高艷 ,秦鑫,張文靜,鄧文斌, ,趙保明 ,劉倩蓉*
(1湖北文理學(xué)院醫(yī)學(xué)院形態(tài)學(xué)部,2分子醫(yī)學(xué)中心,襄陽(yáng) 441053;3美國(guó)加州大學(xué)戴維斯分校生物化學(xué)與分子醫(yī)藥學(xué)部,加州薩克拉門(mén)托 95817)
體細(xì)胞或成體細(xì)胞正常情況下處于高度分化的穩(wěn)定狀態(tài),但是體細(xì)胞的這種狀態(tài)可以在一定條件下被打破成為多能干細(xì)胞或另一種細(xì)胞類(lèi)型[1]。2006年,Yamanaka等人取得了重編程技術(shù)突破,成纖維細(xì)胞通過(guò)病毒載體引入四個(gè)關(guān)鍵“重新編程因子”O(jiān)ct4、Sox2、Klf4和c-Myc(統(tǒng)稱為OSKM),可形成胚胎干細(xì)胞(ESC)樣細(xì)胞,即誘導(dǎo)多能干細(xì)胞(iPSCs)[2,3]。iPSCs能夠分化成任何細(xì)胞類(lèi)型,而沒(méi)有胚胎干細(xì)胞所面臨的倫理問(wèn)題。iPSCs的發(fā)現(xiàn)是干細(xì)胞研究和再生醫(yī)學(xué)的一個(gè)里程碑。Yamanaka的研究提出了一個(gè)重新引入適當(dāng)?shù)霓D(zhuǎn)錄因子,可以改變體細(xì)胞的命運(yùn),并使其進(jìn)入一個(gè)新的細(xì)胞基因程序的重編程理念。因此,強(qiáng)制表達(dá)譜系特異性轉(zhuǎn)錄因子可以轉(zhuǎn)變體細(xì)胞(例如成纖維細(xì)胞)成另一譜系細(xì)胞,如心臟細(xì)胞[4]、神經(jīng)細(xì)胞[5]、肝細(xì)胞[6]等。盡管如此,外源基因的遺傳傳遞具有一定的安全問(wèn)題,比如遺傳基因突變和基因插入。
目前,靶向信號(hào)傳導(dǎo)途徑、表觀遺傳修飾和代謝過(guò)程的小分子已被廣泛用于改善基于轉(zhuǎn)錄因子的重編程或轉(zhuǎn)分化[7]。不僅如此,不同小分子的組合可以單獨(dú)誘導(dǎo)重編程和轉(zhuǎn)分化而不需要重新引入外源基因[7,8]。在此,我們重點(diǎn)關(guān)注小分子在重編程和轉(zhuǎn)分化神經(jīng)細(xì)胞中的應(yīng)用。
小分子是可以調(diào)節(jié)特定細(xì)胞通路的生物活性化合物,參與細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)、轉(zhuǎn)錄、代謝和改變表觀遺傳,調(diào)控細(xì)胞重編程過(guò)程。如果選擇性的表觀遺傳調(diào)控可以用化學(xué)藥品來(lái)實(shí)現(xiàn)的話,可以改變轉(zhuǎn)錄因子基因的狀態(tài)及獲得啟動(dòng)子(無(wú)活性至活躍階段),那么將不需要該基因的異位表達(dá)來(lái)實(shí)現(xiàn)重編程[9]。下面討論的是每個(gè)類(lèi)別中主要用于重編程的小分子。
多能干細(xì)胞的特點(diǎn)是具有高度自我更新能力和多能性[10,11]。許多信號(hào)通路參與維持自我更新和多能性。因此,使用小分子抑制或激活這些通路可能有助于重編程多能性。
1.1.1 抑制ROCK信號(hào)通路
Rho激酶(ROCK)的亞型有ROCK1和ROCK2,GTP結(jié)合蛋白R(shí)ho激活下游ROCK。 ROCKs信號(hào)通路介導(dǎo)各種重要的細(xì)胞功能如增殖、基因表達(dá)、運(yùn)動(dòng)性、細(xì)胞形狀等,以及與已知調(diào)節(jié)重編程的其他信號(hào)轉(zhuǎn)導(dǎo)途徑對(duì)話。抑制ROCK增強(qiáng)重編程的iPSCs的存活率,從而提高多能性重編程效率[12]。另外,ROCK抑制劑thiazovivin與SB431542(TGF-β通路的抑制劑)和PD0325901共同使用時(shí),可以通過(guò)調(diào)節(jié)細(xì)胞間的相互作用,促進(jìn)多能性重新編程[13]。
1.1.2 激活Wnt信號(hào)通路
