• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    GLOBAL STABILITY ANALYSIS FOR THE SINGLE-SPECIES ECOLOGICAL MODEL WITH THE DISPERSAL AND DISCONTINUOUS CONTROL TERM BASED ON THE THRESHOLD POLICY

    2018-01-29 03:11:42GAOYang
    數(shù)學雜志 2018年1期

    GAO Yang

    (Teacher Education College,Daqing Normal University,Daqing 163712,China)

    1 Introduction

    The study on the patch models became one central issue of concerns in the literature of ecology systems(see[1–5]),since it is an interesting problem to consider how the dispersal or migration of the species influences the global dynamics of the interacting ecological system.

    Since the systems of discrete patchy models are usually high-dimensional,it is rather a challenge to study the uniqueness and stability of the positive equilibrium for patchy models from the mathematical aspect.The availably global dynamics criteria in the literatures mainly focus on the special case of two-patch(see[2])or the permanence and existence of periodic solutions(see[3–6]).

    Recently,Li and Shuai(see[6])considered the following system that described growth and dispersal of a single species amongnpatches(n≥2),herexi∈R+represents population density of the species on patchi.fi∈C1(R+,R)represents the density dependent growth rate on patchi.Constantdij≥0 is the dispersal rate from patchjtoi,and constantαij≥0 can be selected to represent different boundary condition.

    In[6],the authors studied the global stability of the coexistence equilibrium of system(1.1)by considering it as a couplednsub-models on networks.A systematic approach to construct global Lyapunov functions for large-scale coupled systems was developed.Li and Shuai obtained the following sharp result for system(1.1).

    Proposition 1(see[6,Theorem 5.1])Assume that the following assumptions hold.

    (1)(dij)n×nis irreducible.

    (3)System(1.1)is uniformly persistent.

    (4)Solutions of system(1.1)are uniformly ultimately bounded.

    Then system(1.1)has a positive equilibriumE?∈Rn+which possesses globally asymptotical stability.

    Although well-improved results were obtained in the above work on the single-species model with the dispersal,the model is not well studied when the discontinuous control is considered.In this paper,we will use a so-called threshold policy(TP)to control the single-species system.

    In the context of fishing management,Collie and Spencer(see[8])introduced a so-called threshold policy(TP),which was intermediate between the well-known constant escapement and constant harvest rate policies.A TP is defined as follows:if estimated species abundance is below a previously chosen threshold level,harvesting is suppressed;above the threshold,harvesting is applied.TP is also an alternative strategy used in systems such as terrestrial harvesting(see[11]),grazing(see[12])and control of aquatic vegetation(see[13])etc.

    A lot of researchers were interested in the threshold policy in the recent years(see[14–20,38–41]).In 2000(see[14]),authors analyzed the dynamics of two predator-prey models(Lotka-Volterra and Leslie-Gower)via the weighted escapement policy.In 2005(see[15]),stability of predator-prey models with TP was studied by using the idea of backstepping and control Lyapunov functions(CLF).In 2010(see[16]),the concept of virtual equilibria was used to design three different kinds of threshold policies.In 2011(see[17]),yield and related economic items generated by a TP were studied.In 2012(see[18]),a specific management strategy was proposed in order to control pests.In 2013(see[19]),a specific threshold policy was designed in order to control plant diseases and eventually maintain the number of infected plants below an economic threshold.In 2014(see[20]),a Filippov epidemic model with media coverage was proposed to describe the real characteristics of media/psychological impact in spread of the infectious disease.Mathematical bifurcation analyses with regard to the local,global stability of equilibria and local sliding bifurcations were performed.

    In this paper,the single-species ecological system with the dispersal amongnpatches is studied.The specific TP is designed to control the increasing of the single species on patchk.

    In this part,we will generalize model(1.1)into the new model(1.2).

    First of all,the assumptions of model(1.2)are listed as follows.

    (1)xi∈R+represents population density of the species on patchi.

    (2)fi∈C1(R+,R)represents the density dependent growth rate on patchi.

    (3)Constantdij≥0 is the dispersal rate from patchjtoi,and constantαij≥0 can be selected to represent different boundary condition.

