• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Efficient activation of peroxymonosulfate by hollow cobalt hydroxide for degradation of ibuprofen and theoretical study

    2020-01-14 07:54:58MingfengMaLongChenJingzhuZhaoWenLiuHaodongJi
    Chinese Chemical Letters 2019年12期

    Mingfeng Ma,Long Chen,Jingzhu Zhao,,Wen Liu,d,e,Haodong Ji,d,*

    a State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

    b University of Chinese Academy of Sciences, Beijing 100049, China

    c The Key Laboratory of Water and Sediment Science, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China

    d The Beijing Innovation Center for Engineering Science and Advanced Technology (BIC-ESAT), Peking University, Beijing 100871, China

    e Beijing Engineering Research Center for Advanced Wastewater Treatment, Peking University, Beijing 100871, China

    Keywords:

    Cobalt hydroxid

    Pharmaceuticals

    Peroxymonosulfate

    Activation

    DFT calculation

    ABSTRACT

    Hollow microsphere structure cobalt hydroxide (h-Co(OH)2) was synthesized via an optimized solvothermal-hydrothermal process and applied to activate peroxymonosulfate (PMS) for degradation of a typical pharmaceutically active compound, ibuprofen (IBP).The material characterizations confirmed the presence of the microscale hollow spheres with thin nanosheets shell in h-Co(OH)2,and the crystalline phase was assigned to α-Co(OH)2.h-Co(OH)2 could efficiently activate PMS for radicals production, and 98.6% of IBP was degraded at 10 min.The activation of PMS by h-Co(OH)2 was a pHindependent process, and pH 7 was the optimum condition for the activation-degradation system.Scavenger quenching test indicated that the sulfate radical (SO4· -) was the primary reactive oxygen species for IBP degradation, which contributed to 75.7%.Fukui index (f -) based on density functional theory (DFT) calculation predicted the active sites of IBP molecule for SO4· - attack, and then IBP degradation pathway was proposed by means of intermediates identification and theoretical calculation.The developed hollow Co(OH)2 used to efficiently activate PMS is promising and innovative alternative for organic contaminants removal from water and wastewater.

    Recent years, as a class of emerging contaminants, pharmaceuticals and personal care products (PPCPs), such as antidepressants, antibiotics and anti-inflammatories, have drawn extensive concerns[1-3].PPCPs are widely detected in water and wastewater matrix and show high potential toxicity risks to aquatic life/human beings [1-3].Nonsteroidal anti-inflammatory drugs(NAIDS) are one of the most widely available and consumed pharmaceuticals with 70 million annual prescriptions in the world[4-6].Ibuprofen (2-[3-(2-methylpropyl)phenyl]propanoic acid,IBP), which belongs to a class of NAIDS, has been reported that its mean concentration in ground,surface and drinking water is up to 0.024,0.24 μg/L and 5-25 ng/L,respectively[7-9].Although the detected concentration of IBP is low, it still holds unexpected toxicity to eco-system and human health [10].Moreover, the conventional treatment technologies for drinking water, such as coagulation, sedimentation, filtration and disinfection, are not efficient and suitable to remove IBP at low concentration levels[11].Thus, it is urgent to develop efficient strategies for IBP removal.

    Heterogenous catalysis using functional materials has been widely applied for organics removal[12-16],especially the radicalinvolved processes.Although the hydroxyl radical(·OH,E0=+1.8-2.7 V)exhibits strong power to oxidize organics,the sulfate radical(SO4·-,E0=+2.5-3.1 V)has some unique and innovative potentials,i.e.,higher selectivity,longer radical half-life(30-40 μs for SO4·-and 1 μs for·OH)and wider pH application range[17,18].Previous works developed many technologies to activate peroxymonosulphate (PMS, HSO5-) and persulphate (PS, S2O82-) for generating sulfate radicals, such as degradation of p-nitrophenol by mFe/Cuair-PS activation system [13], dye pollutants degradation by CuFe2O4@GO-PMS activation system [19], organic pollutants removal by sponge of cobalt heterostructures-PMS [20].The Co-modified materials have been believed the most efficient heterogeneous or homogeneous catalysts to activate PMS or PS[21].

    The overall goal of this study was to develop and test the effectiveness of a hollow structure Co(OH)2material to activate PMS for ibuprofen degradation.The specific objectives were to:1)develop an optimized solvothermal-hydrothermal method to prepare the hollow Co(OH)2,2)investigate the removal efficiencies of IBP by various PMS activation systems, 3) reveal the IBP degradation mechanism and radical attacking function based on degradation intermediate/products identification and computational chemistry analysis, 4) assess the effects of water chemistry conditions including pH and PMS concentration, and 5) elucidate the underlying PMS efficient activation mechanism through material characterizations.