Wnt信號(hào)通路參與控制多能干細(xì)胞自我更新和多潛能性。TCF3是Wnt信號(hào)通路下游的轉(zhuǎn)錄抑制子,占領(lǐng)多能性相關(guān)基因的啟動(dòng)子區(qū)域并抑制其表達(dá)[14]。Wnt信號(hào)的激活可以磷酸化TCF3促進(jìn)那些多能性的基因表達(dá)。GSK-3β抑制劑CHIR99021直接激活Wnt信號(hào)增強(qiáng)重編程因子的重編程效率[15]。CHIR99021甚至可以取代Sox2,在只存在兩個(gè)重編程因子Oct4和Klf4的條件下誘導(dǎo)多能性重編程[15]。另一種GSK-3β抑制劑Kenpaullone替代Klf4可能增加重編程效率大約10%[16]。結(jié)果表明小分子可以代替外源基因的功能誘導(dǎo)重編程。
1.1.3 阻斷MAPK / ERK信號(hào)通路
在適當(dāng)?shù)男盘?hào)誘導(dǎo)下多能干細(xì)胞可以分化,抑制與分化相關(guān)的信號(hào)通路可以維持iPSCs的多能性。已知MAPK / ERK信號(hào)傳導(dǎo)途徑的激活促進(jìn)ESC分化[17]。MEK1 / 2抑制劑PD0325901阻斷MAPK /ERK信號(hào)傳導(dǎo)可有效的提高小鼠神經(jīng)祖細(xì)胞晚期階段多能性重編程[18]
1.1.4 抑制TGFβ信號(hào)通路
強(qiáng)烈誘導(dǎo)間充質(zhì)-上皮的轉(zhuǎn)化(MET)是重編程過(guò)程的關(guān)鍵事件之一,表現(xiàn)在成纖維細(xì)胞喪失間質(zhì)特征和獲得上皮特征[19,20]。研究證明MET是在重新編程期間需要克服早期的一個(gè)關(guān)鍵障礙[19,20]。TGF-β途徑誘導(dǎo)上皮-間質(zhì)轉(zhuǎn)化(EMT)[21],抑制TGF-β途徑可以增強(qiáng)多能性重新編程。TGF-β通路的抑制劑SB431542、A83-01和Repsox(或E-616452)已被用于增強(qiáng)iPSCs重編程或甚至在不同的條件下代替重編程因子[13]。
1.1.5 激活JAK-STAT信號(hào)通路
JAK-STAT是繼Ras通路之后又一重要的細(xì)胞因子信號(hào)傳導(dǎo)通路,對(duì)于ESC多能性維持也是必不可少的。白血病抑制因子(LIF)與其受體LIF-R結(jié)合復(fù)合物含有信號(hào)轉(zhuǎn)導(dǎo)子gp130,導(dǎo)致磷酸化和激活相關(guān)的JAK酪氨酸激酶。磷酸化的JAK激活潛在的轉(zhuǎn)錄因子STAT3,維持了ESC自我更新[22]。JAKSTAT的激活使小鼠神經(jīng)干細(xì)胞或成纖維細(xì)胞重編程為iPSCs的效率增加三到四倍[23]。
體細(xì)胞重編程需要克服發(fā)育過(guò)程中建立的表觀遺傳障礙。越來(lái)越多的證據(jù)表明,表觀遺傳障礙導(dǎo)致了iPSCs產(chǎn)生的低效率[24]。靶向表觀遺傳修飾的小分子已經(jīng)被發(fā)現(xiàn)可以顯著改善重編程。
1.2.1 DNA甲基化的調(diào)節(jié)
DNA甲基化通常與基因沉默有關(guān)[25],在體細(xì)胞中,多能性基因的調(diào)控區(qū)域DNA甲基化高度富集,因此,多能性基因受到抑制。因此重新激活甲基化多能性基因?qū)τ谕瓿芍匦戮幊淌侵陵P(guān)重要的。用DNA甲基轉(zhuǎn)移酶(DNMT)抑制劑5-氮雜胞嘧啶(5-aza)和RG108DNA抑制DNA甲基化,可以激活沉默的多能性基因,促進(jìn)重新編程[26]。低劑量5-aza抑制DNMTs,但是高劑量時(shí),通過(guò)摻入DNA和RNA引起毒性[27]。另外一種DNMT抑制劑地西他濱(decitabin)也可以誘導(dǎo)人體皮膚角質(zhì)細(xì)胞表達(dá)Oct4和OCT4調(diào)節(jié)子mir-145[28]。
1.2.2 組蛋白甲基化和乙?;{(diào)節(jié)
組蛋白可以進(jìn)行翻譯后修飾,例如甲基化和乙?;?。組蛋白甲基化有助于基因激活或抑制,而組蛋白乙酰化通常與基因激活有關(guān)[29]。組蛋白甲基化和乙?;恼{(diào)節(jié)可有效改善重新編程。