    (4)θk>0 represents the roguing proportional of the species on patchk.

    Second,the control aim is listed as follows.

    The Control Aim Through controlling the population density ofkth patch less thanETvia the TP

    the number of species on each patch will be eventually stable at some corresponding positive value.

    Therefore,the following single-species ecological model with the dispersal and discontinuous control term is constructed,

    The network method was applied widely in recently years(see[22–30,35–37]).In this paper,we interpret system(1.2)as a coupled system on a network.Using the method of Li and Shuai[6]and Filippov system theory,we prove positive equilibrium’s existence theorems and global stability theorems.

    A mathematical description of a network is a directed graph consisting of vertices and directed arcs connecting them.At each vertex,the local dynamics are given by a system of differential equations called the vertex system.The directed arcs indicate inter-connections and interactions among vertex systems.

    A digraphGwithnvertices for system(1.2)can be constructed as follows.Each vertex represents a patch and(j,i)∈E(G)if and only ifdij>0,hereE(G)denotes the set of arcs(i,j)leading from inial vertexito terminal vertexj.At each vertex ofG,the vertex dynamics are described by a system

    The coupling among system(1.2)is provided by dispersal of species among patches.The dispersal networkGis strongly connected if and only if the dispersal matrix(dij)n×nis irreducible.

    From the ecology viewpoint,when the population density of the species on patchkexceedsET,then the control is implemented to reduce the population density of the species on patchk.While,when the population density of the species on patchkis less thanET,it is not necessary to implement control.

    Remark 1 The term ofθkxkcomes from Zhao(see[19]).

    On one hand,the value of the roguing rateθkis dependent on the number of available workers.

    On the other hand,such a roguing term is reasonable in mathematics.

    Remark 2 It is natural and reasonable to adopt the threshold policy in order to control the population density of the species on some patch.Besides,the control cost is reasonable.

    Our contribution is listed as follows.

    (1)Existence conditions of positive equilibria for system(1.2)are obtained by the uniform persistence theory and Filippov theory.

    (2)Suffcient conditions that the positive coexistence equilibrium of the coupling model is unique and globally asymptotically stable are derived by using the method of constructing Lyapunov functions based on graph-theoretical approach for coupled systems.

    This paper is organized as follows.We introduce preliminary results on graph theory based on coupled network models in Section 2.In Section 3,we obtain main results.Finally,the conclusions and outlooks are drawn in Section 4.

    2 Preliminaries

    In this section,we will list some definitions and theorems which will be used in the later sections.

    A directed graph or digraphG=(V,E)contains a setV={1,2,···,n}of vertices and a setEof arcs(i,j)leading from initial vertexito terminal vertexj.A subgraphHofGis said to be spanning ifHandGhave the same vertex set.A digraphGis weighted if each arc(j,i)is assigned a positive weight.aij>0 if and only if there exists an arc from vertexjtoiinG.

    The weightw(H)of a subgraphHis the product of the weights on all its arcs.A directed pathPinGis a subgraph with distinct verticesi1,i2,···,imsuch that its set of arcs is{(ik,ik+1):k=1,2,···,m}.Ifim=i1,we callPa directed cycle.

    A connected subgraphTis a tree if it contains no cycles,directed or undirected.

    A treeTis rooted at vertexi,called the root,ifiis not a terminal vertex of any arcs,and each of the remaining vertices is a terminal vertex of exactly one arc.A subgraphQis unicyclic if it is a disjoint union of rooted trees whose roots form a directed cycle.

    Given a weighted digraphGwithnvertices,the weight matrixA=(aij)n×ncan be defined by their entryaijequals the weight of arc(j,i)if it exists,and 0 otherwise.For our purpose,we denote a weighted digraph as(G,A).A digraphGis strongly connected if,for any pair of distinct vertices,there exists a directed path from one to the other.A weighted digraph(G,A)is strongly connected if and only if the weight matrixAis irreducible.

    The Laplacian matrix of(G,A)is denoted byL.Letcidenote the cofactor of thei-th diagonal element ofL.The following results are listed.