    All chemicals used in this work were of analytical grade or higher.Details related to the chemicals are provided in Text S1(Supporting information).Hollow structure cobalt hydroxide (h-Co(OH)2) were prepared through a modified solvothermalhydrothermal method [22].Specifically, 10 mmol/L (2.9105 g)Co(NO3)2·6H2O was dissolved in 60 mL isopropanol and then 16 mL glycerin was added.The mixture was magnetically stirred for 30 min to completely dissolved and then transferred into a Teflon reactor with stainless steel coating,heated at 180°C for 6 h to complete solvothermal reaction.After cooling to the room temperature,the pink precipitates were washed with ethanol for 3 times to remove the residuals anions and oven-dried at 60°C for 12 h to obtain alkoxy cobalt microspheres (s-CoA).Another hydrothermal reaction was initiated then.0.5 g s-CoA was dissolved in 80 mL deionized (DI) water, and the solution was transferred to the Teflon reactor and heated at 160°C for 3 h.After cooling, the light green precipitates were washed with DI water for 3 times and dried at 60°C for 12 h.Finally,the hollow structure cobalt hydroxide were ground and collected.For comparison,neat Co(OH)2was also prepared via a conventional precipitation method (Test S2 in Supporting information) and labeled as p-Co(OH)2.

    Batch kinetic experiments were carried out to test the effectiveness of h-Co(OH)2for IBP degradation after PMS activation.The initial IBP concentration was fixed at 10 μmol/L.In a typical PMS activation system, 0.2 mmol/L PMS and solution pH were adjusted to 7.0 using diluted HClO4(0.1 mmol/L) or NaOH (0.1 mmol/L).The mixture was then magnetically stirred at 300 rpm, and the heterogeneous catalytic reaction was initiated by adding 0.2 g/L cobalt material.At pre-determined time, 1 mL sample was collected and immediately filtrated via a 0.22 μm polytetrafluoroethylene(PTFE)membrane,which was pre-filled with 0.1 mL of 0.2 mmol/L Na2SO3solution to quench the residual PMS-induced radicals.Control tests were conducted without any catalysts (estimate the degradation by PMS) or without PMS (quantify the adsorption by materials) but under otherwise identical conditions.IBP concentration in the filtrate was measured by a high-performance liquid chromatography (HPLC) system (Agilent 1260 Infinity, USA).The intermediates and products after IBP degradation were analyzed on a high-performance liquid chromatography-mass spectroscopy system (HPLC-MS, HP 1100 LC-MSnTrap SL System, Agilent).The details are shown in the Text S3 (Supporting information).

    For pH effect, the solution pH was adjusted from 3 to 11.To quantify the contributions of different reactive oxygen species(ROS) to IBP degradation, scavengers including tert-butanol (tBA)or ethanol (2 mmol/L) was added before reaction to quench hydroxyl radical (·OH) and all radicals, respectively.

    To evaluate the regioselectivity of generated radicals in the heterogeneous catalytic process for IBP molecules attacking,Fukui function (f-) based on the density functional theory (DFT)calculation was applied.Details on DFT calculation are presented in the Text S4 (Supporting information).

    The materials were characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and powder X-ray diffraction (XRD).Meanwhile, the surface area and pore size distribution of the materials were obtained by the Brunauer-Emmett-Teller (BET) and the Barrett-Joyner-Halenda(BJH) method (Text S5 in Supporting information).

    Fig.1 depicts the TEM images of h-Co(OH)2.Unlike the p-Co(OH)2prepared by directly conventional precipitation method,which generally exhibits broken and uneven flat platelets in the 100-500 nm range in size[23],h-Co(OH)2was observed as hollow structure (Fig.1a) and totally transformed into aggregated nanosheet-shell-like clusters after solvothermal-hydrothermal reaction (Fig.1b).In addition, h-Co(OH)2were microscale hollow spheres(Fig.1b),in which consist of the center holes of~1 μm and thin nanosheets shell of~10 nm (Figs.1c and d).TEM analysis indicated that the nanosheets-shell had crystalline characteristic(Fig.1d), which is further confirmed by the XRD analysis.In addition, the h-Co(OH)2with hollow structure exhibits larger specific surface area (132.36 m2/g) and total pore volume(0.57 cm3/g) than that of the p-Co(OH)2(23.9 m2/g and 0.088 cm3/g) [24](Table S1, Figs.S1 and S2 in Supporting information), suggesting efficient interaction with PMS for its activation by h-Co(OH)2.

    Fig.2 presents XRD patterns of p-Co(OH)2and h-Co(OH)2.For conventional p-Co(OH)2,four distinct peaks at 19.1°,32.5°,38°and 51.4°appeared and assigned to the crystalline plane (001), (100),(101) and (102) of β-Co(OH)2, respectively (JCPDS 00-030-0443)[23,25,26].However, all the significant characteristic peaks belonged to α-Co(OH)2in the h-Co(OH)2spectra, as 9.5°, 17.8°,33.7°and 59.5°peaks were assigned to the(003),(006),(012)and(113) crystalline plane of α-Co(OH)2(JCPDS 00-046-0605),respectively[23,27].It is indicated that different crystalline phase formed for h-Co(OH)2compared with conventional p-Co(OH)2due to the solvothermal-hydrothermal method.In addition, the different Co(OH)2phases can contribute to the distinct crystalline plane (reactive sites) to active PMS and result in the different removal efficiency of IBP.