在小鼠胚胎成纖維細(xì)胞的基因組中,廣泛抑制組蛋白H3K9me2 / 3明顯阻止基于OSKM的重新編程[30]。補(bǔ)充小分子維生素C增強(qiáng)了基于OSKM重編程小鼠和人類(lèi)的成纖維細(xì)胞,可能通過(guò)增加表達(dá)幾種H3K9去甲基化酶去甲基化H3K9me2 / 3抑制了組蛋白H3K9me2 / 3發(fā)揮作用[30]。另外,當(dāng)重編程介質(zhì)中加入CYT296時(shí),減少H3K9me3并增加了基于OSKM的重編程效率為10倍[31]。BIX-01294是一種H3K9me3組蛋白甲基轉(zhuǎn)移酶(HMT)G9a特異性的抑制劑,僅轉(zhuǎn)導(dǎo)Oct4和Klf4可重新編程小鼠胚胎成纖維細(xì)胞成iPSCs,提示BIX-01294可能取代Sox2[32]。H3K27me3也可以抑制重編程,使用維生素C減少多潛能基因(如Zfp42、Ddx4和Nanog)啟動(dòng)子區(qū)域的H3K27me3,從而促進(jìn)了它們?cè)趐re-iPSCs向iPSCs轉(zhuǎn)變期間的表達(dá)[33]。 H3K79甲基化抑制重編程,EPZ004777是H3K79組蛋白甲基轉(zhuǎn)移酶Dot1l的抑制劑,減少H3K79提高了重編程率約四倍[34]。
除了抑制組蛋白甲基轉(zhuǎn)移酶之外,抑制組蛋白去甲基化酶也可促進(jìn)重編程。H3K4甲基化往往與基因激活有關(guān)。Tranylcypromine(或Parnate)是一種賴氨酸特異性脫甲基酶1(LSD1)抑制劑,去甲基化H3K4的甲基,增加了OSK或Oct4介導(dǎo)的從小鼠成纖維細(xì)胞產(chǎn)生iPSC(約20倍)[35],或OK介導(dǎo)的人角質(zhì)形成細(xì)胞產(chǎn)生iPSC[15]。可能與Tranylcypromine介導(dǎo)的抑制LSD1促進(jìn)外源性O(shè)SK基因的表達(dá)和代謝開(kāi)關(guān)有關(guān)[36]。小分子維生素C可以與H3K36me2/3去甲基酶Jhdm1a/1b協(xié)同作用,調(diào)控H3K36甲基化水平,促進(jìn)細(xì)胞增殖,抑制細(xì)胞衰老,從而促進(jìn)體細(xì)胞重編程[37]。
組蛋白去乙?;福℉DACs)是去除來(lái)自組蛋白的賴氨酸和其他調(diào)節(jié)蛋白和結(jié)構(gòu)蛋白乙酰基的酶,參與轉(zhuǎn)錄調(diào)節(jié)、細(xì)胞周期進(jìn)程、細(xì)胞生存和分化,并在染色質(zhì)重塑中發(fā)揮關(guān)鍵作用。而組蛋白乙?;ǔEc基因激活相關(guān)。因此HDACs抑制劑可提高組蛋白乙?;饺绫焖幔╒PA)[32]、丁酸鈉(NaB)[38]、曲古抑菌素A(TSA)[38]和辛二酰苯胺異羥肟酸(SAHA)[39]等已被證明可以促進(jìn)多能性重新編程,VPA是最廣泛使用的用于重新編程的HDAC抑制劑。
許多干細(xì)胞和高度增殖細(xì)胞與體細(xì)胞相比更依賴于有氧糖酵解以支持其增殖。例如,ESC自我更新與減少氧化磷酸化和增加糖酵解有關(guān)[40]。缺氧條件增強(qiáng)重編程效率支持這一點(diǎn)[41]。小分子強(qiáng)化氧化磷酸化向糖酵解的轉(zhuǎn)變促進(jìn)多能性重編程[1]
PS48是一種3'磷酸肌醇依賴性蛋白激酶1激活劑,可以提高代謝轉(zhuǎn)化為糖酵解,增加Oct-4介導(dǎo)的重編程效率約15倍[42]。同樣,許多促進(jìn)糖酵解的小分子例如果糖2,6-二磷酸(磷酸果糖激酶1的激活劑)和槲皮素(增加HIF-1活性),更直接地提高重編程效率[42]。相反,糖酵解抑制劑2-脫氧-D-葡萄糖抑制了重編程過(guò)程[43]。
在重新編程的過(guò)程中,細(xì)胞的內(nèi)容變化很大,細(xì)胞質(zhì)的大分子和細(xì)胞器更新率高。發(fā)現(xiàn)自噬代謝通過(guò)降解那些蛋白質(zhì)和細(xì)胞器來(lái)調(diào)節(jié)重新編程。小分子激活自噬使重編程效率增加了五倍,如雷帕霉素和PP242[44]。
在成人的大腦中,神經(jīng)干細(xì)胞(NSCs)是神經(jīng)元和神經(jīng)膠質(zhì)細(xì)胞的終生來(lái)源。 NSCs是能自我更新的多能細(xì)胞,外源刺激細(xì)胞外的微環(huán)境產(chǎn)生所有主要的中樞神經(jīng)(CNS)細(xì)胞類(lèi)型,即神經(jīng)元、星形膠質(zhì)細(xì)胞和少突膠質(zhì)細(xì)胞。NSCs被證實(shí)具有產(chǎn)生、修復(fù)和改變神經(jīng)系統(tǒng)功能的可塑性[45]。2014年Cheng等人使用3種小分子雞尾酒VPA(HDAC的抑制劑)、CHIR99021(一種GSK-3激酶的抑制劑)和Repsox(一種TGF-β途徑的抑制劑),在生理缺氧條件下(5%O2),不引入外源性基因,可誘導(dǎo)來(lái)自MEF、小鼠尾尖成纖維細(xì)胞(TTF)和人類(lèi)尿細(xì)胞(HUCs)產(chǎn)生神經(jīng)前體細(xì)胞(ciNSC)[46]。