馬華怡 李遠(yuǎn)眺 韋怡怡 劉 歡 戴 敏
(柳州市工人醫(yī)院重癥醫(yī)學(xué)科,廣西 柳州 545001)
隱球菌感染途徑主要通過吸入孢子或者感染性的芽體〔1,2〕。輔助性T細(xì)胞(Th)包括Th1、Th2、Th17、調(diào)節(jié)性T細(xì)胞(Treg),在真菌感染中發(fā)揮著重要的作用。Th1細(xì)胞免疫反應(yīng)可以有效地控制隱球菌〔3,4〕。相反,缺失Th2細(xì)胞特異的細(xì)胞因子,如白細(xì)胞介素(IL)-4、IL-13可以對隱球菌的感染起到保護(hù)作用并且可以促進(jìn)其存活〔5~8〕。目前對于Th17在隱球菌感染中的作用尚不清楚。對隱球菌感染進(jìn)程中Th細(xì)胞的研究發(fā)現(xiàn),Th1與Th2細(xì)胞產(chǎn)生的免疫反應(yīng)可以同時被誘導(dǎo)〔9~11〕。在用隱球菌感染小鼠后,盡管有利的Th1免疫反應(yīng)還存在,但有害的Th2免疫反應(yīng)也會增加并且導(dǎo)致小鼠死亡。另外一種輔助性T細(xì)胞即表達(dá)Foxp3的Treg細(xì)胞被發(fā)現(xiàn),在急性與慢性的感染中都可以限制病原特異性的T細(xì)胞產(chǎn)生的免疫反應(yīng)〔12~17〕。目前CD4+FoxP3+Treg細(xì)胞在隱球菌的感染中作用研究還較少,而且對于它是否會對在感染中被誘導(dǎo)出來的Th亞群有作用也未知。本文擬分析Treg在隱球菌感染中的作用及其是否會對其他3種Th亞群的免疫功能產(chǎn)生影響。
1.1材料 感染隱球菌8~12 w的雌鼠,品系為BALB/c,養(yǎng)在特定的無病原體的動物房中。CD4+FoxP3+Treg細(xì)胞的DEREG鼠為BALB/c背景〔18〕。使用500 CFU的隱球菌184通過鼻內(nèi)感染小鼠〔11〕。DEREG鼠通過腹腔注射100 μl濃度為1 μg/100 μl的DT(Calbiochem,Merck,Germany),從而誘導(dǎo)Treg細(xì)胞的敲除。分別在感染隱球菌后的第7、9、11、13天注射。對照組WT注射等量的磷酸鹽緩沖液(PBS)。
1.2肺部隱球菌計數(shù)與淋巴細(xì)胞提取 無菌中操作,將老鼠肺部細(xì)胞用濃度為50 μg/ml的DNA酶4與1 mg/ml的膠原酶D在RPMI1640培養(yǎng)基中,37℃旋轉(zhuǎn)消化30 min。采用100 μm細(xì)胞過濾器制備單細(xì)胞懸液。
1.2.1肺部細(xì)胞中隱球菌數(shù)目的計數(shù) 采用梯度稀釋,分別稀釋10、102、103、104、105倍,將肺部組織勻漿在沙氏葡萄糖瓊脂板中30℃培養(yǎng)72 h,對隱球菌數(shù)目進(jìn)行計數(shù)。
1.2.2淋巴細(xì)胞提取 采用percoll密度梯度離心分離淋巴細(xì)胞,采用1×106個/ml的密度對淋巴細(xì)胞用PMA與離子霉素刺激,分析細(xì)胞因子分泌。
1.3流式細(xì)胞術(shù)分析樣品的制備
1.3.1將分離得到的細(xì)胞置于1 ml T細(xì)胞培養(yǎng)基中,加入25 ng/ml PMA和1 μg/ml離子霉素,37°細(xì)胞培養(yǎng)箱中刺激0.5 h后加入 brefeldin A,繼續(xù)培養(yǎng)5 h。收樣,標(biāo)記抗體。
1.3.2流式抗體標(biāo)記 先標(biāo)記表面抗體,然后固定后,再破膜標(biāo)記細(xì)胞因子與轉(zhuǎn)錄因子。(1)表面抗體標(biāo)記:將細(xì)胞重懸在150 μl PBS中,按照1×106細(xì)胞標(biāo)1 μl流式抗體。置于4℃冰箱中避光孵育30 min,用1 ml PBS洗1~2次。(2)細(xì)胞質(zhì)中細(xì)胞因子與細(xì)胞核內(nèi)轉(zhuǎn)錄因子的標(biāo)記,使用ebioscience公司胞質(zhì)與核固定液,按照說明書進(jìn)行固定與標(biāo)記。
1.4儀器與試劑 T細(xì)胞培養(yǎng)基:RPMI1640培養(yǎng)基,10%FBS(Gibco 900-108),青霉素/鏈霉素溶液(Gibco 15140-122),2-巰基乙醇(Invitrogen 21985-023)。流式儀器:calibure 流式熒光抗體,酶聯(lián)免疫吸附(ELISA)檢測試劑盒均購自eBioscience公司。