    Theorem 2.1[6]Assumen≥2.Then

    whereTiis the set of all spanning trees T of(G,A)that are rooted at vertexi,andw(T)is the weight ofT.In particular,if(G,A)is strongly connected,thenci>0 for 1≤i≤n.

    Theorem 2.2[6]Assumen≥2.Letcibe given in Theorem 2.1.Then the following identity holds

    hereFij(xi,xj),1≤i,j≤n,are arbitrary functions,Qis the set of all spanning unicyclic graphs of(G,A),w(Q)is the weight ofQ,andCQdenotes the directed cycle ofQ.

    Given a network represented by digraphGwithnvertices(n≥2),a coupled system can be built onGby assigning each vertex its own internal dynamics and then coupling these vertex dynamics based on directed arcs inG.Assume that each vertex dynamics are described by a system of differential equations=fi(t,ui),whereui∈Rmiandfi:R×Rmi→Rmi.Letgij:R×Rmi×Rmj→Rmirepresent the in fl uence of vertexjon vertexi,andgij≡0 if there exists no arc fromjtoiinG.Then we obtain the following coupled system on graphG:

    here we assume that the initial-value problem has the unique solution.

    We assume that each vertex system has a globally stable equilibrium and possesses a global Lyapunov functionVi.

    Theorem 2.3[6]Assume that the following assumptions are satis fi ed.

    (1)There exist functionsVi(t,ui),Fij(t,ui,uj),and constantsaij≥0 such that

    (2)Along each directed cycleCof the weighted digraph(G,A),A=(aij),

    (3)Constantciis given by the cofactor of thei-th diagonal element ofL.Then the functionV(t,u)=satisfiesV˙(t,u)≤0 fort>0,andu∈D=D1×D2···×Dn.Namely,Vis a Lyapunov function for the system.

    3 Main Results

    Filippov solutions will be used for the discontinuous system(1.2).Consider the differential inclusion as follows

    Definition 1x(t)=(x1(t),x2(t),···,xn(t))is the solution of system(1.2)with initial valuex1(0)=x10,x2(0)=x20,···,xn(0)=xn0,if

    (1)x(t)is defined in the interval[0,T)withT∈(0,+∞].

    (2)x(t)is absolutely continuous in any subinterval of[0,T).

    (3)x(t)is the solution of system(3.1)for a.e.t∈[0,T).

    We assume thatx?=is a positive equilibrium of system(1.2).By system(3.1)and measurable selection theorem(see[21]),there issuch that

    for a.e.t∈[0,T).

    In this section, first of all,the existence of the positive equilibrium for system(1.2)is shown.The uniform persistence theory and Filippov theory are used to discuss the problem.Secondly,suffcient conditions that the positive coexistence equilibrium of the coupling model is unique and globally asymptotically stable inRn+as long as it exists are derived by using the method of constructing Lyapunov functions based on graph-theoretical approach for coupled systems.

    3.1 The Existence Conditions of the Positive Equilibrium for System(1.2)

    DefineA1(x)=diag[f1(x1),f2(x2),···,fn(xn)]and

    Then we obtain that the existence theorem for positive solutions of system(1.2).

    Theorem 3.1 The solutionx(t)of system(1.2)satisfies that?t∈[0,t0),x(t)>0,if it is defined in the interval[0,t0)(0<t0≤+∞)and the initial value satisfies that

    Proof By the definition ofI(xk),there existsδ>0(δ<ET),such that when|xk|<δ,I(xk)=0 holds.Considerx(t)withx(0)>0 and||x(t)||<δ,then system(1.2)can be simplified as follows˙x=[A1(x)+A2(x)]x.In the sequel,we deduce thatx(t)=x0exp[A1(x)+A2(x)]t.Therefore,we obtain thatx(t)>0,ifx(0)>0 and||x(t)||<δ.

    By applying the absolutely continuous character of the solutions,it follows that?t∈[0,t0),x(t)>0 holds.This completes the proof.

    Now we will consider the existence conditions for the equilibrium of system(1.2).The theorem is listed as follows.

    Theorem 3.2 Assume that the following assumptions hold for system(1.1).(1)The system is uniformly persistent.