這個(gè)過(guò)程主要伴隨著激活內(nèi)源性Sox2的表達(dá)。他們進(jìn)一步研究發(fā)現(xiàn)可替代的小分子雞尾酒“NLS”的組合(NaB,LiCl和SB431542))和“TLT”組合(TSA,Li2CO3和Tranilast),它們也可以在生理缺氧條件激活MEFs中內(nèi)源性Sox2的表達(dá)。這些ciNSC在細(xì)胞特性和基因表達(dá)譜等方面與鼠腦源性NSCs相似,可以在體外和體內(nèi)能分化成所有神經(jīng)細(xì)胞類(lèi)型。Zheng等報(bào)道了4種小分子將MEF轉(zhuǎn)化為NSCs,這些小分子包括VPA,A83-01,Thiazovivin和Purmorphamine[47]。這兩種組合中,GSK-3β抑制劑(CHIR99021)激活Wnt信號(hào)誘導(dǎo)神經(jīng)干細(xì)胞,其作用可能會(huì)被Rho相關(guān)激酶(ROCK)抑制劑(Thiazovivin)和SHH途徑活化(Purmorphamine)取代,這與Wnt信號(hào)傳導(dǎo)和SHH信號(hào)傳導(dǎo)促進(jìn)NSC增殖有關(guān)[48]。此外,通過(guò)抑制ROCK保護(hù)細(xì)胞免于凋亡來(lái)增強(qiáng)神經(jīng)細(xì)胞的活力[49]。 TGF-β抑制增強(qiáng)MET,VPA通過(guò)表觀遺傳調(diào)節(jié)提高重編程效率。
Zhang等用9種小分子和bFGF將MEFs轉(zhuǎn)化為NSCs,其轉(zhuǎn)換效率約為25%[50]。這些小分子包括LDN193189(Bmp I型受體ALK2 / 3的抑制劑),A83-01,CHIR99021,Hh-Ag 1.5(一種有效的Smo激動(dòng)劑),視黃酸,RG108,Tranylcypromine,SMER28(自噬調(diào)節(jié)劑)[50]。Smo拮抗劑抑制SHH途徑降低了誘導(dǎo)效率,提示激活SHH通路在神經(jīng)誘導(dǎo)中的重要性。通過(guò)從組合中撤出單個(gè)分子,確定了BIX-01294、RG108和PD0325901對(duì)誘導(dǎo)發(fā)生很重要,雖然潛在的機(jī)制還不得而知。小分子組合(VPA,BIX-01294,RG108,PD0325901,CHIR99021,維生素C,A83-01)被發(fā)現(xiàn)誘導(dǎo)多達(dá)2%的MEF轉(zhuǎn)化為NSCs[51]。
Pei等首次使用由七個(gè)小分子組合直接轉(zhuǎn)化人類(lèi)成纖維細(xì)胞為神經(jīng)元[8]。他們使用VCRFSGY(VPA, CHIR99021,Repsox,F(xiàn)orskolin,SP600125,GO6983和Y-27632)組合誘導(dǎo)產(chǎn)生5%TUJ1陽(yáng)性的人化學(xué)誘導(dǎo)神經(jīng)元(hciNs)?!癡CRFSGY”衍生的hciNs的電生理特性類(lèi)似于iPSC衍生的神經(jīng)元。VPA誘導(dǎo)表觀遺傳修飾,抑制TGF-β和GSK-3提高了用Ascl1和Ngn2因子進(jìn)行穩(wěn)定轉(zhuǎn)導(dǎo)的人成纖維細(xì)胞的神經(jīng)元轉(zhuǎn)化[52]。Forskolin能夠使神經(jīng)元素2(neurogenin 2)有效地將人成纖維細(xì)胞轉(zhuǎn)化為膽堿能神經(jīng)元[53]。 SP600125可以促進(jìn)OCT4重編程成人真皮成纖維細(xì)胞(AHDF)向神經(jīng)細(xì)胞轉(zhuǎn)化[42]。 Y-27632協(xié)助維持干細(xì)胞多能性和神經(jīng)元存活[54]。因此,小分子組合VCRFSGY消除成纖維細(xì)胞特異性基因表達(dá),特異性上調(diào)神經(jīng)元基因表達(dá)并促進(jìn)成人皮膚成纖維細(xì)胞(HAFs)向神經(jīng)元轉(zhuǎn)化。
Li等人直接使用四種分子(CHIR99021,F(xiàn)orskolin,ISX9,I-BET151)轉(zhuǎn)換鼠成纖維細(xì)胞成神經(jīng)細(xì)胞且aTUJ1陽(yáng)性率高達(dá)90%[55]。 ISX9激活控制神經(jīng)基因(Ngn2,NeuroD1,NF-H,Tau和Syn2),同時(shí)I-BET151抑制內(nèi)源性成纖維細(xì)胞命運(yùn)程序[55]。