1.5統(tǒng)計學(xué)分析 應(yīng)用SPSS20.0軟件進(jìn)行Mann-WhitneyU檢驗。
2.1感染隱球菌后Treg細(xì)胞的變化 感染了隱球菌后肺部CD4+FoxP3+Treg細(xì)胞顯著增多。采用流式細(xì)胞術(shù)分析發(fā)現(xiàn),在用隱球菌處理后的前4 w,肺部Treg細(xì)胞的比例與數(shù)目持續(xù)升高(P<0.05)。見表1。
2.2Treg細(xì)胞缺失后肺部隱球菌量與存活率變化 缺失CD4+FoxP3+Treg細(xì)胞后,抗隱球菌能力與存活率降低。在感染了隱球菌7 d后在腹腔中注射白喉毒素,將Treg細(xì)胞敲除。結(jié)果發(fā)現(xiàn),感染28 d后,Treg細(xì)胞被敲除的小鼠,其肺部真菌含量明顯高于未敲除的小鼠近3倍,同時其存活時間明顯降低,在42 d時后基本死亡。見表2,表3。
表1 感染隱球菌后Treg細(xì)胞的變化
與0 d組比較:1)P<0.05,2)P<0.01
表2 Treg細(xì)胞缺失后肺部中隱球菌量變化增加倍數(shù))
與野生型組比較:1)P<0.05,2)P<0.01,下表同
表3 Treg細(xì)胞缺失后鼠存活率變化
2.3CD4+FoxP3+Treg細(xì)胞缺失對Th1、Th17細(xì)胞亞群的影響 敲除Treg細(xì)胞后,感染28 d的小鼠肺部淋巴細(xì)胞里,Th1特異的細(xì)胞因子干擾素(IFN)γ,Th17特異的細(xì)胞因子IL-17的表達(dá)均沒有顯著變化。而Th2特異性的細(xì)胞因子IL-4表達(dá)都有顯著升高(P<0.01)。見表4。
表4 Treg細(xì)胞缺失后Th1、Th17、Th2細(xì)胞亞群變化
2.4CD4+FoxP3+Treg細(xì)胞缺失后,Th2細(xì)胞特異性轉(zhuǎn)錄因子與細(xì)胞因子的變化 GATA3的表達(dá)在Treg細(xì)胞敲除的鼠中表達(dá)顯著性升高;而且,IL-5,IL-13的表達(dá)也顯著性升高(P<0.05);與Th2相關(guān)的血清中IgE表達(dá)也顯著性升高,見表5。
表5 Treg細(xì)胞缺失后,th2細(xì)胞亞群特異轉(zhuǎn)錄因子及其相關(guān)細(xì)胞因子的變化
真菌感染對于免疫系統(tǒng)受損的患者來說將會導(dǎo)致危及生命的疾病〔19〕。由于在發(fā)展中國家艾滋病的傳播,以及在西方國家中因為器官移植和癌癥治療等所引起的免疫抑制治療等,免疫系統(tǒng)受損的人群已經(jīng)越來越多,由此導(dǎo)致的侵襲性真菌感染,比如念珠菌病、隱球菌病、曲霉病等越來越普遍〔20〕。盡管已經(jīng)有各種抗真菌的藥物,然而由于新的耐藥性真菌的出現(xiàn),以及這些抗真菌藥物本身的副作用,使得探究新的抗真菌藥物顯得尤為重要〔21〕。已有報道顯示,Th1相關(guān)的免疫應(yīng)答對于真菌感染具有保護(hù)性,而Th2相關(guān)的免疫能力具有有害性〔22,23〕。Treg細(xì)胞可以限制過強的免疫反應(yīng)、免疫炎癥,同時它也會阻礙有效的保護(hù)性的免疫反應(yīng),從而導(dǎo)致了真菌的免疫逃逸〔24,25〕。在用卡氏肺孢子蟲感染小鼠的實驗中發(fā)現(xiàn),Treg細(xì)胞可以預(yù)防由清除病原體所導(dǎo)致的過度組織損傷〔26〕。而與之相反,在消化道念珠病動物模型中,Treg細(xì)胞所產(chǎn)生的IL-10及TGF-β可以抑制機體對念珠菌的清除,而在肺部曲霉病的動物模型中發(fā)現(xiàn),Treg細(xì)胞可以預(yù)防過敏反應(yīng)〔27,28〕??偠灾琓reg細(xì)胞隨著感染位置與真菌種類的不同而發(fā)揮著不同的功能。本研究發(fā)現(xiàn),在感染了隱球菌的前4 w,肺部CD4+FoxP3+Treg細(xì)胞顯著增加,這種增加可能跟Treg細(xì)胞增殖能力變強或者招募的treg細(xì)胞增多有關(guān)。為了探究Treg細(xì)胞在肺部隱球菌感染的作用,我們使用了Treg細(xì)胞敲除的基因敲除DEREG鼠。在Treg細(xì)胞缺失后,肺部中的隱球菌量明顯增多,Th2細(xì)胞相關(guān)的細(xì)胞因子IL-4、IL-5、IL-13在肺部中都有明顯的增加,同時血清中IgE的水平也顯著升高。有報道顯示,在人和鼠,Treg細(xì)胞的受損會增加血清中的IgE表達(dá)〔29,30〕。
