can be determined by using different formulae, according to the different chemical states, within the boundary layer of the flow around the body. The stagnation-point heat flux within an equilibrium boundary layer can be determined by using Fay-Riddell formula (Tw≤2000K and the wall dissociation enthalpyhDw=0):

    The stagnation-point heat flux of the frozen boundary layer is related to the rate constant of vehicle’s surface catalytic reaction,kw, which can be determined by using Goulard formula:

    φ=[1+CHs/(ρwkw)]-1

    (1b)

    TheCHsis,

    (2)

    where the frozen Prandtl number,Prf, is the velocity gradient at the stagnation point, (due/dx)sis the velocity gradient at the outer edge of boundary layer,ρeandμeare the mix gas density and the viscosity coefficient at the outer edge of boundary layer, respectively.

    According to the Fay-Riddell formula, theKvalue equals to 0.763, whereas the Goulard formula results in aKvalue of 0.664. The Damk?hler number (Damw) of the surface catalysis reaction can be defined as:

    Damw=ρwkw/CHs

    (3)

    For the approximation ofLef=Prf=1 andhte?hfw, the formulae for stagnation-point heat flux within equilibrium and frozen boundary layers can be approximated as:

    whereαis the ratio of dissociation to total enthalpy at the outer edge of boundary layer.

    Equation (2) indicates thatCHsis controlled by (due/dx)s,ρeandμe. Because both of the mix gas density and viscosity coefficient are functions of enthalpy, pressure and species concentration (ρ=fρ(p,h,Ci) andμ=fμ(p,h,Ci)). At the chemical equilibrium outer edge of boundary layer,ρeandμeare the function ofpe,hte. For the chemical non-equilibrium at the outer edge of boundary layer, the functions areρe=fρ(pe,hte,Cie) andμe=fμ(pe,hte,Cie), wherepeis pressure at the outer edge of boundary layer, which equals to the stagnation pressure,ps.

    Hence, if the outer edge of the chemidcal frozen boundary layer is chemical equilibrium, the stagnation-point heat flux is influenced by three field parameters,hte,psand (due/dx)s. If the outer edge of boundary layer is chemical non-equilibrium, the stagnation-point heat flux is also influenced by a fourth field parameter,α.

    1.2 Coupling effect between dissociation enthalpy and catalytic reaction rate on the stagnation-point heat flux

    Within the stagnation-point domain, the dissociation enthalpy is controlled by the vehicle’s head radius and flight orbit. In addition, the flow characteristic time (τf) around the body is proportional to the vehicle’s nosetip radius (Rn) , given by the following expression:

    τf∝Rn/U∞

    (5)

    As a result,under the specific flight height and velocity,τfdecrease withRn. However,τfof the ionization and dissociation reactions remain constant after normal shock. Therefore, thehDeexhibits a direct relationship withRn. For convenience, the stagnation-point heat transfer theory for frozen boundary layer is used to analyze the coupling effect of dissociation enthalpy and the rate constant of surface catalytic reaction on the stagnation-point heat flux.

    For a partially-catalytic surface, 0

    (7)

    Fig.1 The variation of along with α and Damw

    For the fully-catalytic surface,the stagnation-point heat flux is not influenced by dissociation enthalpy. However, for the partially-catalytic surface, the stagnation-point heat flux shows linear relationship with dissociation enthalpy. In conclusion, the stagnation-point heat flux decreases with the increasing of dissociation enthalpy, which implies that the surface catalytic characteristics of non-ablative material have a significant impact on the stagnation-point heat flux. Therefore, it is indispensable to consider the dissociation enthalpy in the ground simulation test study for the service performance evaluation of these materials.

    In summary, the stagnation-point heat flux affected by the principal flow field factors includehte,ps, (due/dx)sandα. The first three parameters affect the stagnation-point heat flux within the chemical frozen and non-equilibrium boundary layer whose outer edge is chemical equilibrium. If the outer edge of boundary layer is chemical non-equilibrium, the stagnation-point heat flux is directly influenced byα.