除成纖維細(xì)胞外,其他體細(xì)胞也可以通過(guò)使用化學(xué)雞尾酒編程的方法轉(zhuǎn)化為神經(jīng)元。 Cheng等人使用了VPA,CHIR99021和Repsox誘導(dǎo)使鼠星形膠質(zhì)細(xì)胞轉(zhuǎn)化成神經(jīng)元(>20%)[56]。Zhang等人設(shè)計(jì)了在8-10d內(nèi)轉(zhuǎn)換人類(lèi)星形膠質(zhì)細(xì)胞(約60%)成神經(jīng)元的化學(xué)誘導(dǎo)方法[57]。他們篩選了九個(gè)小分子LDN193189, SB431542, TTNPB, Thiazovivin,CHIR99021, VPA, DAPT,Smoothened agonist(SAG)和Purmorphamine,抑制星形膠質(zhì)細(xì)胞信號(hào)通路但激活神經(jīng)元信號(hào)通路,逐步添加小分子誘導(dǎo)星形膠質(zhì)細(xì)胞向神經(jīng)元轉(zhuǎn)化。為了分析每個(gè)單分子對(duì)于重新編程的貢獻(xiàn),他們從雞尾酒中去掉每個(gè)分子,發(fā)現(xiàn)去除DAPT,CHIR99021,SB431542或LDN193189戲劇性減少星形膠質(zhì)細(xì)胞向神經(jīng)元轉(zhuǎn)化。去掉VPA或SAG和Purmorphamine稍微降低了效率。去掉Thiazovivin或TTNPB沒(méi)有顯著影響星形膠質(zhì)細(xì)胞向神經(jīng)元轉(zhuǎn)化。
另一個(gè)研究小組用六個(gè)小分子(VPA,CHIR99021,Repsox,F(xiàn)orskolin,I-BET151和ISX9)在12d內(nèi)將人星形膠質(zhì)細(xì)胞重編程為功能性神經(jīng)元,轉(zhuǎn)化效率為8%[58]。因?yàn)樾切文z質(zhì)細(xì)胞存在于大腦中,局部遞送小分子能使星形膠質(zhì)細(xì)胞向神經(jīng)元的轉(zhuǎn)換,可能導(dǎo)致星形膠質(zhì)細(xì)胞原位直接轉(zhuǎn)換成神經(jīng)元,這是再生醫(yī)學(xué)的最終目標(biāo)。
2013年Deng等人使用VC6TO 5個(gè)小分子雞尾酒編程鼠胚胎成纖維細(xì)胞為星形膠質(zhì)細(xì)胞(ciAs)[59]。這些化合物包括組蛋白脫乙酰酶抑制劑VPA(V)、GSK3β的抑制劑CHIR99021(C)、TGFβ抑制劑616452(6)、賴氨酸特異性組蛋白脫甲基酶LSD1抑制劑tranylcypromine(T)和轉(zhuǎn)錄因子Oct4活化劑OAC1(O)[60]。他們又測(cè)試了其他TGFβ受體1的抑制劑A-83-01(A)和SB-431542(S),使用VCATO的組合或者VCSTO組合誘導(dǎo)MEFs發(fā)現(xiàn)具有星形膠質(zhì)細(xì)胞形態(tài)和GFAP免疫反應(yīng)陽(yáng)性細(xì)胞的數(shù)量顯著增加,而VCTO不能誘導(dǎo)出任何GFAP陽(yáng)性的細(xì)胞。隨后他們又用相同的方法誘導(dǎo)人成纖維細(xì)胞和小鼠尾尖成纖維細(xì)胞(TTFs)表達(dá)星形膠質(zhì)細(xì)胞相關(guān)蛋白和基因且具有功能的星形膠質(zhì)細(xì)胞[59]。結(jié)果提示了TGFβ抑制劑是將成纖維細(xì)胞轉(zhuǎn)化為星形膠質(zhì)細(xì)胞的關(guān)鍵。
病毒介導(dǎo)的轉(zhuǎn)錄因子通過(guò)誘導(dǎo)基因過(guò)度表達(dá)從而改變細(xì)胞的表觀遺傳特性,但是外源基因?qū)胍滓鹋R床安全問(wèn)題。隨著對(duì)重編程機(jī)制深入研究,篩選出許多小分子,不僅可以提高重編程效率還可以省略外源基因。完全使用小分子取代外源基因是一種有吸引力的細(xì)胞重編程方法。與病毒介導(dǎo)的轉(zhuǎn)錄因子基因誘導(dǎo)相比,小分子對(duì)細(xì)胞重編程易于合成、儲(chǔ)存、滴定、優(yōu)化、成本低、起效快且可逆,易操作、可以在局部發(fā)揮作用等優(yōu)勢(shì)??梢酝ㄟ^(guò)調(diào)控不同的組合和濃度改變編程效果。盡管小分子已經(jīng)開(kāi)始控制細(xì)胞命運(yùn),但是其基本機(jī)制及效果并不清楚。因?yàn)樾》肿油卸鄠€(gè)作用目標(biāo),他們的作用是非特異性的。另外,小分子之間存在有不同組合協(xié)同或拮抗作用。因此,解釋使用每個(gè)分子的作用機(jī)制是很艱巨的任務(wù)。未來(lái)的研究應(yīng)該進(jìn)一步闡明小分子的機(jī)制,這將有助于優(yōu)化組合、濃度和暴露時(shí)間確保臨床應(yīng)用安全。我們相信小分子的發(fā)展將會(huì)加速細(xì)胞重編程和轉(zhuǎn)分化在臨床的應(yīng)用。