    Fig.S3 (Supporting information) shows XPS spectra of p-Co(OH)2and h-Co(OH)2.For these two materials, the significant peaks of and O 1s in the survey spectra (Fig.S3a) indicated the similar element composition.In the high resolution of Co 2p spectra (Fig.S3b), the two group peaks at 781.1 and 796.8 eV for both materials are attributed to Co2+in Co(OH)2[23,26].The existence of satellite vibration peaks near 786.2 eV and 802.6 eV for Co 2p3/2and Co 2p1/2confirms the formation of Co3+due to surface oxidation [28,29].

    Fig.1.TEM images of h-Co(OH)2.Scale bars:2 μm(a),1 μm(b),50 nm(c),20 nm(d).

    Fig.2.XRD patterns of p-Co(OH)2 and h-Co(OH)2.

    Fig.3 shows the removal of IBP by PMS activated by h-Co(OH)2or p-Co(OH)2.Control tests indicated that almost no removal(<0.3%)of IBP by PMS direct degradation.Moreover,the adsorption of IBP by both h-Co(OH)2and p-Co(OH)2was negligible(<0.2%),it is because the inorganic structure of Co(OH)2is not sufficient to absorb organic compounds, which is consistent with previous reports [30,31].However, rapid and high degradation (83.6% and 98.6%)of IBP was observed within 10 min for both p-Co(OH)2and h-Co(OH)2with PMS, respectively, indicating the observed IBP degradation can be solely contributed to the efficient PMS activation by h-Co(OH)2or p-Co(OH)2.The pseudo-first order kinetic model is used to interpret the kinetic data(Eq.(1))[32-34]:

    where C0and Ctare the IBP concentrations (μmol/L) at time 0 and t(min)in aqueous phase,respectively;and k1is the first-order rate constant (min-1).

    Fig.S4(Supporting information)shows the linear model fitting to IBP degradation in the heterogenous catalysis systems with PMS and Co(OH)2, and Table S2 (Supporting information) summarizes the best-fitted parameters.The pseudo-first order kinetic model can well describe the kinetic data(R2>0.966).In addition,the rate constant (k1) increased from 0.195 min-1for p-Co(OH)2to 0.428 min-1for h-Co(OH)2, by 2.2 times, indicating higher reactivity of h-Co(OH)2for PMS activation.It can be attributed to the different morphology and crystalline phases as aforementioned(Figs.1 and 2).Therefore,in the following experiments and characterizations, h-Co(OH)2was focused.The mechanism on activation of PMS by Co(OH)2for radicals production and organics degradation can be summarized as Eqs.(2)-(10) [30,31,35,36]:

    The formation of CoOH+, which has been reported as the key cobalt species to activate PMS[31]as shown in Eq.(2),which is the rate-limiting step for radical production[37].After decomposition of PMS to generate SO4·-, the CoOH+will transfer into CoO+(Eq.(3)) and then further react with H+to produce Co3+(Eq.(4)).PMS can also consume Co3+to regenerate Co2+(Eq.(5)), which is the critical process to maintain the chain reactions at a relative low cobalt concentration [38].And then the regenerated Co2+can either quench the SO4·-(Eq.(6)) or reproduce the most efficient activation specie CoOH+for reactivating PMS (Eq.(7)).It is worth noting that the generated SO4·-also can be captured by H2O or OH-for formation of·OH(Eqs.(8) and(9)),which is also a strong radical for organics degradation.The generated sulfate radicals will further attack the active sites of IBP molecules for its degradation or mineralization (Eq.(10)).

    Fig.3.IBP removal kinetics in various systems(a)and effects of pH on IBP degradation by h-Co(OH)2 activated PMS(b).(Initial IBP=10 μmol/L,material dosage=0.2g/L,PMS concentration = 0.2mmol/L, initial pH 7.0).

    Fig.4.Effects of reactive species for IBP removal by h-Co(OH)2 activated PMS.(Initial IBP=10 μmol/L;material dosage=0.2 g/L;PMS concentration=0.2 mmol/L;initial pH=7.0; ethanol, tBA and NaN3 concentration = 2 mmol/L).

    Fig.3b presents the effect of pH on IBP degradation in the PMS catalytic system.Increasing pH from 3 to 7 increased the k1value from 0.059 min-1to 0.428 min-1, and the removal efficiency increased from to 44.2%to 98.6%after 10 min reaction.At low pH,PMS with a pKaof 9.4 exists in the form of H2SO5[39], and the formation of key cobalt species CoOH+is inhibited due to acid condition[40,41],so low efficiency is obtained.While at higher pH,SO4·-will react with OH-to form·OH (Eq.(9)), which has low oxidation capacity compared to SO4·-at alkaline conditions[42].Therefore,pH 7 is the optimum pH for PMS activation and then IBP degradation in this system.