    2 Difference between ground simulation and flight environment

    The arc-heated wind tunnel (AHWT) and induction-heated wind tunnel (IHWT) are main facilities to perform ground simulation research to evaluate the performance of thermal protection materials. Such kind of facility utilizes arc or induction heating to heat the in-chamber gas to the pre-set enthalpy value. Then, the in-chamber high-temperature gas gets dissociated and ionized and air dissociation enthalpy accounts for 10%~70% of the total enthalpy (see Fig.2), with the enthalpy range of 4~32 MJ/kg.

    Fig.2 The equilibrium air α changed with pressure and enthalpy

    When the in-chamber high-enthalpy air passes through the supersonic nozzle, a complex three-body collision reaction between the dissociated atoms occurs in the nozzle contraction section, which gradually reduces the dissociation enthalpy in the fluid. With the increase of flow rate , the frozen point of chemical flow state occurs at some positions in the nozzle’s expansion section (nozzle with a higher Mach number), resulting in the dissociation enthalpy of nozzle jet is higher than the equilibrium state.

    In order to quantitatively analyze the flow characteristics in the supersonic nozzles, the flow characteristics of the supersonic nozzles in the arc-heated and induction-heated wind tunnels are calculated, respectively. Table 1 presents the parameters of the in-chamber gas and the geometric parameters of the nozzle.

    Along the axis of the supersonic nozzle, the distribution ofCOandCNin the chemical equilibrium and the non-equilibrium are shown in Fig.3(a). Besides, the distribution ofCOandCNin the chemical equilibrium and the non-equilibrium states, the distribution of temperature (T)and velocity (U) of jet flow, and the distribution ofαandhtalong the cross-section of the nozzle are shown in Fig.3(b), (c) and (d), respectively. The numerical simulation results exhibit that under the supersonic conditions, the jet provided by the ground simulation equipment exhibits a severe chemical non-equilibrium state.

    Table 1 The states of supersonic flow fields in arc-heated wind tunnels for calculation表1 電弧加熱風(fēng)洞超聲速流場計算狀態(tài)參數(shù)

    (a) Distribution ofCO(blue ) andCN(red) along the nozzle axis under the chemical equilibrium (dot) and non-equilibrium (line) states

    (b) Distribution ofCO(blue) andCN(red) along the cross-section of nozzle exit under the chemical equilibrium (dot) and the non-equilibrium (line) states

    (c) Distribution of T and U along the cross-section of the nozzle exit

    (d) Distribution of α and ht along the cross-section of nozzle exit

    Fig.3DistributionofparametersalongtheaxisandexitoftheAHWTnozzle

    圖3 各參數(shù)沿著電弧風(fēng)洞噴管軸線和出口的分布

    Therefore, the ground simulation environment is able to provide the same total enthalpy, stagnation-point pressure and velocity gradation as those in the actual flight environment. The main difference between simulated flow field and flight environment is the dissociation enthalpy (because the dissociation enthalpy is zero before the shock wave in the real flight environment).

    3 Selection of ground simulation parameters

    To study the service performance of non-ablative thermal protection materials in a chemical non-equilibrium environment, the FPS should be applied in the ground test simulation. The Four-Parameter-Simulation includes stagnation pressure, stagnation-point velocity gradient, total enthalpy and dissociation enthalpy, and the ground test results can reproduce the aerodynamic heat load at the stagnation-point region under the flight conditions.

    Total enthalpy:

    (8)

    Stagnation-point pressure:

    (9)

    Stagnation-point velocity gradient:

    (10)

    whereεrefers to the density ratio of gas “before” and “after” the shock wave,ε=ρ∞/ρe. The value has the following relationship with the Mach numberMa∞, and the ratio of specific heat capacities of the incoming flowγ∞.

    (11)

    In a ground simulation environment, the jet energy is consisting of gas kinetic energy, internal energy and dissociation energy. The total enthalpy of gas flow can be determined by the following equation:

    (12)

    The jet stagnation-point pressure can be determined from the given expression:

    (13)

    The velocity gradient, within a stagnation-point domain, can be determined according to the following relationship:

    (14)

    (15)

    3.1 Validity of simulation parameters

    To simulate the performance of material with a fully-catalytic surface, the Three-Parameter-Simulation (consisting of stagnation-point pressure, stagnation-point velocity gradient and total enthalpy) can provide the required data. However, for the material with partially-catalytic surface, dissociation enthalpy should be also considered.

