• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      PM2.5對(duì)人肺癌細(xì)胞A549遷移、侵襲能力的增強(qiáng)作用

      2018-01-29 09:11:12楊丹周偉強(qiáng)楊彪肖純凌
      生態(tài)毒理學(xué)報(bào) 2017年5期
      關(guān)鍵詞:細(xì)胞核肺癌通路

      楊丹,周偉強(qiáng),楊彪,肖純凌,*

      1. 沈陽(yáng)醫(yī)學(xué)院 藥理學(xué)教研室,沈陽(yáng) 110034 2. 沈陽(yáng)醫(yī)學(xué)院 遼寧省環(huán)境污染與微生態(tài)重點(diǎn)實(shí)驗(yàn)室,沈陽(yáng) 110034

      PM2.5是指空氣動(dòng)力學(xué)直徑≤2.5 μm的顆粒物,是構(gòu)成可吸入顆粒物的主要部分[1]。眾多流行病學(xué)調(diào)查均顯示PM2.5與包括肺癌在內(nèi)的呼吸系統(tǒng)疾病關(guān)系密切[2]。長(zhǎng)期的PM2.5暴露能明顯增加肺癌患者的死亡率,同時(shí)可致確診后的肺癌患者的生存期縮短,說明PM2.5能夠促進(jìn)肺癌的進(jìn)展[3-4]。肺癌的進(jìn)展與其轉(zhuǎn)移密切相關(guān),有研究表明:PM2.5可能通過促進(jìn)腫瘤新生血管形成、誘發(fā)炎癥反應(yīng)等促進(jìn)肺癌轉(zhuǎn)移,但其促進(jìn)肺癌轉(zhuǎn)移的具體機(jī)制仍不清楚[5-7]。以往對(duì)于PM2.5致呼吸系統(tǒng)損傷的分子機(jī)制的研究多集中于以較高濃度PM2.5所致的細(xì)胞損傷作用,而關(guān)于PM2.5對(duì)腫瘤細(xì)胞遷移及侵襲能力影響的實(shí)驗(yàn)研究仍較少,因此有必要進(jìn)行更多及更深入的研究[8-11]。

      本研究采用細(xì)胞劃痕實(shí)驗(yàn)和transwell小室法檢測(cè)PM2.5對(duì)人肺癌細(xì)胞A549遷移、侵襲能力的影響,以期進(jìn)一步證實(shí)PM2.5具有促肺癌轉(zhuǎn)移的作用。同時(shí)本研究采用Western Blotting法檢測(cè)同細(xì)胞遷移、侵襲能力密切相關(guān)的Wnt/βcatenin通路活性及其下游cyclin D1、MMP-2、MMP-9和轉(zhuǎn)錄因子snail、slug蛋白表達(dá)水平的變化,分析該信號(hào)通路在PM2.5影響肺癌細(xì)胞A549遷移、侵襲能力中的作用,為今后深入研究PM2.5促肺癌轉(zhuǎn)移的機(jī)制提供實(shí)驗(yàn)依據(jù)。

      1 材料與方法(Materials and methods)

      1.1 細(xì)胞株和主要試劑

      人肺癌細(xì)胞A549購(gòu)自中國(guó)科學(xué)院上海細(xì)胞生物學(xué)研究所細(xì)胞庫(kù)。胰酶及RPMI 1640培養(yǎng)基(Gibco公司); Matrigel基質(zhì)膠(BD公司);transwell小室(Costar公司);snail和slug抗體(CST公司);MMP-2、MMP-9、β-catenin及cyclin D1抗體(Santa Cruz公司);細(xì)胞核蛋白抽提試劑盒(碧云天公司)。

      1.2 PM2. 5 采集和處理

      選擇遼寧省沈陽(yáng)市為采樣地區(qū),采樣地點(diǎn)為城市中心。霧霾天氣時(shí)運(yùn)用高流量樣品顆粒采集器采集PM2.5樣品于濾膜上,采樣高度為距離地面約1.5 m。連續(xù)自動(dòng)采樣6個(gè)月,以1.13 m3·min-1流速每48 小時(shí)采集1份。采樣后的濾膜用鋁箔紙包裹后于-20 ℃冰箱中保存。制備PM2.5懸液時(shí)將采樣后的濾膜剪成約1 cm ×1 cm大小,浸泡在50 mL去離子水中。超聲震蕩收集PM2.5顆粒物,用多層紗布過濾震蕩液后制成PM2.5懸液。收集PM2.5懸液在13 000×g、4 ℃ 的條件下離心10 min后的底層顆粒物,高壓滅菌后真空冷凍干燥,-80 ℃保存。染毒前用無(wú)菌生理鹽水配制成所需的PM2.5混懸液并超聲處理[12-13]。