    (2)Solutions are uniformly ultimately bounded.

    Then system(1.2)has one positive equilibrium at least,if the suitableETis chosen.

    Proof Using the Theorem 5.1 of Li and Shuai[6],we obtain that system(1.1)has one equilibrium at least.Letx?=denote the positive equilibrium of system(1.1).Then by choosingwe have{0}∈Therefore,we can chooser?=0∈such thatxifi(xi)(xj?αijxi)=0 fori=1,2,···,n.It means thatx?is the positive equilibrium of system(1.2).This completes the proof.Given the following system

    Using the uniformly persistence theory(see[34])and Theorem 3.2,the corollary is obtained naturally.

    Corollary 1 Assume that the following assumptions hold for system(3.3).(1)The system is uniformly persistent.

    (2)Solutions are uniformly ultimately bounded.

    Then system(1.2)has one positive equilibrium at least,if the suitableETis chosen.

    3.2 The Stability Analysis of the Positive Equilibrium for System(1.2)

    Similar to system(3.1),whenx(t)=(x1(t),x2(t),···,xn(t))is the solution of system(1.2),then for anyv,there is a measurable functionηk(t)∈(measurable selection theorem(see[21]))such that

    for a.e.t∈[0,T).

    The main result is listed as follows.

    Theorem 3.3 Assume that the following assumptions hold.

    (3)There exists a positive equilibriumx?=for system(1.2).Then positive equilibriumx?of system(1.2)is unique and globally asymptotically stable inRn+.

    Proof After tedious calculation,we obtain that the positive equilibriumx?satisfies

    (1)(dij)n×nis irreducible.

    SetVi(xi)=It can be verified thatVi(xi)>0 for allxi>0 andVi(xi)=0 if and only ifAfter direct calculation,we have(i/=k)

    Letaij=Then we obtain that˙Vi(xi)and

    In the sequel,we obtain thatFij(xi,xj)≤Gi(xi)?Gj(xj).Wheni=k,we have

    for a.e.t∈[0,T).

    for a.e.t∈[0,T).

    Letcidenote the cofactor of thei-th diagonal element of Laplacian Matrix ofG.Let Lyapunov functionV(x)=V(x1,x2,···,xn)Then we haveV˙(x(t))≤0 for a.e.t∈[0,T).If˙V=0,we obtain that=0 for a.e.t∈[0,T).Therefore,we deduce thatfor a.e.t∈[0,T).By applying the absolutely continuous character of the solutions,it follows thatBy using the strong connectivity of(G,A)and

    for a.e.t∈[0,T),we obtain thatfor a.e.t∈[0,T).By applying the absolutely continuous character of the solutions andit follows thatfor anyj=1,2,···,n.Furthermore,we obtain that the maximum weak invariant subset ofis the set of unique pointM={x?}.By applying the invariance principle of differential inclusion(see[21]),we obtain thatx?is globally asymptotically stable inHere

    and

    This completes the proof.

    Furthermore,the control can be used on all of patches for system(1.1).Consider the following system

    here

    θi>0 represents the roguing proportional for the species on theith patch.

    In the sequel,Corollary 2 is obtained.

    Corollary 2 Assume that the following assumptions hold.

    (1)(dij)n×nis irreducible.

    (3)There exists a positive equilibriumx?=(x?1,x?2,···,x?n)for system(3.6).Then positive equilibriumx?of system(3.6)is unique and globally asymptotically stable inRn+.

    Remark 3 Corollary 2 can be seen as the development of the Theorem 2.3.It means that network method can be applied in the Filippov system.

    4 Conclusions and Outlooks

    In this paper,we generalize the single-species ecological model(1.1)to the general model(1.2)with the discontinuous control term for thekth patch.Firstly,the uniform persistence and Filippov theory are used to prove the existence of positive equilibrium.We obtain the existence condition for the positive equilibrium which can be seen as the development of the Theorem 5.1 in[6].Second,the globally asymptotical stability of positive equilibria of system(1.2)and(2.6)is proved based on the network method for coupled systems of differential equations,Filippov theory and differential inclusion.Our main theorems generalize Theorem 5.1 and 3.1 in[6].