    In order to verify the validity of parameter selection, the stagnation-point heat flux of vehicle under specific flight condition is compared with the stagnation-point heat flux of test piece under the corresponding ground simulation conditions. With the help of CFD, the selected flight conditions are shown in Table 2.

    Table 2 The flight conditions表2 飛行狀態(tài)參數(shù)

    Table 3 The AHWT simulation conditions表3 電弧加熱風(fēng)洞模擬狀態(tài)參數(shù)

    Table 4 The stagnation-point heat flux & pressure for flight environment表4 飛行環(huán)境下的駐點熱流與壓力

    Table 5 The stagnation-point heat flux & pressure for simulated environment表5 模擬環(huán)境下的駐點熱流與壓力

    (a) Temperature distribution (b) CN distribution (c)CO distribution

    (a) Temperature distribution (b) CN distribution (c) CO distribution

    Fig.6 The variation of with Damw

    3.2 Selection of simulation parameters and validity analysis for partially-catalytic surface

    According to equation 6(a) and (b), theαcan be determined by the non-catalytic and fully-catalytic stagnation-point heat flux:

    (16)

    According to equation (7) and (16):

    (17)

    (18)

    According to equation (18), in the chemical frozen boundary layer, only under the condition ofαS=αF, the simulation performed by Three-Parameter-Simulation method is valid. Therefore, for the stagnation-point heat transfer in the chemical frozen boundary layer, a reasonable simulation method should consist of total enthalpy, pressure, velocity gradient and the ratio of dissociation enthalpy to total enthalpy at the outer edge of boundary layer, that is the Four-Parameter-Simulation. In general,αF<αSresults in that the value of stagnation-point heat flux produced by ground simulation is smaller than that in the real flight environment.

    4 Conclusions

    (1) When the outer edge of boundary layer is in the chemical equilibrium state, the Three-Parameter-Simulation is valid in both the ground simulation and real flight environment.

    (2) When the outer edge of boundary layer is in the non-equilibrium state, the Three-Parameter-Simulation will result in heat flux reduction in both the ground simulation and real flight environment, but the Four-Parameter-Simulation adopted in the test can compensate this problem.

    (3) While the dissociation enthalpy cannot be simulated, the only effective way to solve the problem of not being able to simulate the dissociation enthalpy is to determine the difference between the simulated stagnation point heat flux of partially-catalytic surface and the stagnation point heat flux in flight. The simulation results are then extrapolated to the flight environment via mutual verification between the ground simulation and the flight test.