      1.3 細(xì)胞培養(yǎng)及處理

      人肺癌A549細(xì)胞株用RPMI 1640培養(yǎng)基(含10%新生牛血清、1% L-谷氨酰胺及1%青鏈霉素)培養(yǎng)于37 ℃、5 %CO2細(xì)胞培養(yǎng)箱中,細(xì)胞長(zhǎng)滿約90%時(shí)傳代。取對(duì)數(shù)生長(zhǎng)期的A549細(xì)胞,接種于培養(yǎng)皿或培養(yǎng)板內(nèi),于37 ℃、5%CO2條件下培養(yǎng)24 h后更換不含血清及抗生素的RPMI 1640培養(yǎng)基。次日向培養(yǎng)基中加入不同濃度PM2.5或TGF-β1(10 ng·mL-1)后持續(xù)培養(yǎng)72 h。

      1.4 MTT 比色法檢測(cè)細(xì)胞增殖

      設(shè)立實(shí)驗(yàn)組(PM2.5終濃度為2.5、10、40和160 μg·mL-1)、對(duì)照組(只加細(xì)胞,不加PM2.5)和空白組(不加細(xì)胞,只加RPMI 1 640培養(yǎng)基及PM2.5)。體外培養(yǎng)72 h后,每孔加入20 μL MTT (終濃度5 g·L-1),37 ℃繼續(xù)孵育4 h,棄上清,每孔加入150 μL DMSO 振蕩10 min,用酶標(biāo)儀在490 nm處測(cè)定吸光度(A)值,實(shí)驗(yàn)重復(fù)3次。按公式計(jì)算:

      細(xì)胞生長(zhǎng)抑制率=(A處理組-A空白組)/(A對(duì)照組-A空白組)×100%

      1.5 細(xì)胞劃痕實(shí)驗(yàn)

      1.6 Transwell小室侵襲、遷移實(shí)驗(yàn)

      細(xì)胞分組同劃痕實(shí)驗(yàn)。侵襲實(shí)驗(yàn)取200 μL細(xì)胞懸液種于鋪好Matrigel膠的Transwell上室中,下室加入600 μL含10%血清的培養(yǎng)基,于37 ℃、5% CO2細(xì)胞培養(yǎng)箱中孵育24 h,移出transwell小室,棉簽擦去上室的非遷移細(xì)胞,4%甲醛固定30 min后用0.1%結(jié)晶紫染色15 min,沖洗干凈后倒置風(fēng)干。在倒置顯微鏡下觀察并拍照,每個(gè)小室隨機(jī)取6個(gè)視野拍照,計(jì)數(shù)穿膜細(xì)胞個(gè)數(shù)。細(xì)胞遷移試驗(yàn)不需要鋪Matrigel膠,其余操作同侵襲實(shí)驗(yàn)。

      1.7 胞核蛋白的抽提

      按照細(xì)胞核蛋白與細(xì)胞漿蛋白抽提試劑盒說明進(jìn)行。用PBS洗一遍,刮下細(xì)胞,每20 μL細(xì)胞沉淀加入200 μL細(xì)胞漿蛋白抽提試劑A。最高速劇烈渦旋5 s,冰浴10~15 min。加入細(xì)胞漿蛋白抽提試劑B 10 μL,最高速劇烈渦旋5 s,冰浴1 min,4 ℃、13 000×g離心5 min。收集沉淀,加入50 μL細(xì)胞核蛋白抽提試劑。最高速劇烈渦旋30 s,把細(xì)胞沉淀完全懸浮并分散開。然后放回冰浴中,每隔1~2 min再高速劇烈渦旋30 s,共30 min。4 ℃、13 000×g離心10 min,立即吸取上清,即為抽提得到的細(xì)胞核蛋白。

      1.8 Western Blotting

      收集細(xì)胞總蛋白,SDS - PAGE電泳后轉(zhuǎn)印到PVDF膜上,用含5%脫脂奶粉的封閉液常溫封閉1 h,加入一抗,4 ℃反應(yīng)過夜,再用辣根過氧化物酶標(biāo)記的二抗室溫下反應(yīng)0.5 h,化學(xué)發(fā)光法顯影;利用Image J 軟件對(duì)目的條帶進(jìn)行灰度值檢測(cè),以β-actin為內(nèi)參照分析蛋白相對(duì)表達(dá)量。