1Coelho C,Tesfa L,Zhang J,etal.Analysis of cell cycle and replication of mouse macrophages after in vivo and in vitro Cryptococcus neoformans infection using laser scanning cytometry〔J〕.Infect Immun,2012;80:1467-78.
2Kechichian TB,Shea J,Del PM.Depletion of alveolar macrophages decreases the dissemination of a glucosylceramidedeficient mutant of Cryptococcus neoformans in immunodeficient mice〔J〕.Infect Immun,2007;75:4792-8.
3Huffnagle GB,Yates JL,Lipscomb MF.Immunity to a pulmonary Cryptococcus neoformans infection requires both CD4+ and CD8+ T cells〔J〕.J Exp Med,1991;173:793-800.
4Lindell DM,Ballinger MN,McDonald RA,etal.Diversity of the T-cell response to pulmonary Cryptococcus neoformans infection〔J〕.Infect Immun,2006;74:4538-48.
5Blackstock R,Murphy JW.Role of interleukin-4 in resistance to Cryptococcus neoformans infection〔J〕.Am J Respir Cell Mol Biol,2004;30:109-17.
6Decken K,Kohler G,Palmer-Lehmann K,etal.Interleukin-12 is essential for a protective Th1 response in mice infected with Cryptococcus neoformans〔J〕.Infect Immun,1998;66:4994-5000.
7Kawakami K,Hossain QM,Zhang T,etal.Interleukin-4 weakens host resistance to pulmonary an disseminated cryptococcal infection caused by combined treatment with interferon-gamma-inducing cytokines〔J〕.Cell Immunol,1999;197:55-61.
8Muller U,Stenzel W,Kohler G,etal.IL-13 induces disease-promoting type 2 cytokines,alternatively activated macrophages and allergic inflammation during pulmonary infection of mice with Cryptococcus neoformans〔J〕.J Immunol,2007;179:5367-77.
9Murdock BJ,Huffnagle GB,Olszewski MA,etal.Interleukin-17A enhances host defense against cryptococcal lung infection through effects mediated by leukocyte recruitment,activation,and gamma interferon production〔J〕.Infect Immun,2014;82:937-48.