    猜你喜歡
    狀態(tài)參數(shù)駐點風(fēng)洞
    基于CKF的大型拖拉機狀態(tài)參數(shù)估計研究
    基于HHT算法的分布式電力系統(tǒng)狀態(tài)自動監(jiān)測方法
    堆石料的三維應(yīng)力分數(shù)階本構(gòu)模型
    斑頭雁進風(fēng)洞
    黃風(fēng)洞貂鼠精
    基于NI cRIO平臺的脈沖燃燒風(fēng)洞控制系統(tǒng)設(shè)計
    基于游人游賞行為的留園駐點分布規(guī)律研究
    中國園林(2018年7期)2018-08-07 07:07:48
    基于大數(shù)據(jù)風(fēng)電場狀態(tài)參數(shù)相關(guān)性分析
    利用遠教站點,落實駐點干部帶學(xué)
    利用遠教站點,落實駐點干部帶學(xué)
    日韩精品中文字幕看吧| 国产精品久久久人人做人人爽| 变态另类成人亚洲欧美熟女| www日本在线高清视频| av福利片在线观看| 午夜福利在线在线| 午夜免费观看网址| 最近视频中文字幕2019在线8| 久久精品影院6| 久久精品aⅴ一区二区三区四区| 99精品在免费线老司机午夜| 在线播放国产精品三级| 99国产精品99久久久久| 国产亚洲精品av在线| 最新美女视频免费是黄的| 精品久久蜜臀av无| 狂野欧美白嫩少妇大欣赏| 首页视频小说图片口味搜索| 国产久久久一区二区三区| 久久热在线av| 一个人看视频在线观看www免费 | 成人亚洲精品av一区二区| 亚洲av电影不卡..在线观看| 两人在一起打扑克的视频| 中亚洲国语对白在线视频| 国产野战对白在线观看| 熟女电影av网| 中文字幕av在线有码专区| 免费看日本二区| 国产亚洲精品久久久com| 搡老妇女老女人老熟妇| 亚洲精品美女久久av网站| 男女做爰动态图高潮gif福利片| 国产爱豆传媒在线观看| 成年版毛片免费区| 精品久久久久久,| 12—13女人毛片做爰片一| 日韩国内少妇激情av| 可以在线观看毛片的网站| 精品午夜福利视频在线观看一区| 真人一进一出gif抽搐免费| 亚洲国产精品成人综合色| 欧美性猛交黑人性爽| 视频区欧美日本亚洲| 精品国产三级普通话版| 好男人电影高清在线观看| 欧美三级亚洲精品| 久久精品亚洲精品国产色婷小说| 亚洲av电影不卡..在线观看| 国产真实乱freesex| 露出奶头的视频| 亚洲激情在线av| 国产伦精品一区二区三区视频9 | 美女 人体艺术 gogo| 一进一出抽搐动态| 日本撒尿小便嘘嘘汇集6| 国产视频内射| 国产精品一区二区免费欧美| 日韩大尺度精品在线看网址| 中文字幕av在线有码专区| 99久久精品一区二区三区| 一级毛片精品| 变态另类成人亚洲欧美熟女| 波多野结衣高清无吗| 亚洲成人中文字幕在线播放| 中文字幕人妻丝袜一区二区| 国产高清视频在线观看网站| 久久这里只有精品中国| 波多野结衣高清作品| 天天添夜夜摸| 最近最新中文字幕大全免费视频| 成人午夜高清在线视频| 青草久久国产| 男女床上黄色一级片免费看| 老熟妇乱子伦视频在线观看| 中文字幕最新亚洲高清| 国产久久久一区二区三区| 亚洲人成伊人成综合网2020| 长腿黑丝高跟| 啦啦啦免费观看视频1| 久久人人精品亚洲av| 亚洲成人免费电影在线观看| 亚洲欧美日韩东京热| 精品午夜福利视频在线观看一区| 热99re8久久精品国产| 亚洲精品久久国产高清桃花| 久久久精品欧美日韩精品| 亚洲av五月六月丁香网| 亚洲国产欧美网| 老熟妇乱子伦视频在线观看| 久久久色成人| 国产亚洲欧美在线一区二区| 五月伊人婷婷丁香| 男人舔奶头视频| 黄色 视频免费看| 91在线观看av| 观看免费一级毛片| 