      1.9 統(tǒng)計(jì)學(xué)處理

      2 結(jié)果(Results)

      2.1 PM2.5對(duì)A549細(xì)胞增殖抑制作用

      PM2.5處理A549細(xì)胞72 h后采用MTT 法檢測(cè)各組吸光度,計(jì)算PM2.5對(duì)A549細(xì)胞的增殖抑制率。如圖1和表1所示,與對(duì)照組比較,2.5、10、40和160 μg·mL-1PM2.5組對(duì)A549細(xì)胞的增殖抑制率隨濃度升高而增加,分別為(3.08% ± 3.73%)、(10.37% ± 5.97%)、(34.00% ± 6.39%) 和(51.01% ± 8.37%)。 選取對(duì)A549細(xì)胞增殖抑制作用較弱的2個(gè)濃度(2.5 μg·mL-1和10 μg·mL-1)進(jìn)行后續(xù)實(shí)驗(yàn)。

      圖1 PM2.5對(duì)A549細(xì)胞的生長(zhǎng)抑制作用Fig. 1 Inhibition of PM2.5 on growth of A549

      表1 PM2.5對(duì)A549細(xì)胞的生長(zhǎng)抑制作用Table 1 Inhibition of PM2.5 on growth of A549

      注:與對(duì)照組比較,*為P<0.05。

      Note: compared with control group,*P<0.05.

      圖2 PM2.5促進(jìn)A549細(xì)胞的遷移和侵襲注: A為細(xì)胞劃痕實(shí)驗(yàn)檢測(cè)A549細(xì)胞遷移能力(×50);2B為Transwell法檢測(cè)A549細(xì)胞遷移能力(a~d)和侵襲能力(e~h)(×200) 。Fig. 2 PM2.5 promotes migration and invasion of A549 cellsNote: A showed the migration ability of A549 cells detected by wound healing assay (×50); B showed the migration ability (a-d) and invasion ability (e-h) of A549 cells detected by transwell assay (×200).

      圖3 Western Blotting 法檢測(cè)PM2.5 處理72 h后細(xì)胞核內(nèi)β-catenin蛋白表達(dá)的變化注:與對(duì)照組比較,*為 P<0.05。Fig. 3 The expression levels of β-catenin proteins after exposure to PM2.5 for 72 h were analyzed by Western BlottingNote: compared with control group, *P<0.05.

      2.2 PM2.5可增強(qiáng)A549細(xì)胞的遷移、侵襲能力

      劃痕實(shí)驗(yàn)結(jié)果如圖2A和表2所示:劃痕后24 h,對(duì)照組創(chuàng)面愈合率為(31.97%±1.80%)、2.5 μg·mL-1和10 μg·mL-1PM2.5組創(chuàng)面愈合率分別為(37.59%±3.08%)和(46.34%±5.19%)。與對(duì)照組相比,10 μg·mL-1PM2.5組A549細(xì)胞的創(chuàng)面愈合率明顯增加(P<0.05)。Transwell小室法遷移和侵襲實(shí)驗(yàn)結(jié)果如圖2B和表2 所示:對(duì)照組、2.5 μg·mL-1和10 μg·mL-1PM2.5組中穿過基膜的細(xì)胞數(shù)分別為(118.67 ± 4.5) 個(gè)和(32.33 ±2.73) 個(gè),(122.50 ± 6.53) 個(gè)和(35.5 ± 5.17) 個(gè),(165.67 ± 6.62) 個(gè)和(47.83 ± 2.04) 個(gè)。與對(duì)照組相比,10 μg·mL-1PM2.5組小室濾膜下表面的細(xì)胞個(gè)數(shù)明顯增多(P<0.05)。上述結(jié)果表明10 μg·mL-1PM2.5可使A549細(xì)胞的遷移、侵襲能力增高。

      2.3 PM2.5增強(qiáng)A549細(xì)胞Wnt/β-catenin信號(hào)通路活性

      表2 PM2.5促進(jìn)A549細(xì)胞的遷移和侵襲Table 2 PM2.5 promotes migration and invasion of A549 cells

      注:與對(duì)照組比較,*為P<0.05。

      Note: compared with control group,*P<0.05.