    Biologically,our result Theorem 3.3 implies that,if we consider to control the population density ofkth patch less thanETby using the TP,the single-species ecological model with dispersal is dispersing among strongly-connected patches(which is equivalent to the irreducibility of the dispersal matrix),and if the system has an equilibrium at least,then the number of species in each patch will be eventually stable at some corresponding positive value.

    Further studies on this subject are being carried out by the presenting authors in the two aspects:one is to study the TP with time delay;the other is to discuss the method to design control term via the TP.

    [1]Freedman H I,Takeuchi Y.Global Stability and predator dynamics in a model of prey dispersal in a patchy environment[J].Nonl.Anal.-The.Meth.Appl.,1989,13(8):993–1002.

    [2]Kuang Y,Takeuchi Y.Predator-prey dynamics in models of prey dispersal in 2-patch environments[J].Math.Biosci.,1994,120(1):77–98.

    [3]Cui J G.The effect of dispersal on permanence in a predator-prey population growth model[J].Comput.Math.Appl.,2002,44(8-9):1085–1097.

    [4]Xu R,Chaplain M A J,Davidson F A.Periodic solutions for a delayed predator-prey model of prey dispersal in two-patch environments[J].Nonl.Anal.-Real World Appl.,2004,5(1):183–206.

    [5]Zhang L and Teng Z D.Permanence for a delayed periodic predator-prey model with prey dispersal in multi-patches and predator density-independent[J].J.Math.Anal.Appl.,2008,338(1):175–193.

    [6]Li M Y,Shuai Z S.Global-stability problem for coupled systems of differential equations on networks[J].J.Diff.Equa.,2010,248(1):1–20.

    [7]Li M Y,Shuai Z S.Global stability of an epidemic model in a patchy environent[J].Canad.Appl.Math.Quart.,2009,17:75–187.

    [8]Collie J S,Spencer P D.Management strategies for fish populations subject to long term environmental variability and depensatory predation[J].Tech.Rep.93-02,Alaska Sea Grant College,1993,57:629–650.

    [9]Quinn T J,Deriso R B.Quantitative fi sh dynamics,biological resource management series[M].Oxford:Oxford Univ.Press,2000.

    [10]Loehle C.Control theory and the management of ecosystems[J].J.Appl.Ecol,2006,43:957–966.

    [11]Jonz′en N,Ranta E,Lunberg P,Kaitala V,Linden H.Harvesting induced fl uctuations[J].Wild.Biol.,2003,9:59–65.

    [12]Noy-Meir I.Stability of grazing systems:an application of predator–prey graphs[J].J.Ecol.,1975,63(2):459–481.

    [13]Van Nes E H,Scheffer M,Van den Berg M S,Coops H.Aquatic macrophytes:restore,eradicate or is there a compromise[J].Aquatic Bot.,2002,72(3-4):387–403.

    [14]Costa M I S,Kaszkurewicz E,Bhaya A,Hsu L.Achieving global convergence to an equilibrium population in predator-prey systems by the use of discontinuous harvesting policy[J].Ecolo.Model.,2000,128:89–99.

    [15]Meza M E M,Bhaya A,Kaszkurewicz E,Costa M I S.Threshold policies control for predator-prey systems using a control Lyapunov function approach[J].The.Popul.Bio.,2005,67(4):273–284.

    [16]Meza M E M,Bhaya A.Control theory and the management of ecosystems:A threshold policy with hysteresis is robust[J].Appl.Math.Comput.,2010,216:31–33.

    [17]Meza M E M,Costa M I S.Exploitation of a single species by a threshold management policy[J].Math.Biosci.,2011,234:25–32.

    [18]Tang S Y,Liang J H,Xiao Y N,Cheke R A.Sliding bifurcation of Filippov two stage pest control models with economic thresholds[J].SIAM J.Appl.Math.,2012,72:1061–1080.

    [19]Zhao T T,Xiao Y N,Smith R J.Non-smooth plant disease models with economic thresholds[J].Math.Biosci.,2013,241:34–48.