欧美黄色淫秽网站| 精品一区二区三区四区五区乱码| 亚洲无线在线观看| 天堂动漫精品| 午夜福利在线在线| 在线十欧美十亚洲十日本专区| 别揉我奶头~嗯~啊~动态视频| 免费高清视频大片| 一级毛片精品| 桃红色精品国产亚洲av| 国产三级中文精品| 日韩大尺度精品在线看网址| 桃红色精品国产亚洲av| 99视频精品全部免费 在线 | 男女之事视频高清在线观看| 又黄又爽又免费观看的视频| 午夜成年电影在线免费观看| 免费观看人在逋| 亚洲人成网站在线播放欧美日韩| 欧美日韩一级在线毛片| 最新中文字幕久久久久 | 国产淫片久久久久久久久 | 国产 一区 欧美 日韩| 欧美在线一区亚洲| 久久精品影院6| 91麻豆精品激情在线观看国产| 可以在线观看的亚洲视频| 日本熟妇午夜| 免费一级毛片在线播放高清视频| 久久人妻av系列| 一级毛片女人18水好多| 日韩大尺度精品在线看网址| 欧美最黄视频在线播放免费| 久久久久精品国产欧美久久久| 欧美色欧美亚洲另类二区| 一夜夜www| 国产真人三级小视频在线观看| 波多野结衣高清无吗| 999精品在线视频| 看免费av毛片| 一卡2卡三卡四卡精品乱码亚洲| 一本久久中文字幕| 午夜福利在线在线| 日韩免费av在线播放| 国产99白浆流出| 国产精品一区二区精品视频观看| 欧美不卡视频在线免费观看| 欧洲精品卡2卡3卡4卡5卡区| 热99re8久久精品国产| 18禁裸乳无遮挡免费网站照片| 欧美一区二区国产精品久久精品| 国产av不卡久久| 亚洲18禁久久av| 国产蜜桃级精品一区二区三区| 久久久久久大精品| 黄色片一级片一级黄色片| 国产亚洲av高清不卡| 国产男靠女视频免费网站| 欧美黄色片欧美黄色片| 黄色视频,在线免费观看| 香蕉丝袜av| 亚洲国产色片| 国模一区二区三区四区视频 | 最近最新中文字幕大全电影3| 久久久久国产精品人妻aⅴ院| 精品福利观看| 国产精品久久久久久久电影 | 国产真人三级小视频在线观看| 岛国视频午夜一区免费看| 午夜亚洲福利在线播放| 这个男人来自地球电影免费观看| 亚洲人成电影免费在线| 欧洲精品卡2卡3卡4卡5卡区| 成人一区二区视频在线观看| 国产精品1区2区在线观看.| 欧美+亚洲+日韩+国产| 99re在线观看精品视频| 黄片小视频在线播放| 国产高清有码在线观看视频| 国产亚洲精品久久久com| 99久久精品国产亚洲精品| 欧美最黄视频在线播放免费| 精品国产亚洲在线| 日韩成人在线观看一区二区三区| 国产黄a三级三级三级人| 国产三级黄色录像| 国产精品久久久久久人妻精品电影| 性色avwww在线观看| 女人被狂操c到高潮| 高清在线国产一区| 国产激情欧美一区二区| 亚洲最大成人中文| 亚洲专区国产一区二区| 婷婷精品国产亚洲av在线| 久久99热这里只有精品18| 久久久水蜜桃国产精品网| 观看美女的网站| 黄色片一级片一级黄色片| 免费在线观看日本一区| 动漫黄色视频在线观看| 国产蜜桃级精品一区二区三区| 淫秽高清视频在线观看| 亚洲色图 男人天堂 中文字幕| 日本撒尿小便嘘嘘汇集6| 99久久成人亚洲精品观看| 成人高潮视频无遮挡免费网站| 全区人妻精品视频| 中文字幕人成人乱码亚洲影| 中文字幕人妻丝袜一区二区| 亚洲av日韩精品久久久久久密| 真人一进一出gif抽搐免费| 美女扒开内裤让男人捅视频| 精品国产乱子伦一区二区三区| 观看免费一级毛片| 麻豆一二三区av精品| 99热精品在线国产| 丁香六月欧美| 真人做人爱边吃奶动态| 黑人操中国人逼视频| 在线十欧美十亚洲十日本专区| 国产精品乱码一区二三区的特点| 黄色日韩在线| 亚洲美女黄片视频| 亚洲成人中文字幕在线播放| 亚洲,欧美精品.