    Leaching of Co ion into solution during the reaction was also evaluated (Table S3 in Supporting information).It is found that only 2.36% of Co was dissolved into solution at pH 7 after 10 min,because the Co species transformation cycle shown in Eqs.(2)-(7).In addition,it is worth noting that the PMS activation reaction by h-Co(OH)2is a self-sacrificing process,so reusability of the catalyst in this advanced oxidation process is generally limited[29,31,43].In the future, developing new catalysts or new strategies to ensure the metal cycle is the key issues for this area.

    To further identify the contributions of main radicals involved in the IBP degradation, classical scavenger quenching tests were conducted.Ethanol [33,44]and tBA [45-47]was applied as the scavenger of·OH and all radicals including·OH and SO4·-,respectively(Fig.4).Table S2 lists the rate constant(k1)by for IBP degradation in the presence of various scavengers.After tBA and ethanol added, IBP removal was inhibited, as the k1value decreased from 0.428 min-1(without scavenger) to 0.261 min-1and 0.020 min-1, respectively (Table S2).In addition, for the catalytic system using h-Co(OH)2at 10 min,·OH contributed 6.3%while SO4·-contributed 75.7% to the IBP removal, respectively.Luo et al.[29]and Yun et al.[48]have mentioned the singlet oxygen(1O2)may dominate the non-radical oxidation process in the PMS activation.Thus, another quenching test for1O2was conducted using NaN3.However,the contribution of1O2was negligible(<2%),which was not the primary reactive species in this activation system.Therefore, the dominant mechanism for the IBP removal by PMS after h-Co(OH)2activation in this study is radical-driven processes due to SO4·-,and·OH demonstrated a less contribution.The details on radical attacking mechanism will be discussed in the following paragraph based on the DFT computational analysis.

    SO4·-and·OH are the primary attack reactive oxygen species in this system, and both of them are classified as a kind of electrophilic radicals, which are more likely to attack the sites that can readily lose electron [49].Therefore, Fukui index (f-)indicating electrophilic attack is considered and Figs.5a and b displays the distribution of f-values on IBP molecule.Fig.5c presents the proposed IBP degradation pathway based on intermediates identification.Higher f-value of site on IBP molecule means more easily to lose an electron and be attacked by SO4·-and·OH.The C3 (f-=0.193) and C6 (f-=0.196) show highest f-values, which are the most active site on IBP.It is consistent with the MS detection intermediates as the formation of products B and C due to the C--C bond cleavage caused by radical attacking(Fig.5c).Moreover,·OH addition pathway was also found for the formation of products D and E.Product F was further generated after E or C was attacked by·OH.Finally, low molecular weight organic compounds and mineralization products (CO2, H2O and CO32-) formed after deep oxidation by the radicals.Total organic carbon (TOC) test indicated 25.2% of organic C was mineralized during IBP removal by h-Co(OH)2activated PMS (Fig.S5 in Supporting information).

    This study developed an optimized solvothermal-hydrothermal method for preparation of hollow structure Co(OH)2,which could efficiently activate PMS for ibuprofen degradation.TEM and XRD confirmed the synthesized h-Co(OH)2maintained microscale hollow spheres with thin nanosheets shell, and is assigned to α-Co(OH)2crystalline phase.Compared with conventional p-Co(OH)2, the PMS activation activity of h-Co(OH)2was significantly enhanced as well as the IBP removal efficiency.The rate constant(k1),interpreted by the pseudo-first order kinetic model,increased from 0.195 min-1for p-Co(OH)2to 0.428 min-1for h-Co(OH)2.After PMS activation by h-Co(OH)2, the formed·OH and SO4·-contributed to 6.3% and 75.7% to IBP degradation respectively,indicating the SO4·-played the dominant role.DFT calculation indicated that the sites of IBP molecule with high Fukui index(f-)was preferred to be attacked by the two produced electrophilic radicals.The hollow structure Co(OH)2is a promising material for PMS activation, which shows great potential in efficient organic contaminants removal from water and wastewater.

    Fig.5.Chemical structure of IBP(a),natural population analysis(NPA)charges and Fukui index(f-)of IBP(b)and degradation pathway of IBP in the PMS activation system(c).

    Acknowledgments

    This work was partially supported by the National Natural Science Foundation of China (Nos.21906001 and 51721006).This work is supported by MOE Key Laboratory of Resources and Environmental Systems Optimization (NCEPU).

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,in the online version,at doi:https://doi.org/10.1016/j.cclet.2019.09.031.