      PM2.5處理A549細(xì)胞后,Western Blotting 法檢測(cè)細(xì)胞核內(nèi)β-catenin蛋白表達(dá)的變化。結(jié)果如圖3和表3所示:給予A549細(xì)胞2.5 μg·mL-1和10 μg·mL-1的PM2.5處理72 h后,與對(duì)照組相比,10 μg·mL-1PM2.5組細(xì)胞核內(nèi)β-catenin蛋白表達(dá)水平明顯增高(P<0.05)。

      2.4 PM2.5上調(diào)A549細(xì)胞中cyclin D1、snail、slug、MMP-2 和MMP-9的蛋白表達(dá)

      PM2.5處理A549細(xì)胞后,Western Blotting 法檢測(cè)細(xì)胞內(nèi)cyclin D1、snail、slug、MMP-2 和MMP-9蛋白表達(dá)的變化。結(jié)果如圖4和表4所示:給予A549細(xì)胞2.5 μg·mL-1和10 μg·mL-1的PM2.5處理72 h后,與對(duì)照組相比,10 μg·mL-1PM2.5組細(xì)胞內(nèi)cyclin D1、snail、slug、MMP-2 和MMP-9的蛋白表達(dá)明顯增高(P<0.05)。

      3 討論(Discussion)

      表3 PM2.5對(duì)肺癌A549細(xì)胞核內(nèi)β-catenin蛋白相對(duì)表達(dá)的影響Table 3 The effect of PM2.5 on the expression of β-catenin protein in A549 cells nucleus (±s,n=6)

      注:與對(duì)照組比較,*為P<0.05。

      Note: compared with control group,*P<0.05.

      圖4 Western Blotting 法檢測(cè)加入PM2.5 72 h后細(xì)胞內(nèi)cyclin D1、snail、slug、MMP-2 和MMP-9蛋白表達(dá)的變化注:與對(duì)照組比較,*為 P<0.05。Fig. 4 The expression levels of cyclin D1, snail, slug, MMP-2 and MMP-9 proteins after treated with PM2.5 for 72 h were analyzed by Western BlottingNote: compared with control group, *P<0.05.

      注:與對(duì)照組比較,*為P<0.05。

      Note: compared with control group,*P<0.05.

      腫瘤細(xì)胞的轉(zhuǎn)移是肺癌患者復(fù)發(fā)以及治療失敗的重要原因。以往關(guān)于PM2.5對(duì)肺癌影響的研究多集中其致癌細(xì)胞損傷或者死亡的作用方面[10, 14-16],而關(guān)于PM2.5是否可促進(jìn)肺癌的早期轉(zhuǎn)移的研究尚少見報(bào)道。本研究通過transwell遷移、侵襲實(shí)驗(yàn)和細(xì)胞劃痕實(shí)驗(yàn)檢測(cè)PM2.5對(duì)肺癌A549細(xì)胞遷移、侵襲能力的影響,結(jié)果顯示在無(wú)血清條件下較低濃度(10 μg·mL-1)的PM2.5作用72 h即可明顯增強(qiáng)肺癌細(xì)胞遷移、侵襲能力,說明PM2.5可能具有促進(jìn)肺癌的早期轉(zhuǎn)移的作用。

      腫瘤細(xì)胞的轉(zhuǎn)移過程非常復(fù)雜,涉及多條信號(hào)通路、轉(zhuǎn)錄因子及酶的活化。Wnt/β-catenin信號(hào)傳導(dǎo)通路在腫瘤細(xì)胞轉(zhuǎn)移過程中起著重要作用,該通路激活時(shí),過量的β-catenin從胞質(zhì)中轉(zhuǎn)移入細(xì)胞核,在核內(nèi)與轉(zhuǎn)錄因子T細(xì)胞因子/淋巴增強(qiáng)因子(T cell factor, TCF/lymphoid enhancer factor, LEF)相互作用,激活下游大量具有促進(jìn)腫瘤細(xì)胞轉(zhuǎn)移功能的基因轉(zhuǎn)錄,如基質(zhì)金屬蛋白酶、cyclin D1、slug、snail等,進(jìn)而增強(qiáng)腫瘤細(xì)胞轉(zhuǎn)移能力[17-20]。本研究通過檢測(cè)細(xì)胞核內(nèi)β-catenin的表達(dá)水平證明在無(wú)血清條件下較低濃度的PM2.5(10 μg·mL-1)作用72 h即可明顯激活肺癌A549細(xì)胞Wnt/β-catenin信號(hào)通路。