[1]Qin H,Zhao A,Fu X.Small molecules for reprogramming and transdifferentiation.Cell Mol Life Sci, 2017, 74(19)∶3553-3575.
[2]Takahashi K,Yamanaka S.Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.Cell, 2006, 126(4)∶ 663-676.
[3]Takahashi K, Tanabe K, Ohnuki M, et al.Induction of pluripotent stem cells from adult human fibroblasts by defined factors.Cell, 2007, 131(5)∶ 861-872.
[4]Ieda M, Fu JD, Delgado-Olguin P, et al.Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors.Cell, 2010, 142(3)∶ 375-386.
[5]Colasante G, Lignani G, Rubio A, et al.Rapid Conversion of Fibroblasts into Functional Forebrain GABAergic Interneurons by Direct Genetic Reprogramming.Cell Stem Cell,2015, 17(6)∶ 719-734.
[6]Huang P, He Z, Ji S, et al.Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors.Nature, 2011, 475(7356)∶ 386-389.
[7]Federation AJ,Bradner JE,Meissner A.The use of small molecules in somatic-cell reprogramming.Trends Cell Biol,2014, 24(3)∶ 179-187.
[8]Hu W, Qiu B, Guan W, et al.Direct Conversion of Normal and Alzheimer’s Disease Human Fibroblasts into Neuronal Cells by Small Molecules.Cell Stem Cell, 2015, 17(2)∶ 204-212.
[9]Biswas D,Jiang P.Chemically Induced Reprogramming of Somatic Cells to Pluripotent Stem Cells and Neural Cells.Int J Mol Sci, 2016,17(2)∶ 226.
[10]Takahashi K,Yamanaka S.A decade of transcription factor-mediated reprogramming to pluripotency.Nat Rev Mol Cell Biol, 2016, 17(3)∶ 183-193.
[11]Smith ZD,Sindhu C,Meissner A.Molecular features of cellular reprogramming and development.Nat Rev Mol Cell Biol, 2016, 17(3)∶ 139-154.
[12][12]Lai WH, Ho JC, Lee YK, et al.ROCK inhibition facilitates the generation of human-induced pluripotent stem cells in a defined, feeder-, and serum-free system.Cell Reprogram, 2010, 12(6)∶ 641-653.