    国产亚洲精品久久久久5区| 国产免费视频播放在线视频| 视频区图区小说| 免费高清在线观看日韩| 80岁老熟妇乱子伦牲交| 天天躁夜夜躁狠狠躁躁| 国产亚洲av高清不卡| 无限看片的www在线观看| 亚洲精品国产一区二区精华液| 欧美日韩福利视频一区二区| 大香蕉久久成人网| 欧美xxⅹ黑人| 国产又色又爽无遮挡免| 亚洲第一av免费看| 自线自在国产av| 天堂俺去俺来也www色官网| 麻豆乱淫一区二区| 一本大道久久a久久精品| av国产精品久久久久影院| www.熟女人妻精品国产| 在线av久久热| 国产国语露脸激情在线看| 777久久人妻少妇嫩草av网站| 亚洲欧美日韩高清在线视频 | 自线自在国产av| 在线亚洲精品国产二区图片欧美| 亚洲精品成人av观看孕妇| 亚洲一区中文字幕在线| netflix在线观看网站| 久久青草综合色| 精品一区二区三区av网在线观看 | 婷婷色av中文字幕| 一边摸一边做爽爽视频免费| 人妻人人澡人人爽人人| 黄片播放在线免费| 国产精品久久久久成人av| 亚洲精品日本国产第一区| 777久久人妻少妇嫩草av网站| 少妇 在线观看| 在现免费观看毛片| 亚洲自偷自拍图片 自拍| av在线播放精品| 国产日韩一区二区三区精品不卡| 国产日韩一区二区三区精品不卡| 日日爽夜夜爽网站| 女人爽到高潮嗷嗷叫在线视频| 久久99热这里只频精品6学生| 欧美久久黑人一区二区| 国产免费一区二区三区四区乱码| 真人做人爱边吃奶动态| 老司机影院成人| 亚洲成人免费电影在线观看 | 天堂中文最新版在线下载| 欧美日韩亚洲综合一区二区三区_| av有码第一页| 午夜福利在线免费观看网站| 国产成人精品在线电影| 老汉色av国产亚洲站长工具| 91麻豆精品激情在线观看国产 | 国产在视频线精品| 2021少妇久久久久久久久久久| 国产精品久久久久成人av| 丝袜美足系列| 精品少妇久久久久久888优播| 18禁裸乳无遮挡动漫免费视频| 成人黄色视频免费在线看| 国产熟女午夜一区二区三区| 男的添女的下面高潮视频| 欧美日韩综合久久久久久| 国产成人一区二区在线| 亚洲国产看品久久| 欧美97在线视频| tube8黄色片| 自线自在国产av| 午夜视频精品福利| 悠悠久久av| 飞空精品影院首页| 性色av一级| 天堂俺去俺来也www色官网| 免费一级毛片在线播放高清视频 | 中国美女看黄片| 黑丝袜美女国产一区| 看免费成人av毛片| 国产高清不卡午夜福利| 别揉我奶头~嗯~啊~动态视频 | 成人手机av| 国产精品一国产av| 欧美日韩成人在线一区二区| 色精品久久人妻99蜜桃| 99国产精品一区二区蜜桃av | 五月开心婷婷网| 国产成人系列免费观看| 国产亚洲精品第一综合不卡| 亚洲少妇的诱惑av| 黄色 视频免费看| 亚洲熟女毛片儿| 亚洲一区中文字幕在线| 老司机深夜福利视频在线观看 | 久久99热这里只频精品6学生| 亚洲成人手机| 大片免费播放器 马上看| 精品少妇内射三级| 少妇猛男粗大的猛烈进出视频| 亚洲欧美清纯卡通| 一本综合久久免费| 一级毛片我不卡| 国产成人a∨麻豆精品| 妹子高潮喷水视频| 欧美 日韩 精品 国产| 新久久久久国产一级毛片| 午夜福利乱码中文字幕| 波多野结衣av一区二区av| 亚洲第一av免费看| 亚洲国产毛片av蜜桃av| 老熟女久久久| 啦啦啦啦在线视频资源| av在线播放精品| 亚洲人成电影免费在线| 成人亚洲精品一区在线观看| 成人国产一区最新在线观看 | 妹子高潮喷水视频| 亚洲欧美一区二区三区久久| 女警被强在线播放| 岛国毛片在线播放| 亚洲国产欧美日韩在线播放| 人人妻人人添人人爽欧美一区卜| 电影成人av| 亚洲欧美色中文字幕在线| 欧美性长视频在线观看| 欧美黄色淫秽网站| 天堂中文最新版在线下载| 日本欧美视频一区| 乱人伦中国视频| 在线亚洲精品国产二区图片欧美| 啦啦啦啦在线视频资源| 一级黄片播放器| 国产成人欧美| 91成人精品电影| 国产又色又爽无遮挡免| 久久久精品免费免费高清| 国产主播在线观看一区二区 | 青草久久国产| 免费看十八禁软件| a级毛片在线看网站| 亚洲国产欧美一区二区综合| 中文字幕另类日韩欧美亚洲嫩草| 精品国产一区二区三区久久久樱花| 天天添夜夜摸| 国产男女超爽视频在线观看| 美女脱内裤让男人舔精品视频| 在线天堂中文资源库| 深夜精品福利| 蜜桃在线观看..