      基質(zhì)金屬蛋白酶家族是降解細(xì)胞外基質(zhì)的重要酶類。腫瘤細(xì)胞周圍細(xì)胞外基質(zhì)的降解是腫瘤侵襲和轉(zhuǎn)移的必要條件,因此金屬蛋白酶家族在腫瘤細(xì)胞遷移和侵襲過程中發(fā)揮重要作用。多種腫瘤(包括非小細(xì)胞肺癌)中均可見金屬蛋白酶家族過表達(dá)?;|(zhì)金屬蛋白酶-2和基質(zhì)金屬蛋白酶-9是基質(zhì)金屬蛋白酶家族內(nèi)的重要成員,同屬于IV型明膠酶,主要降解細(xì)胞間基質(zhì)及基底膜主要成分IV型膠原,促進(jìn)腫瘤細(xì)胞侵襲和擴(kuò)散,因此其在腫瘤轉(zhuǎn)移過程中具有重要作用[20-21]。研究表明:Wnt/β-catenin信號(hào)通路的激活能夠使MMP-2和MMP-9的表達(dá)水平增高[18]。如Dong等[22]的研究表明:電離輻射可通過激活Wnt/β-catenin信號(hào)通路使其下游包括MMP-2和MMP-9在內(nèi)的多種基因表達(dá)上調(diào),增強(qiáng)膠質(zhì)瘤細(xì)胞U87侵襲能力。本研究中Western Blotting實(shí)驗(yàn)結(jié)果表明:在無(wú)血清條件下較低濃度(10 μg·mL-1)的PM2.5作用72 h即可使MMP-2和MMP-9蛋白表達(dá)水平的上調(diào),說明PM2.5增強(qiáng)肺癌A549細(xì)胞遷移、侵襲能力作用與其激活Wnt/β-catenin信號(hào)通路并通過上調(diào)其下游MMP-2和MMP-9蛋白表達(dá)相關(guān)。

      cyclin D1是細(xì)胞周期蛋白家族的一個(gè)成員,在調(diào)控細(xì)胞周期進(jìn)展過程中發(fā)揮重要作用,此外cyclin D1還是一個(gè)癌基因,在多種腫瘤包括肺癌中呈高表達(dá)[23-24]。越來(lái)越多的研究表明,cyclin D1與腫瘤的轉(zhuǎn)移關(guān)系密切[25]。如Li等[26]的報(bào)道稱,cyclin D1通過抑制ROCK信號(hào)和轉(zhuǎn)移抑制因子TSP-1而增強(qiáng)細(xì)胞的運(yùn)動(dòng)能力。此外,細(xì)胞周期蛋白D1提高M(jìn)MPs的表達(dá)和活性,從而提高侵襲性。如Arato-Ohshima等[27]的研究表明cyclin D1蛋白的過度表達(dá)可增加MMP-2和MMP-9的活性并增強(qiáng)腦膠質(zhì)瘤細(xì)胞的侵襲性。

      鋅指蛋白轉(zhuǎn)錄因子snail超家族包括snail(snail 1)和slug (snail 2)2個(gè)成員,二者作為轉(zhuǎn)錄因子,調(diào)控某些基因的表達(dá),如下調(diào)細(xì)胞間的緊密連接成分如ZO-1及上調(diào)腫瘤細(xì)胞的金屬蛋白酶類的表達(dá),這些均有助于增加細(xì)胞的遷徙轉(zhuǎn)移力,尤其常見于各種腫瘤的癌性細(xì)胞向遠(yuǎn)處轉(zhuǎn)移機(jī)制中[28-32]。如Wang等[33]的研究表明:snail促進(jìn)MMP-9表達(dá),并且二者均與甲狀腺乳頭狀癌的淋巴結(jié)轉(zhuǎn)移有關(guān)。Li等[34]報(bào)道snail介導(dǎo)的MMP-2上調(diào)與細(xì)胞侵襲性增強(qiáng)有關(guān)。Qiao等[35]關(guān)于口腔鱗狀細(xì)胞癌的研究證明:snail通過上調(diào)MMP-2和MMP-9促進(jìn)細(xì)胞發(fā)生上皮間質(zhì)轉(zhuǎn)化,轉(zhuǎn)移能力增強(qiáng)。Bolos等[36]和Chandler[37]研究發(fā)現(xiàn),slug通過調(diào)控靶基因MMP-2影響細(xì)胞Ⅳ型膠原和明膠的降解,進(jìn)而參與腫瘤細(xì)胞的侵襲與轉(zhuǎn)移。Qiao等[35]和Yue等[38]報(bào)道slug能夠上調(diào)MMP-9的表達(dá)。Wnt/β-catenin信號(hào)轉(zhuǎn)導(dǎo)途徑可調(diào)控snail和slug表達(dá)水平,當(dāng)Wnt信號(hào)被激活,穩(wěn)定的β-catenin進(jìn)入細(xì)胞核內(nèi)與TCF/LEF相互作用,形成的復(fù)合物可使snail和slug轉(zhuǎn)錄,核內(nèi)水平增加[39]。