    [20]Wang A L,Xiao Y N.A Filippov system describing media effects on the spread of Infectious diseases[J].Nonl.Anal.:Hybrid Sys.,2014,11:84–97.

    [21]Huang L H,Guo Z Y,Wang F J.The theory and application for the differential equations with discontinuous right side(in Chinese)[M].Beijing:Sci.Press,2013.

    [22]Guo H,Li M Y,Shuai Z.A graph-theoretic approach to the method of global Lyapunov functions[J].Proc.Amer.Math.Soc.,2008,136:2793–2802.

    [23]Olfati-Saber R.Flocking for multi-agent dynamic systems:algorithms and theory[J].IEEE Trans.Auto.Contr.,2006,51:401–420.

    [24]Moshtagh N,Jadbabaie A,Daniilidis K.Distributed geodesic control laws for fl ocking of nonholonomic agents[C].Proc.44th IEEE Conf.Dec.Contr.,2005 and 2005 Eur.Contr.Conf.(CDCECC’05),2005:2835–2841.

    [25]Freeman R A,Yang P,and Lynch K M.Distributed estimation and control of swarm formation statistics[C].Proc.2006 Am.Contr.Conf.,2006:749–755.

    [26]Hong Y G,Gao L X,and Cheng Z D,Hu J P.Lyapunov-based approach to multi-agent systems with switching jointly connected interconnection[J].IEEE Trans.Auto.Contr.,2007,52(5):943–948.

    [27]Olfati-Saber R,Shamma J S.Consensus filters for sensor networks and distributed sensor fusion[C].44th IEEE Conf.Dec.Contr.,2005 and 2005 Eur.Contr.Conf.(CDC-ECC’05),2005:6698–6703.

    [28]Hagan M T,Demuth H B,Beale M H.Neural network design[M].Beijing:China Machine,2002.

    [29]Zhou Z H,Cao C G.Neural network with applications[M].Beijing:Tsinghua Univ.Press,2004.

    [30]Cheng H,Juan Y,Jiang H J,Teng Z D.Exponential stabilization and synchronization of neural networks with time-varying delays via periodically intermittent control[J].IOP Publ.Nonl.,2010,23:2369–2391.

    [31]Khalil H K.Nonlinear systems(3rd ed.)[M].New Jersey:Prentice Hall,2002.

    [32]Hirsch M W,Smith H L,Zhao X Q.Chain transitivity,attractivity,and strong repellors for semidynamical systems[J].J.Dynam.Diff.Equa.,2001,13:107–131.

    [33]Freedman H I,Tang M X,Ruan S G.Uniform persistence and fl ows near a closed positively invariant set[J].J.Dynam.Diff.Equa.,1994,6:583–600.

    [34]Wang W D,Zhao X Q.An epidemic model in a pathy environment[J].Math.Biosci.,2004,190:97–112.

    [35]Gao Y,Liu S Q.Global Stability for a predator-prey model with dispersal among patches[J].Abstr.Appl.Anal.,2014,176493:1–6.

    [36]Eze E C,Zhang S J,Liu E J,Eze J C.Advances in vehicular adhoc networks(VANETs):challenges and road-map for future development[J].Intern.J.Auto.Comp.,2016,13:1–18.

    [37]Ma K,Li L,Yang J,Liu Z X,Li X B,Guan X P.Bandwidth allocation with minimum rate constraints in cluster-based femtocell networks[J].Intern.J.Auto.Comp.,2015,12:77–82.

    [38]Zhao T T,Xiao Y N.Plant disease models with nonlinear impulsive cultural control strategies for vegetatively propagated plants[J].Math.Comp.Simul.,2015,107:61–99.

    [39]Zhang X H,Tang S Y.Existence of multiple sliding segments and bifurcation analysis of Filippov prey-predator model[J].Appl.Math.Comp.,2014,239:265–284.

    [40]Kuang Y Q,Qiu M Q.Qualitative analysis of a class of predator-prey model with sublinear functional response function[J].J.Math.,2010,30(1):125–130.

    [41]Ke Y S,Li B W,Chen B S.Hopf bifurcation of a delayed predator-prey model with stage structure for the predator[J].J.Math.,2015,35(2):252–266.