| 亚洲av美国av| 精品国产一区二区三区久久久樱花| 亚洲黑人精品在线| 久久99精品国语久久久| 制服诱惑二区| 日韩制服骚丝袜av| 中文精品一卡2卡3卡4更新| 黑人猛操日本美女一级片| 久久影院123| 天堂8中文在线网| 国产1区2区3区精品| 亚洲精品国产av成人精品| 欧美精品亚洲一区二区| 日韩中文字幕欧美一区二区 | 久久人妻福利社区极品人妻图片 | 丝袜美足系列| 日本欧美国产在线视频| 美国免费a级毛片| 美国免费a级毛片| 99九九在线精品视频| 午夜91福利影院| 亚洲国产最新在线播放| 亚洲精品日本国产第一区| 久久人人爽人人片av| 欧美日韩亚洲高清精品| 老汉色∧v一级毛片| 欧美精品高潮呻吟av久久| 国产不卡av网站在线观看| 欧美黑人欧美精品刺激| 成人亚洲精品一区在线观看| 久久久久久久久久久久大奶| 中文欧美无线码| 人人妻人人澡人人看| 狂野欧美激情性xxxx| 欧美另类一区| 日日摸夜夜添夜夜爱| 夜夜骑夜夜射夜夜干| 欧美日韩黄片免| 韩国高清视频一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 欧美变态另类bdsm刘玥| 免费高清在线观看日韩| 波多野结衣一区麻豆| 最黄视频免费看| 人人妻人人澡人人看| 日本wwww免费看| 午夜久久久在线观看| 国产精品人妻久久久影院| 久久久久久久久免费视频了| 美国免费a级毛片| 电影成人av| 一二三四社区在线视频社区8| 你懂的网址亚洲精品在线观看| 国产色视频综合| 七月丁香在线播放| 亚洲国产精品一区三区| 亚洲国产最新在线播放| 亚洲专区中文字幕在线| 国产在线免费精品| 两性夫妻黄色片| 国产激情久久老熟女| 91九色精品人成在线观看| 91字幕亚洲| 亚洲精品美女久久av网站| 国产有黄有色有爽视频| 嫁个100分男人电影在线观看 | 国产高清videossex| 啦啦啦在线免费观看视频4| 成年人午夜在线观看视频| 妹子高潮喷水视频| 国产一卡二卡三卡精品| 国产精品九九99| 麻豆av在线久日| 国产一区二区在线观看av| 黑人猛操日本美女一级片| 啦啦啦视频在线资源免费观看| a级毛片黄视频| 国产日韩欧美亚洲二区| 亚洲精品美女久久av网站| 亚洲激情五月婷婷啪啪| 69精品国产乱码久久久| www.精华液| 日日爽夜夜爽网站| a级毛片黄视频| 在线亚洲精品国产二区图片欧美| 国产成人系列免费观看| 亚洲,欧美精品.| 国产av精品麻豆| 桃花免费在线播放| 在线 av 中文字幕| 亚洲伊人色综图| 日韩电影二区| 欧美日本中文国产一区发布| 亚洲欧美精品自产自拍| 亚洲天堂av无毛| 777米奇影视久久| 精品少妇久久久久久888优播| 最近手机中文字幕大全| 午夜两性在线视频| 亚洲伊人色综图| 久久毛片免费看一区二区三区| 免费高清在线观看日韩| 日韩av在线免费看完整版不卡| bbb黄色大片| 男女边吃奶边做爰视频| 中文字幕高清在线视频| 97精品久久久久久久久久精品| 亚洲图色成人| a级片在线免费高清观看视频| 中文字幕另类日韩欧美亚洲嫩草| 91国产中文字幕| 婷婷丁香在线五月| 日本av手机在线免费观看| 一级黄片播放器| 国产精品麻豆人妻色哟哟久久| 波野结衣二区三区在线| 久久九九热精品免费| 国产成人啪精品午夜网站| 日本欧美国产在线视频| 丁香六月天网| 美女高潮到喷水免费观看| 男女下面插进去视频免费观看| 日本vs欧美在线观看视频| 午夜福利视频精品| 亚洲国产精品国产精品| 99国产精品免费福利视频| 亚洲av日韩在线播放| 亚洲国产av影院在线观看| 欧美另类一区| 精品久久久精品久久久| 韩国精品一区二区三区| 亚洲av美国av| 精品福利永久在线观看| 视频区图区小说| 午夜免费鲁丝| 国产日韩欧美视频二区| 男女无遮挡免费网站观看| 久久女婷五月综合色啪小说| 久久九九热精品免费| 一级毛片电影观看| 在现免费观看毛片| 精品人妻1区二区| 久久鲁丝午夜福利片| 亚洲一区二区三区欧美精品| 可以免费在线观看a视频的电影网站| 欧美国产精品va在线观看不卡| 好男人电影高清在线观看| 黄片小视频在线播放| 满18在线观看网站| 免费不卡黄色视频| 亚洲精品久久午夜乱码| 亚洲av综合色区一区| 欧美老熟妇乱子伦牲交| 美女大奶头黄色视频| 精品欧美一区二区三区在线| 丰满少妇做爰视频| av线在线观看网站| 