      本研究中較低濃度的PM2.5(10 μg·mL-1)作用72 h即可明顯上調(diào)cyclin D1、snail和slug的蛋白表達(dá)水平,說明Wnt/β-catenin信號(hào)通路激活同時(shí)上調(diào)了某些其下游蛋白的表達(dá),而這些蛋白的高表達(dá)又可進(jìn)一步上調(diào)MMP-2和MMP-9的表達(dá),促進(jìn)腫瘤細(xì)胞的轉(zhuǎn)移和侵襲。

      綜上所述,本研究發(fā)現(xiàn)將人肺癌A549細(xì)胞在無(wú)血清條件下暴露于較低濃度的PM2.5(10 μg·mL-1)72 h,能夠使細(xì)胞的侵襲、轉(zhuǎn)移能力增強(qiáng),此作用與PM2.5活化Wnt/β-catenin信號(hào)傳導(dǎo)通路,上調(diào)細(xì)胞cyclin D1、MMP-2、MMP-9及轉(zhuǎn)錄因子snail和slug的蛋白表達(dá)水平有關(guān)。

      [1] 李娟, 楊維超, 洪麗娟, 等. PM2.5對(duì)BEAS-2B細(xì)胞脂質(zhì)過氧化損傷作用[J]. 中國(guó)公共衛(wèi)生, 2014, 30(11): 1389-1391

      Li J, Yang W C, Hong L J, et al. Lipid peroxidation induced by PM2.5in human bronchial epithelial cells[J]. Chinese Journal of Public Health, 2014, 30(11): 1389-1391 (in Chinese)

      [2] Kim J Y, Lee E Y, Choi I, et al. Effects of the particulate matter 2.5 (PM2.5) on lipoprotein metabolism, uptake and degradation, and embryo toxicity [J]. Molecules and Cells, 2015, 38(12): 1096-1104

      [3] Eckel S P, Cockburn M, Shu Y H, et al. Air pollution affects lung cancer survival [J]. Thorax, 2016, 71(10): 891-898

      [4] Xu X, Ha S, Kan H, et al. Health effects of air pollution on length of respiratory cancer survival [J]. BMC Public Health, 2013, 13: 800

      [5] Yue H, Yun Y, Gao R, et al. Winter polycyclic aromatic hydrocarbon-bound particulate matter from peri-urban north China promotes lung cancer cell metastasis [J]. Environmental Science and Technology, 2015, 49(24): 14484-14493

      [6] Li X, Lv Y, Gao N, et al. microRNA-802/Rnd3 pathway imposes on carcinogenesis and metastasis of fine particulate matter exposure [J]. Oncotarget, 2016, 7(23): 35026-35043

      [7] 孟梅, 周泉生. PM2.5引起的腫瘤新生血管形成和轉(zhuǎn)移的研究進(jìn)展[J]. 科技導(dǎo)報(bào), 2014, 32(26): 52-57

      Meng M, Zhou Q S. Progress in PM2.5-caused tumor neovascularization and metastasis [J]. Science Technology Review, 2014, 32(26): 52-57 (in Chinese)

      [8] Xing Y F, Xu Y H, Shi M H, et al. The impact of PM2.5on the human respiratory system [J]. Journal of Thoracic Disease, 2016, 8(1): E69-E74

      [9] Zhou W, Tian D, He J, et al. Repeated PM2.5exposure inhibits BEAS-2B cell P53 expression through ROS-Akt-DNMT3B pathway-mediated promoter hypermethylation[J]. Oncotarget, 2016, 7(15): 20691-20703

      [10] Deng X, Zhang F, Rui W, et al. PM2.5-induced oxidative stress triggers autophagy in human lung epithelial A549 cells [J]. ToxicologyInVitro, 2013, 27(6): 1762-1770

      [11] Vattanasit U, Navasumrit P, Khadka M B, et al. Oxidative DNA damage and inflammatory responses in cultured human cells and in humans exposed to traffic-related particles [J]. International Journal of Hygiene and Environmental Health, 2014, 217(1): 23-33

      [12] 牛佳玉, 肖純凌, 陳冬梅, 等. PM2.5對(duì)高血壓(SHR/NCrl)大鼠呼吸道菌群的影響[J]. 衛(wèi)生研究, 2016, 45(4): 648-652