| 五月玫瑰六月丁香| 九九热线精品视视频播放| 后天国语完整版免费观看| 成年人黄色毛片网站| 99久久综合精品五月天人人| 日韩成人在线观看一区二区三区| 色哟哟哟哟哟哟| 国产高潮美女av| 欧美日韩精品网址| 国产精品久久久久久久电影 | 国产精品爽爽va在线观看网站| 琪琪午夜伦伦电影理论片6080| 国产欧美日韩一区二区精品| 日本黄色片子视频| 国产综合懂色| 国产精品99久久久久久久久| 久久人人精品亚洲av| 变态另类丝袜制服| 观看美女的网站| 免费观看的影片在线观看| 欧美黄色淫秽网站| 淫妇啪啪啪对白视频| 搞女人的毛片| 老熟妇仑乱视频hdxx| 亚洲国产精品sss在线观看| 日本五十路高清| 首页视频小说图片口味搜索| 国内精品久久久久久久电影| 熟女少妇亚洲综合色aaa.| 国产aⅴ精品一区二区三区波| 久久人妻av系列| 又黄又爽又免费观看的视频| 国产精品久久久久久亚洲av鲁大| 嫩草影视91久久| 色在线成人网| 亚洲av中文字字幕乱码综合| 黄片大片在线免费观看| 国产真实乱freesex| 校园春色视频在线观看| 一级毛片精品| 免费无遮挡裸体视频| 悠悠久久av| 村上凉子中文字幕在线| 天堂动漫精品| 欧美性猛交╳xxx乱大交人| 久久精品综合一区二区三区| 亚洲九九香蕉| 亚洲欧美激情综合另类| 国产单亲对白刺激| 国产精品电影一区二区三区| 91av网一区二区| 亚洲av电影在线进入| 少妇裸体淫交视频免费看高清| 欧美一区二区国产精品久久精品| 亚洲熟妇中文字幕五十中出| 色在线成人网| 国产一区二区激情短视频| 久久久成人免费电影| 巨乳人妻的诱惑在线观看| 99国产极品粉嫩在线观看| 99久久久亚洲精品蜜臀av| 在线观看免费视频日本深夜| 老熟妇乱子伦视频在线观看| 亚洲va日本ⅴa欧美va伊人久久| 在线国产一区二区在线| 免费在线观看日本一区| 久久久久免费精品人妻一区二区| 国产激情偷乱视频一区二区| 精品久久久久久久久久免费视频| 蜜桃久久精品国产亚洲av| 天堂影院成人在线观看| 亚洲av片天天在线观看| 亚洲美女黄片视频| 亚洲精品一区av在线观看| 国产91精品成人一区二区三区| or卡值多少钱| 成人无遮挡网站| 久久久国产成人免费| 久久久国产成人免费| а√天堂www在线а√下载| 免费电影在线观看免费观看| 午夜福利18| 亚洲自拍偷在线| 午夜福利18| 亚洲精品在线观看二区| 一级黄色大片毛片| 国产伦精品一区二区三区四那| 成人永久免费在线观看视频| 麻豆一二三区av精品| 亚洲av片天天在线观看| 香蕉久久夜色| av黄色大香蕉| svipshipincom国产片| 少妇的丰满在线观看| 国产美女午夜福利| 特大巨黑吊av在线直播| 色综合欧美亚洲国产小说| 美女扒开内裤让男人捅视频| 亚洲精品乱码久久久v下载方式 | www.自偷自拍.com| 12—13女人毛片做爰片一| 欧美+亚洲+日韩+国产| 国产精品久久久久久精品电影| 宅男免费午夜| 亚洲av美国av| 两个人视频免费观看高清| 精品久久久久久久久久免费视频| 国产aⅴ精品一区二区三区波| 久久国产精品人妻蜜桃| 日韩大尺度精品在线看网址| 99精品在免费线老司机午夜| 国产伦精品一区二区三区四那| 国产成+人综合+亚洲专区| 999久久久精品免费观看国产| 国产高清视频在线播放一区| 国产主播在线观看一区二区| 1024香蕉在线观看| 十八禁网站免费在线| 国产黄a三级三级三级人| 精品久久久久久久毛片微露脸| 久久久久久久久久黄片| 香蕉丝袜av| 99久久国产精品久久久| 国产精品一区二区精品视频观看| 国产欧美日韩一区二区三| 18禁裸乳无遮挡免费网站照片| x7x7x7水蜜桃| 国产亚洲精品av在线| 国产精品98久久久久久宅男小说| 亚洲国产精品sss在线观看| 91在线精品国自产拍蜜月 | 男人舔女人下体高潮全视频| 