10Szymczak WA,Sellers RS,Pirofski LA.IL-23 dampens the allergic response to Cryptococcus neoformans through IL-17-independent and-dependent mechanisms〔J〕.Am J Pathol,2012;180:1547-59.
11Grahnert A,Richter T,Piehler D,etal.IL-4 receptor-alpha-dependent control of Cryptococcus neoformans in the early phase of pulmonary infection〔J〕.PLoS One,2014;9:e87341.
12Fulton RB,Meyerholz DK,Varga SM.Foxp3+ CD4 regulatory T cells limit pulmonary immunopathology by modulating the CD8 T cell response during respiratory syncytial virus infection〔J〕.J Immunol,2010;185:2382-92.
13Haeryfar SM,DiPaolo RJ,Tscharke DC,etal.Regulatory T cells suppress CD8+ T cell responses induced by direct priming and cross-priming and moderate immunodominance disparities〔J〕.J Immunol,2005;174:3344-51.
14Loebbermann J,Thornton H,Durant L,etal.Regulatory T cells expressing granzyme B play a critical role in controlling lung inflammation during acute viral infection〔J〕.Mucosal Immunol,2012;5:161-72.
15Ruckwardt TJ,Bonaparte KL,Nason MC,etal.Regulatory T cells promote early influx of CD8+ T cells in the lungs of respiratory syncytial virus-infected mice and diminish immunodominance disparities〔J〕.J Virol,2009;83:3019-28.
16Belkaid Y,Piccirillo CA,Mendez S,etal.CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity〔J〕.Nature,2002;420:502-7.
17Schmitz I,Schneider C,Frohlich A,etal.IL-21 restricts virus-driven Treg cell expansion in chronic LCMV infection〔J〕.PLoS Pathog,2013;9:e1003362.
18Lahl K,Loddenkemper C,Drouin C,etal.Selective depletion of Foxp3+regulatory T cells induces a scurfy-like disease〔J〕.J Exp Med,2007;204:57-63.
19Romani L.Immunity to fungal infections〔J〕.Nat Rev Immunol,2011;11:275-88.
20Shoham S,Levitz SM.The immune response to fungal infections〔J〕.Br J Haematol,2005;129:569-82.
21Delsing CE,Gresnigt MS,Leentjens J,etal.Interferon-gamma as adjunctive immunotherapy for invasive fungal infections:a case series〔J〕.BMC Infect Dis,2014;14:166.
22Huffnagle GB.Role of cytokines in T cell immunity to a pulmonary Cryptococcus neoformans infection〔J〕.Biol Signals,1996;5:215-22.
23Koguchi Y,Kawakami K.Cryptococcal infection and Th1-Th2 cytokine balance〔J〕.Int Rev Immunol,2002;21:423-38.
24Belkaid Y,Rouse BT.Natural regulatory T cells in infectious disease〔J〕.Nat Immunol,2005;6:353-60.
25Mills KH.Regulatory T cells:friend or foe in immunity to infection〔J〕.Nat Rev Immunol,2004;4:841-55.
26Hori S,Carvalho TL,Demengeot J.CD25+CD4+ regulatory T cells suppress CD4+ T cell-mediated pulmonary hyperinflammation driven by Pneumocystis carinii in immunodeficient mice〔J〕.Eur J Immunol,2002;32:1282-91.
27Montagnoli C,Bacci A,Bozza S,etal.B7/CD28-dependent CD4+CD25+regulatory T cells are essential components of the memory-protective immunity to Candida albicans〔J〕.J Immunol,2002;169:6298-308.
28Montagnoli C,Fallarino F,Gaziano R,etal.Immunity and tolerance to Aspergillus involve functionally distinct regulatory T cells and tryptophan catabolism〔J〕.J Immunol,2006;176:1712-23.
29Lin W,Truong N,Grossman WJ,etal.Allergic dysregulation and hyperimmunoglobulinemia E in Foxp3 mutant mice〔J〕.J Allergy Clin Immunol,2005;116:1106-15.
30Lin W,Truong N,Grossman WJ,etal.Allergic dysregulation and hyperimmunoglobulinemia E in Foxp3 mutant mice〔J〕.J Allergy Clin Immunol,2005;116:1106-15.