      Niu J Y, Xiao C L, Chen D M, et al. Effect of PM2.5on respiratory tract flora in SHR/NCrl rats [J]. Journal of Hygiene Research, 2016, 45(4): 648-652 (in Chinese)

      [13] 楊彪, 李新鳴, 嚴(yán)思遠(yuǎn), 等. PM2.5暴露對(duì)鴉膽子油乳治療荷瘤肺癌小鼠腹腔巨噬細(xì)胞的作用[J]. 中國(guó)當(dāng)代醫(yī)藥, 2016, 23(6): 15-21

      Yang B, Li X M, Yan S Y, et al. Effect of PM2.5exposure for peritoneal macrophages of tumor-bearing mice with lung cancer treated by bruceolic oil emulsion[J]. China Modern Medicine, 2016, 23(6): 15-21 (in Chinese)

      [14] Zou Y, Jin C, Su Y, et al. Water soluble and insoluble components of urban PM2.5and their cytotoxic effects on epithelial cells (A549)invitro[J]. Environmental Pollution, 2016, 212: 627-635

      [15] Wang H, Guo Y, Liu L, et al. DDAH1 plays dual roles in PM2.5induced cell death in A549 cells[J]. Biochimica Biophysica Acta, 2016, 1860(12): 2793-2801

      [16] Li X, Ding Z, Zhang C, et al. MicroRNA-1228(*) inhibit apoptosis in A549 cells exposed to fine particulate matter[J]. Environmental Science and Pollution Research, 2016 , 23(10): 10103-10113

      [17] Ben-Josef E, George A, Regine W F, et al. Glycogen synthase kinase 3 beta predicts survival in resected adenocarcinoma of the pancreas[J]. Clinical Cancer Research, 2015, 21(24): 5612-5618

      [18] Park B B, Yoon J, Kim E, et al. Inhibitory effects of eupatilin on tumor invasion of human gastric cancer MKN-1 cells [J]. Tumor Biology, 2013, 34(2): 875-885

      [19] 楊丹, 王麗, 李珠, 等. 棉酚通過Akt/β-catenin通路抑制胃癌細(xì)胞遷移[J].中國(guó)藥理學(xué)通報(bào), 2015, 31(6): 860-864

      Yang D, Wang L, Li Z, et al. Inhibitory effect of gossypol on migration of gastric carcinoma cell lines through Akt /β-catenin passway[J]. Chinese Pharmacological Bulletin, 2015, 31(6): 860-864 (in Chinese)

      [20] Pei S, Yang X, Wang H, et al. Plantamajoside, a potential anti-tumor herbal medicine inhibits breast cancer growth and pulmonary metastasis by decreasing the activity of matrix metalloproteinase-9 and -2 [J]. BMC Cancer, 2015, 15: 965

      [21] Lu X, Duan L, Xie H, et al. Evaluation of MMP-9 and MMP-2 and their suppressor TIMP-1 and TIMP-2 in adenocarcinoma of esophagogastric junction[J]. Journal of Oncotargets and Therapy, 2016, 9: 4343-4349

      [22] Dong Z, Zhou L, Han N, et al. Wnt/β-catenin pathway involvement in ionizing radiation-induced invasion of U87 glioblastoma cells[J]. Strahlentherapie und Onkologie, 2015, 191(8): 672-680

      [23] Hwang S J, Lee H W, Kim H R, et al. Overexpression of microRNA-95-3p suppresses brain metastasis of lung adenocarcinoma through downregulation of cyclin D1 [J]. Oncotarget, 2015, 6(24): 20434-20448

      [24] Gautschi O, Ratschiller D, Gugger M, et al. Cyclin D1 in non-small cell lung cancer: A key driver of malignant transformation [J]. Lung Cancer, 2007, 55: 1-14

      [25] DrobnJak M, Osman I, Scher H I, et al. Overexpression of cyclin D1 is associated with metastatic prostate cancer to bone [J]. Clinical Cancer Research, 2000, 6: 1891-1895

      [26] Li Z, Wang C, Jiao X, et al. Cyclin D1 regulates cellular migration through the inhibition of thrombospondin 1 and ROCK signaling [J]. Molecular and Cellular Biology, 2006, 26: 4240-4256

      [27] Arato-Ohshima T, Sawa H. Over-expression of cyclin D1 induces glioma invasion by increasing matrix metalloproteinase activity and cell motility[J]. International Journal of Cancer, 1999, 83: 387-392

      [28] Miyoshi A. Snail accelerates cancer invasion by upregulating MMP expression and is associated with poor prognosis of hepatocelllar carcinoma [J]. British Journal of Cancer, 2005, 92(2): 252-258