欧美日本亚洲视频在线播放| 日本黄色视频三级网站网址| 亚洲国产高清在线一区二区三| 成人av一区二区三区在线看| 国产免费av片在线观看野外av| 亚洲18禁久久av| 舔av片在线| 啪啪无遮挡十八禁网站| 日本一二三区视频观看| 在线观看日韩欧美| 两人在一起打扑克的视频| 人妻久久中文字幕网| 亚洲av成人精品一区久久| 国内精品一区二区在线观看| 久久国产精品影院| 精品电影一区二区在线| 亚洲av免费在线观看| 在线观看午夜福利视频| 国产精品久久电影中文字幕| 99国产精品一区二区三区| 男女午夜视频在线观看| 露出奶头的视频| 狂野欧美白嫩少妇大欣赏| 精品国内亚洲2022精品成人| 成年女人看的毛片在线观看| 精品国产美女av久久久久小说| 亚洲av第一区精品v没综合| 成年免费大片在线观看| 少妇的逼水好多| 一进一出抽搐gif免费好疼| 一二三四社区在线视频社区8| 亚洲五月婷婷丁香| 天堂影院成人在线观看| 亚洲欧美精品综合一区二区三区| 91九色精品人成在线观看| 一级毛片高清免费大全| 村上凉子中文字幕在线| 俺也久久电影网| 日韩国内少妇激情av| 色综合站精品国产| 欧美黄色淫秽网站| 免费看日本二区| 免费在线观看视频国产中文字幕亚洲| 又粗又爽又猛毛片免费看| 精品久久久久久,| 久久天堂一区二区三区四区| 亚洲无线在线观看| 亚洲国产欧美一区二区综合| 三级毛片av免费| 精品久久久久久久人妻蜜臀av| 岛国在线观看网站| 悠悠久久av| 国产精品香港三级国产av潘金莲| 啦啦啦免费观看视频1| 18禁美女被吸乳视频| 美女cb高潮喷水在线观看 | 免费无遮挡裸体视频| 亚洲成人久久性| 搡老岳熟女国产| 巨乳人妻的诱惑在线观看| 女生性感内裤真人,穿戴方法视频| 亚洲精品中文字幕一二三四区| 欧美乱妇无乱码| 欧美最黄视频在线播放免费| 欧美日韩瑟瑟在线播放| 一区二区三区高清视频在线| www日本黄色视频网| 国产欧美日韩一区二区三| 久久久久久大精品| 在线观看日韩欧美| 国产精品久久电影中文字幕| 亚洲av中文字字幕乱码综合| 在线观看66精品国产| 婷婷精品国产亚洲av在线| 露出奶头的视频| 又大又爽又粗| 精品久久久久久久久久免费视频| 欧美精品啪啪一区二区三区| 日韩中文字幕欧美一区二区| 国产精品,欧美在线| 性色av乱码一区二区三区2| 99久国产av精品| 中文字幕高清在线视频| 小说图片视频综合网站| 19禁男女啪啪无遮挡网站| 成在线人永久免费视频| 麻豆av在线久日| 99久久国产精品久久久| 夜夜爽天天搞| 午夜激情欧美在线| 免费在线观看日本一区| 999久久久国产精品视频| 精品国产亚洲在线| 中文亚洲av片在线观看爽| 国产伦人伦偷精品视频| 精品熟女少妇八av免费久了| 狂野欧美激情性xxxx| 久久国产精品人妻蜜桃| 精品国产乱子伦一区二区三区| 9191精品国产免费久久| 999精品在线视频| 一区福利在线观看| 精品国产三级普通话版| 舔av片在线| 亚洲国产色片| 制服人妻中文乱码| 成人国产综合亚洲| 午夜影院日韩av| 国产精品九九99| 成年人黄色毛片网站| 欧美极品一区二区三区四区| 亚洲欧洲精品一区二区精品久久久| 熟妇人妻久久中文字幕3abv| 精品不卡国产一区二区三区| 美女大奶头视频| 久久香蕉国产精品| 又大又爽又粗| 色综合欧美亚洲国产小说| 亚洲av成人一区二区三| 国内精品美女久久久久久| 99久久精品热视频| 观看美女的网站| 高清毛片免费观看视频网站| 99久国产av精品| 搡老熟女国产l中国老女人| 99久久久亚洲精品蜜臀av| 国产精品免费一区二区三区在线| 欧美在线一区亚洲| 亚洲人成伊人成综合网2020| 日本一本二区三区精品| 99视频精品全部免费 在线 | av片东京热男人的天堂| 搞女人的毛片| 国内少妇人妻偷人精品xxx网站 | 免费电影在线观看免费观看| 亚洲av电影在线进入| 性色avwww在线观看| 精品无人区乱码1区二区| 久久亚洲精品不卡| 日韩欧美一区二区三区在线观看| 黄片小视频在线播放| 国内毛片毛片毛片毛片毛片| 免费搜索国产男女视频| 国产成人aa在线观看| 国产成人啪精品午夜网站| 免费观看精品视频网站| 757午夜福利合集在线观看| 三级国产精品欧美在线观看 | 美女黄网站色视频| 亚洲aⅴ乱码一区二区在线播放| 性欧美人与动物交配| 一本综合久久免费| 亚洲精品在线观看二区| 欧美日韩黄片免| 欧美午夜高清在线| 国产精品,欧美在线| 一边摸一边抽搐一进一小说| 蜜桃久久精品国产亚洲av| 曰老女人黄片| 五月伊人婷婷丁香| 观看美女的网站| 精品欧美国产一区二区三| 国产久久久一区二区三区| 久久久久国产精品人妻aⅴ院| 97人妻精品一区二区三区麻豆| 99国产综合亚洲精品| 桃色一区二区三区在线观看| 亚洲中文日韩欧美视频| 老汉色∧v一级毛片| 亚洲av免费在线观看| 久久久色成人| 成人一区二区视频在线观看| 国产精品综合久久久久久久免费| av国产免费在线观看| 天天添夜夜摸| 日本撒尿小便嘘嘘汇集6| 日韩欧美在线乱码| 色在线成人网| 亚洲七黄色美女视频| 精品日产1卡2卡| 亚洲国产精品合色在线| 国产成人系列免费观看| 18禁国产床啪视频网站| 十八禁人妻一区二区| 九色国产91popny在线| 国产午夜福利久久久久久| 91av网一区二区| 久久久久久久午夜电影| 一进一出抽搐动态| 法律面前人人平等表现在哪些方面| 精品福利观看| 国产精品久久久人人做人人爽| 国产成人影院久久av| 免费观看精品视频网站| 成人国产一区最新在线观看| 亚洲性夜色夜夜综合| 亚洲一区高清亚洲精品| 看黄色毛片网站| 精品国产超薄肉色丝袜足j| 亚洲av成人av| 很黄的视频免费| 欧美日韩国产亚洲二区| 国产精品久久久久久精品电影| 这个男人来自地球电影免费观看| 中文字幕久久专区| 午夜福利在线在线| 久久精品综合一区二区三区| 99在线视频只有这里精品首页| 免费一级毛片在线播放高清视频| 成人国产一区最新在线观看| 国产精品自产拍在线观看55亚洲| 欧美一级毛片孕妇| 网址你懂的国产日韩在线| 巨乳人妻的诱惑在线观看| a级毛片在线看网站| 国产高清videossex| 两个人的视频大全免费| 亚洲av日韩精品久久久久久密| 男人和女人高潮做爰伦理| 亚洲第一电影网av| 悠悠久久av| 久久中文字幕一级| 日韩欧美在线二视频| 国产极品精品免费视频能看的| 男女床上黄色一级片免费看| 国产成人aa在线观看| 韩国av一区二区三区四区| 亚洲美女视频黄频| 青草久久国产| 丰满人妻熟妇乱又伦精品不卡| 一个人看视频在线观看www免费 | 国产av麻豆久久久久久久| 波多野结衣高清无吗| 免费人成视频x8x8入口观看| 级片在线观看| 伊人久久大香线蕉亚洲五| 制服丝袜大香蕉在线| 夜夜夜夜夜久久久久| 激情在线观看视频在线高清| 又粗又爽又猛毛片免费看| 亚洲av熟女| 亚洲天堂国产精品一区在线| 成人国产一区最新在线观看| 欧美成人性av电影在线观看| xxx96com| 女同久久另类99精品国产91| 99精品欧美一区二区三区四区| 青草久久国产| 亚洲一区二区三区不卡视频| 国产伦精品一区二区三区视频9 | 亚洲欧美激情综合另类| 免费av不卡在线播放| 国产精品九九99| 99久久综合精品五月天人人| 国产视频一区二区在线看| 91麻豆精品激情在线观看国产| 熟女人妻精品中文字幕| 免费在线观看视频国产中文字幕亚洲| 久久精品aⅴ一区二区三区四区| 别揉我奶头~嗯~啊~动态视频| 不卡av一区二区三区|