[13]Lin T, Ambasudhan R, Yuan X, et al.A chemical platform for improved induction of human iPSCs.Nat Methods, 2009,6(11)∶ 805-808.
[14]Tam WL, Lim CY, Han J, et al.T-cell factor 3 regulates embryonic stem cell pluripotency and self-renewal by the transcriptional control of multiple lineage pathways.Stem Cells, 2008, 26(8)∶ 2019-2031.
[15]Li W, Zhou H, Abujarour R, et al.Generation of human-induced pluripotent stem cells in the absence of exogenous Sox2.Stem Cells, 2009, 27(12)∶ 2992-3000.
[16]Lyssiotis CA, Foreman RK, Staerk J, et al.Reprogramming of murine fibroblasts to induced pluripotent stem cells with chemical complementation of Klf4.Proc Natl Acad Sci USA, 2009, 106(22)∶ 8912-8917.
[17]Ying QL, Wray J, Nichols J, et al.The ground state of embryonic stem cell self-renewal.Nature, 2008, 453(7194)∶519-523.
[18]Shi Y, Do JT, Desponts C, et al.A combined chemical and genetic approach for the generation of induced pluripotent stem cells.Cell Stem Cell, 2008, 2(6)∶ 525-528.
[19]Li R, Liang J, Ni S, et al.A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts.Cell Stem Cell, 2010, 7(1)∶ 51-63.
[20]Samavarchi-Tehrani P, Golipour A, David L, et al.Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming.Cell Stem Cell, 2010, 7(1)∶ 64-77.
[21]Aguirre A,Rubio ME,Gallo V.Notch and EGFR pathway interaction regulates neural stem cell number and self-renewal.Nature, 2010, 467(7313)∶ 323-327.
[22]Niwa H, Burdon T, Chambers I, et al.Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3.Genes Dev, 1998, 12(13)∶ 2048-2060.
[23]Yang J, van Oosten AL, Theunissen TW, et al.Stat3 activa-tion is limiting for reprogramming to ground state pluripotency.Cell Stem Cell, 2010, 7(3)∶ 319-328.
[24]Nashun B,Hill PW,Hajkova P.Reprogramming of cell fate∶ epigenetic memory and the erasure of memories past.EMBO J, 2015, 34(10)∶ 1296-1308.
[25]Doerks T, Copley RR, Schultz J, et al.Systematic identification of novel protein domain families associated with nuclear functions.Genome Res, 2002, 12(1)∶ 47-56.
[26]Mikkelsen TS, Hanna J, Zhang X, et al.Dissecting direct reprogramming through integrative genomic analysis.Nature,2008, 454(7200)∶ 49-55.
[27]Christman JK.5-Azacytidine and 5-aza-2’-deoxycytidine as inhibitors of DNA methylation∶ mechanistic studies and their implications for cancer therapy.Oncogene, 2002,21(35)∶ 5483-5495.
[28]Chinnathambi S, Wiechert S, Tomanek-Chalkley A, et al.Treatment with the cancer drugs decitabine and doxorubicin induces human skin keratinocytes to express Oct4 and the OCT4 regulator mir-145.J Dermatol, 2012, 39(7)∶ 617-624.
[29]Kouzarides T.Chromatin modifications and their function.Cell, 2007, 128(4)∶ 693-705.
[30][30]Chen J, Liu H, Liu J, et al.H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs.Nat Genet,2013, 45(1)∶ 34-42.
[31]Wei X, Chen Y, Xu Y, et al.Small molecule compound induces chromatin de-condensation and facilitates induced pluripotent stem cell generation.J Mol Cell Biol, 2014, 6(5)∶409-420.
[32]Shi Y, Desponts C, Do JT, et al.Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds.Cell Stem Cell, 2008, 3(5)∶568-574.
[33]Huang K, Zhang X, Shi J, et al.Dynamically reorganized chromatin is the key for the reprogramming of somatic cells to pluripotent cells.Sci Rep, 2015, 5∶ 17691.
[34]Onder TT, Kara N, Cherry A, et al.Chromatin-modifying enzymes as modulators of reprogramming.Nature, 2012,483(7391)∶ 598-602.
[35]Li Y, Zhang Q, Yin X, et al.Generation of iPSCs from mouse fibroblasts with a single gene, Oct4, and small molecules.Cell Res, 2011, 21(1)∶ 196-204.
[36]Silva J, Barrandon O, Nichols J, et al.Promotion of reprogramming to ground state pluripotency by signal inhibition.PLoS Biol, 2008, 6(10)∶ e253.
[37]Wang T, Chen K, Zeng X, et al.The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent manner.Cell Stem Cell, 2011, 9(6)∶ 575-587.