    久久草成人影院| 欧美亚洲 丝袜 人妻 在线| 身体一侧抽搐| www.精华液| 亚洲一码二码三码区别大吗| 久热这里只有精品99| 亚洲av成人一区二区三| 在线观看免费午夜福利视频| 香蕉丝袜av| 国产精品免费一区二区三区在线 | 国产亚洲精品久久久久5区| 露出奶头的视频| 一本一本久久a久久精品综合妖精| 国产精品久久久久成人av| 日本一区二区免费在线视频| 国产在线观看jvid| 中文字幕av电影在线播放| 久久久久久久久久久久大奶| 亚洲av成人不卡在线观看播放网| 十八禁人妻一区二区| 少妇粗大呻吟视频| www.熟女人妻精品国产| 亚洲国产看品久久| 老司机深夜福利视频在线观看| a级毛片在线看网站| 亚洲中文字幕日韩| 国产一区二区激情短视频| 曰老女人黄片| 国产精品偷伦视频观看了| 天堂动漫精品| 欧美精品高潮呻吟av久久| 老司机深夜福利视频在线观看| 精品欧美一区二区三区在线| 精品国产美女av久久久久小说| 天天影视国产精品| 欧美 日韩 精品 国产| 国产亚洲一区二区精品| 久久精品国产综合久久久| 最新在线观看一区二区三区| 欧美人与性动交α欧美精品济南到| 久9热在线精品视频| 91国产中文字幕| 欧美午夜高清在线| 精品国产美女av久久久久小说| www.999成人在线观看| 老司机影院毛片| 久久人妻福利社区极品人妻图片| 国产av精品麻豆| 久久中文字幕一级| 亚洲av欧美aⅴ国产| 这个男人来自地球电影免费观看| 久久人妻福利社区极品人妻图片| 国产精品免费一区二区三区在线 | 老司机福利观看| 色婷婷av一区二区三区视频| 欧美亚洲 丝袜 人妻 在线| 桃红色精品国产亚洲av| 亚洲三区欧美一区| 少妇 在线观看| 国产人伦9x9x在线观看| 久久精品国产99精品国产亚洲性色 | 亚洲av片天天在线观看| 午夜日韩欧美国产| 韩国av一区二区三区四区| 亚洲国产欧美网| 国产日韩一区二区三区精品不卡| 欧美最黄视频在线播放免费 | 亚洲第一青青草原| 亚洲男人天堂网一区| 午夜福利乱码中文字幕| 亚洲片人在线观看| 欧美在线黄色| 人人妻,人人澡人人爽秒播| 日韩欧美在线二视频 | 午夜福利免费观看在线| 日本精品一区二区三区蜜桃| 99国产精品免费福利视频| 91av网站免费观看| 超色免费av| 久久久国产成人精品二区 | 亚洲色图综合在线观看| 亚洲色图av天堂| 777久久人妻少妇嫩草av网站| 自线自在国产av| 80岁老熟妇乱子伦牲交| 最近最新中文字幕大全免费视频| 男人操女人黄网站| 久久热在线av| av免费在线观看网站| 精品电影一区二区在线| 久久久精品免费免费高清| 久久中文字幕一级| 夜夜夜夜夜久久久久| 黄片播放在线免费| 啦啦啦视频在线资源免费观看| 最新美女视频免费是黄的| 成人影院久久| 欧洲精品卡2卡3卡4卡5卡区| 国产精品欧美亚洲77777| e午夜精品久久久久久久| 国产精品秋霞免费鲁丝片| 亚洲av熟女| 天天添夜夜摸| 免费女性裸体啪啪无遮挡网站| 精品免费久久久久久久清纯 | 又黄又爽又免费观看的视频| 老司机亚洲免费影院| 中文字幕精品免费在线观看视频| 在线观看www视频免费| 黑人巨大精品欧美一区二区mp4| 精品少妇一区二区三区视频日本电影| 黑人巨大精品欧美一区二区蜜桃| 国产淫语在线视频| 亚洲国产毛片av蜜桃av| 国产免费av片在线观看野外av| 国产精品香港三级国产av潘金莲| 