啦啦啦 在线观看视频| 国产色视频综合| av一本久久久久| 一二三四在线观看免费中文在| 两个人免费观看高清视频| 高清黄色对白视频在线免费看| 国产精品秋霞免费鲁丝片| 欧美国产精品一级二级三级| 又黄又粗又硬又大视频| 嫩草影视91久久| 亚洲精品美女久久久久99蜜臀 | 啦啦啦中文免费视频观看日本| 久久国产精品影院| 国产淫语在线视频| 久久精品国产亚洲av高清一级| 日韩一卡2卡3卡4卡2021年| 精品一区二区三区av网在线观看 | 久久人人97超碰香蕉20202| avwww免费| 欧美精品一区二区大全| 成人三级做爰电影| 无限看片的www在线观看| 亚洲国产精品国产精品| 亚洲中文av在线| 大香蕉久久成人网| 国产视频首页在线观看| 国产精品一区二区精品视频观看| 日韩 欧美 亚洲 中文字幕| 国产亚洲精品久久久久5区| 亚洲国产av新网站| 真人做人爱边吃奶动态| 女人被躁到高潮嗷嗷叫费观| 欧美黑人欧美精品刺激| 一区二区三区精品91| 男女国产视频网站| 精品福利观看| 日韩视频在线欧美| 久久人妻熟女aⅴ| 国产精品亚洲av一区麻豆| 一区二区三区乱码不卡18| 新久久久久国产一级毛片| 99精国产麻豆久久婷婷| 成人国语在线视频| 国产在视频线精品| 亚洲第一av免费看| 美女大奶头黄色视频| √禁漫天堂资源中文www| 亚洲午夜精品一区,二区,三区| 亚洲精品久久成人aⅴ小说| 伊人亚洲综合成人网| 熟女少妇亚洲综合色aaa.| 日韩 亚洲 欧美在线| 午夜免费男女啪啪视频观看| 婷婷色综合大香蕉| av电影中文网址| videos熟女内射| 美女脱内裤让男人舔精品视频| 亚洲av男天堂| 欧美国产精品va在线观看不卡| 青春草视频在线免费观看| 人成视频在线观看免费观看| 精品久久蜜臀av无| a级毛片黄视频| 在线观看免费视频网站a站| 国产精品久久久久久人妻精品电影 | 久久天躁狠狠躁夜夜2o2o | 波多野结衣av一区二区av| 免费观看人在逋| 亚洲综合色网址| 精品少妇一区二区三区视频日本电影| 久久av网站| 少妇人妻 视频| 不卡av一区二区三区| 蜜桃在线观看..| 制服诱惑二区| 色播在线永久视频| 国产精品麻豆人妻色哟哟久久| 国产成人精品久久二区二区91| 多毛熟女@视频| 激情视频va一区二区三区| 老汉色av国产亚洲站长工具| 欧美日韩福利视频一区二区| 国产成人a∨麻豆精品| 国产野战对白在线观看| 亚洲七黄色美女视频| 国产人伦9x9x在线观看| 女人被躁到高潮嗷嗷叫费观| 国产精品一区二区在线观看99| 久久久久久亚洲精品国产蜜桃av| 老司机亚洲免费影院| 国产午夜精品一二区理论片| 成年人黄色毛片网站| 美女福利国产在线| 国产成人系列免费观看| 亚洲一区二区三区欧美精品| 在线观看免费高清a一片| 欧美精品高潮呻吟av久久| 1024视频免费在线观看| 黄色a级毛片大全视频| 极品少妇高潮喷水抽搐| cao死你这个sao货| 国产高清国产精品国产三级| 日本欧美国产在线视频| 亚洲视频免费观看视频| 免费不卡黄色视频| 国产视频一区二区在线看| 亚洲国产日韩一区二区| 久久久久视频综合| 天堂俺去俺来也www色官网| 国产亚洲欧美在线一区二区| 久久久国产一区二区| 欧美日韩黄片免| 久久国产精品大桥未久av| 婷婷丁香在线五月| 中文字幕亚洲精品专区| 性色av乱码一区二区三区2| 搡老乐熟女国产| 国产爽快片一区二区三区| 久久人妻熟女aⅴ| 久久久精品94久久精品| 中文字幕制服av| 男女免费视频国产| 看免费av毛片| 国产免费又黄又爽又色| 亚洲精品久久久久久婷婷小说| 国产1区2区3区精品| 久久狼人影院| 中文字幕人妻熟女乱码| 欧美乱码精品一区二区三区| 国产精品久久久人人做人人爽| 最黄视频免费看| 亚洲精品日本国产第一区| 欧美老熟妇乱子伦牲交| 久久久久久亚洲精品国产蜜桃av| 久久久久国产精品人妻一区二区| 国产在线视频一区二区| 爱豆传媒免费全集在线观看| 麻豆乱淫一区二区| 夫妻性生交免费视频一级片| 欧美精品av麻豆av| 精品人妻1区二区| av网站免费在线观看视频| 久久 成人 亚洲| 亚洲视频免费观看视频| 国产精品秋霞免费鲁丝片| 国产精品久久久久久精品电影小说| 99国产综合亚洲精品| 久久热在线av| 欧美av亚洲av综合av国产av| 日本色播在线视频| 国产老妇伦熟女老妇高清| 