[38]Mali P, Chou BK, Yen J, et al.Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes.Stem Cells, 2010, 28(4)∶ 713-720.
[39]Li D, Wang L, Hou J, et al.Optimized approaches for generation of integration-free iPSCs from human urine-derived cells with small molecules and autologous feeder.Stem Cell Reports, 2016, 6(5)∶ 717-728.
[40]Lee J, Xia Y, Son MY, et al.A novel small molecule facilitates the reprogramming of human somatic cells into a pluripotent state and supports the maintenance of an undifferentiated state of human pluripotent stem cells.Angew Chem Int Ed Engl, 2012, 51(50)∶ 12509-12513.
[41]Yoshida Y, Takahashi K, Okita K, et al.Hypoxia enhances the generation of induced pluripotent stem cells.Cell Stem Cell, 2009, 5(3)∶ 237-241.
[42]Zhu S, Li W, Zhou H, et al.Reprogramming of human primary somatic cells by OCT4 and chemical compounds.Cell Stem Cell, 2010, 7(6)∶ 651-655.
[43]Folmes CD, Nelson TJ, Martinez-Fernandez A, et al.Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming.Cell Metab, 2011, 14(2)∶ 264-271.
[44]Chen T, Shen L, Yu J, et al.Rapamycin and other longevity-promoting compounds enhance the generation of mouse induced pluripotent stem cells.Aging Cell, 2011, 10(5)∶ 908-911.
[45]Gage FH,Temple S.Neural stem cells∶ generating and regenerating the brain.Neuron, 2013, 80(3)∶ 588-601.
[46]Cheng L, Hu W, Qiu B, et al.Generation of neural progenitor cells by chemical cocktails and hypoxia.Cell Res, 2014,24(6)∶ 665-679.
[47]Zheng J, Choi KA, Kang PJ, et al.A combination of small molecules directly reprograms mouse fibroblasts into neural stem cells.Biochem Biophys Res Commun, 2016, 476(1)∶42-48.
[48]Lie DC, Colamarino SA, Song HJ, et al.Wnt signalling regulates adult hippocampal neurogenesis.Nature, 2005,437(7063)∶ 1370-1375.
[49]Koyanagi M, Takahashi J, Arakawa Y, et al.Inhibition of the Rho/ROCK pathway reduces apoptosis during transplantation of embryonic stem cell-derived neural precursors.J Neurosci Res, 2008, 86(2)∶ 270-280.
[50]Zhang M, Lin YH, Sun YJ, et al.Pharmacological reprogramming of fibroblasts into neural stem cells by signaling-directed transcriptional activation.Cell Stem Cell,2016,18(5)∶ 653-667.
[51]Han YC, Lim Y, Duffeldl MD, et al.Direct reprogramming of mouse fibroblasts to neural stem cells by small molecules.Stem Cells Int, 2016, 2016(4304916.
[52]Ladewig J, Mertens J, Kesavan J, et al.Small molecules enable highly effcient neuronal conversion of human fibroblasts.Nat Methods, 2012, 9(6)∶ 575-578.
[53]Liu ML, Zang T, Zou Y, et al.Small molecules enable neurogenin 2 to effciently convert human fibroblasts into cholinergic neurons.Nat Commun, 2013, 4(2183.
[54]Lamas NJ, Johnson-Kerner B, Roybon L, et al.Neurotrophic requirements of human motor neurons defined using amplified and purified stem cell-derived cultures.PLoS One,2014, 9(10)∶ e110324.
[55]Li X, Zuo X, Jing J, et al.Small-molecule-driven direct reprogramming of mouse fibroblasts into functional neurons.Cell Stem Cell, 2015, 17(2)∶ 195-203.
[56]Cheng L, Hu W, Qiu B, et al.Generation of neural progenitor cells by chemical cocktails and hypoxia.Cell Res, 2015,25(5)∶ 645-646.
[57]Zhang L, Yin JC, Yeh H, et al.Small molecules effciently reprogram human astroglial cells into functional neurons.Cell Stem Cell, 2015, 17(6)∶ 735-747.
[58]Gao L, Guan W, Wang M, et al.Direct generation of human neuronal cells from adult astrocytes by small molecules.Stem Cell Reports, 2017,8(3)∶ 538-547.
[59]Tian E, Sun G, Sun G, et al.Small-molecule-based lineage reprogramming creates functional Astrocytes.Cell Rep,2016,16(3)∶ 781-792.
[60]Li W, Tian E, Chen ZX, et al.Identification of Oct4-activating compounds that enhance reprogramming effciency.Proc Natl Acad Sci USA, 2012, 109(51)∶ 20853-20858.
中國(guó)組織化學(xué)與細(xì)胞化學(xué)雜志2018年2期