      [29] Li D, Sun H, Sun W J, et al. Role of RbBP5 and H3K4me3 in the vicinity of snail transcription start site during epithelial- mesenchymal- transition in prostate cancer cell [J]. Oncotarget, 2016, 7(40): 65553-65567

      [30] Ito K, Park S H, Nayak A, et al. PTK6 inhibition suppresses metastases of triple-negative breast cancer via Snail-dependent E-cadherin regulation [J]. Cancer Research, 2016, 76(15): 4406-4417

      [31] Yin S, Wang P, Yang L, et al. Wip1 suppresses ovarian cancer metastasis through the ATM/AKT/Snail mediated signaling [J]. Oncotarget, 2016, 7(20): 29359-29370

      [32] Zhang J, Liu Y, Zhang J, et al. FOXQ1 promotes gastric cancer metastasis through upregulation of snail [J]. Oncology Reports, 2016, 35(6): 3607-3613

      [33] Wang N, Jiang R, Yang J Y, et al. Expression of TGF-β1, SNAI1 and MMP-9 is associated with lymph node metastasis in papillary thyroid carcinoma [J]. Journal of Molecular Histology, 2014, 45(4): 391-399

      [34] Li Y, Klausen C, Zhu H, et al. Activin A increases human trophoblast invasion by inducing Snail-mediated MMP2 up-regulation through ALK4 [J]. The Journal of Clinical Endocrinology and Metabolism, 2015, 100(11): E1415-E1427

      [35] Qiao B, Johnson NW, Gao J. Epithelial-mesenchymal transition in oral squamous cell carcinoma triggered by transforming growth factor-beta1 is Snail family-dependent and correlates with matrix metalloproteinase-2 and -9 expressions[J]. International Journal of Oncology, 2010, 37(3): 663-668

      [36] Bolos V, Peinado H, Pérez-Moreno M A, et al. The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: A comparison with Snail and E47 repressors [J]. Journal of Cell Science, 2003, 116 (Pt3): 499-511

      [37] Chandler H L, Kusewitt D F, Colitz C M. Modulation of matrix metalloproteinases by ultraviolet radiation in the canine cornea [J]. Veterinary Ophthalmology, 2008, 11(3): 135-144

      [38] Yue B, Ren Q X, Su T, et al. ERK5 silencing inhibits invasion of human osteosarcoma cell via modulating the Slug/MMP-9 pathway [J]. European Review for Medical Pharmacological Sciences, 2014, 18(18): 2640-2647

      [39] 劉錦華, 唐旭東. Slug的分子調(diào)控機(jī)制[J]. 生命的化學(xué), 2013, 33(5): 554-562

      Liu J H, Tang X D. Molecular mechanisms of regulation of Slug [J]. Chemistry of Life, 2013, 33(5): 554-562 (in Chinese)

      猜你喜歡
      細(xì)胞核肺癌通路
      中醫(yī)防治肺癌術(shù)后并發(fā)癥
      對(duì)比增強(qiáng)磁敏感加權(quán)成像對(duì)肺癌腦轉(zhuǎn)移瘤檢出的研究
      野生鹿科動(dòng)物染色體研究進(jìn)展報(bào)告
      植物增殖細(xì)胞核抗原的結(jié)構(gòu)與功能
      中藥提取物對(duì)鈣調(diào)磷酸酶-活化T細(xì)胞核因子通路的抑制作用
      Kisspeptin/GPR54信號(hào)通路促使性早熟形成的作用觀察
      microRNA-205在人非小細(xì)胞肺癌中的表達(dá)及臨床意義
      proBDNF-p75NTR通路抑制C6細(xì)胞增殖
      基于肺癌CT的決策樹模型在肺癌診斷中的應(yīng)用
      通路快建林翰:對(duì)重模式應(yīng)有再認(rèn)識(shí)
      汉沽区| 古丈县| 资阳市| 宁波市| 榆树市| 砀山县| 咸丰县| 凤台县| 林口县| 龙门县| 九江县| 苏尼特右旗| 长岛县| 寿宁县| 河西区| 措美县| 柘荣县| 三江| 金门县| 澎湖县| 天全县| 常州市| 兴文县| 朝阳县| 资源县| 定襄县| 博兴县| 辽宁省| 梁河县| 永春县| 会理县| 海晏县| 如皋市| 驻马店市| 长武县| 搜索| 拉萨市| 彰化市| 积石山| 新乐市| 五寨县|