国产伦理片在线播放av一区| 性少妇av在线| 久热爱精品视频在线9| 性高湖久久久久久久久免费观看| 精品久久蜜臀av无| 999久久久国产精品视频| 亚洲精品日韩在线中文字幕| 精品久久久精品久久久| www日本在线高清视频| kizo精华| e午夜精品久久久久久久| 欧美成人午夜精品| 欧美激情高清一区二区三区| 高潮久久久久久久久久久不卡| 少妇精品久久久久久久| 日本av免费视频播放| 欧美性长视频在线观看| 看免费成人av毛片| 国产精品欧美亚洲77777| 97在线人人人人妻| 国产精品成人在线| 在现免费观看毛片| 视频区欧美日本亚洲| 午夜免费鲁丝| 久热这里只有精品99| 女警被强在线播放| 午夜两性在线视频| 老鸭窝网址在线观看| 99久久99久久久精品蜜桃| 亚洲精品美女久久久久99蜜臀 | 色婷婷久久久亚洲欧美| 男女床上黄色一级片免费看| 色婷婷av一区二区三区视频| 亚洲午夜精品一区,二区,三区| 免费看不卡的av| 成人国语在线视频| 国产精品99久久99久久久不卡| 亚洲,欧美,日韩| 美女扒开内裤让男人捅视频| 亚洲精品中文字幕在线视频| 高清黄色对白视频在线免费看| 天堂8中文在线网| 美女午夜性视频免费| 人人妻人人澡人人看| 日韩中文字幕欧美一区二区 | 国产人伦9x9x在线观看| 国产在线观看jvid| 视频区图区小说| 黄网站色视频无遮挡免费观看| 中文字幕人妻丝袜制服| 久久综合国产亚洲精品| avwww免费| 久久这里只有精品19| 国产无遮挡羞羞视频在线观看| 高清黄色对白视频在线免费看| 精品国产国语对白av| 成年人免费黄色播放视频| √禁漫天堂资源中文www| 无遮挡黄片免费观看| 免费在线观看黄色视频的| 欧美精品亚洲一区二区| 免费观看人在逋| 高清不卡的av网站| 久久久欧美国产精品| 久久久久国产一级毛片高清牌| 成年av动漫网址| 欧美成狂野欧美在线观看| 丝袜脚勾引网站| 国产有黄有色有爽视频| 中文字幕av电影在线播放| a级片在线免费高清观看视频| 成人三级做爰电影| 日本五十路高清| 中文字幕人妻熟女乱码| 欧美成人午夜精品| 亚洲黑人精品在线| 中文字幕精品免费在线观看视频| 十八禁网站网址无遮挡| 午夜久久久在线观看| 国产精品一二三区在线看| 亚洲av日韩精品久久久久久密 | 我要看黄色一级片免费的| 90打野战视频偷拍视频| 91精品伊人久久大香线蕉| 99re6热这里在线精品视频| 久久午夜综合久久蜜桃| 亚洲精品久久成人aⅴ小说| 777米奇影视久久| 丝袜喷水一区| 成人国语在线视频| 精品人妻一区二区三区麻豆| 又大又黄又爽视频免费| 999精品在线视频| 久9热在线精品视频| 热re99久久精品国产66热6| 青草久久国产| 久久久久国产精品人妻一区二区| 一级片免费观看大全| 欧美日韩av久久| 大话2 男鬼变身卡| 美国免费a级毛片| 成人亚洲欧美一区二区av| 中文字幕av电影在线播放| 久久精品国产亚洲av涩爱| 久久人人爽av亚洲精品天堂| 久久天堂一区二区三区四区| www.熟女人妻精品国产| 尾随美女入室| 激情五月婷婷亚洲| 欧美变态另类bdsm刘玥| 高清av免费在线| 天天影视国产精品| 国产成人欧美在线观看 | 免费在线观看影片大全网站 | 亚洲国产中文字幕在线视频| 欧美在线黄色| 成年女人毛片免费观看观看9 | 色播在线永久视频| 日韩熟女老妇一区二区性免费视频| 啦啦啦中文免费视频观看日本| 在线天堂中文资源库| 丁香六月欧美| 色94色欧美一区二区| 精品高清国产在线一区| 在线精品无人区一区二区三| 色视频在线一区二区三区| 亚洲,欧美,日韩| xxxhd国产人妻xxx| 看免费成人av毛片| 啦啦啦中文免费视频观看日本| 捣出白浆h1v1| 亚洲 欧美一区二区三区| 国产在线视频一区二区| 亚洲精品久久午夜乱码| 国产日韩欧美视频二区| 交换朋友夫妻互换小说| 日韩 亚洲 欧美在线| 这个男人来自地球电影免费观看| 亚洲专区国产一区二区| 日韩大码丰满熟妇| 热re99久久精品国产66热6| 国产精品一国产av| 在线亚洲精品国产二区图片欧美| 人人妻人人澡人人看| 国产深夜福利视频在线观看| 国产麻豆69| 久久久国产欧美日韩av| 婷婷丁香在线五月| 赤兔流量卡办理| 校园人妻丝袜中文字幕| 五月开心婷婷网| 亚洲成人手机| 黄频高清免费视频| 亚洲午夜精品一区,二区,三区|