亚洲精品久久成人aⅴ小说| 亚洲第一青青草原| 国产欧美日韩精品亚洲av| 日韩欧美免费精品| 久久人妻福利社区极品人妻图片| 最近最新中文字幕大全免费视频| 久久天躁狠狠躁夜夜2o2o| 中亚洲国语对白在线视频| 麻豆av在线久日| 香蕉国产在线看| 午夜老司机福利片| 在线观看免费午夜福利视频| 亚洲成a人片在线一区二区| 性少妇av在线| 十分钟在线观看高清视频www| 欧美另类亚洲清纯唯美| 成人18禁在线播放| 丁香六月欧美| 又黄又爽又免费观看的视频| 亚洲中文字幕日韩| 久久精品国产a三级三级三级| 欧美av亚洲av综合av国产av| 免费看a级黄色片| 精品久久久久久,| 男女午夜视频在线观看| 午夜精品国产一区二区电影| 成人国产一区最新在线观看| 日韩免费av在线播放| 国产高清视频在线播放一区| 亚洲成av片中文字幕在线观看| 亚洲精华国产精华精| 亚洲综合色网址| 女人爽到高潮嗷嗷叫在线视频| 国产欧美日韩一区二区三区在线| 精品人妻熟女毛片av久久网站| 国产黄色免费在线视频| 欧美另类亚洲清纯唯美| 国产欧美日韩综合在线一区二区| 欧美大码av| 国产精品综合久久久久久久免费 | 正在播放国产对白刺激| 亚洲人成电影免费在线| 午夜福利在线观看吧| tocl精华| 亚洲国产精品一区二区三区在线| 久久精品91无色码中文字幕| aaaaa片日本免费| 操美女的视频在线观看| 亚洲欧洲精品一区二区精品久久久| 又黄又粗又硬又大视频| 欧美日韩av久久| 成人永久免费在线观看视频| 欧美乱色亚洲激情| 99国产精品一区二区三区| 亚洲中文日韩欧美视频| 精品高清国产在线一区| 欧美乱色亚洲激情| 色婷婷久久久亚洲欧美| 国产精品一区二区精品视频观看| 一区二区三区激情视频| 亚洲av电影在线进入| 少妇被粗大的猛进出69影院| 色在线成人网| 国产精品香港三级国产av潘金莲| 精品国产美女av久久久久小说| 交换朋友夫妻互换小说| 国产精品永久免费网站| 色婷婷久久久亚洲欧美| 精品一区二区三卡| 男女之事视频高清在线观看| 日日摸夜夜添夜夜添小说| 香蕉国产在线看| 国产色视频综合| 日韩人妻精品一区2区三区| 免费在线观看亚洲国产| 无人区码免费观看不卡| 亚洲,欧美精品.| 亚洲美女黄片视频| 在线观看一区二区三区激情| 久久影院123| 国产亚洲av高清不卡| 十八禁高潮呻吟视频| 欧美日韩成人在线一区二区| 国产欧美日韩精品亚洲av| 成人亚洲精品一区在线观看| 国产真人三级小视频在线观看| 国产精品电影一区二区三区 | 免费久久久久久久精品成人欧美视频| 久久人人爽av亚洲精品天堂| 免费久久久久久久精品成人欧美视频| 99国产精品一区二区三区| 91成人精品电影| 国产深夜福利视频在线观看| 久久中文字幕人妻熟女| 99久久综合精品五月天人人| 精品少妇久久久久久888优播| 成年版毛片免费区| 18禁国产床啪视频网站| 亚洲色图 男人天堂 中文字幕| 成人永久免费在线观看视频| 国产av一区二区精品久久| 中文欧美无线码| 成熟少妇高潮喷水视频| 捣出白浆h1v1| 男女床上黄色一级片免费看| 国产精品免费一区二区三区在线 | 国产精品久久久人人做人人爽| 精品一品国产午夜福利视频| 黄色成人免费大全| 精品国产国语对白av| 两个人看的免费小视频| 免费一级毛片在线播放高清视频 | 99热只有精品国产| 久久99一区二区三区| 欧美在线一区亚洲| xxx96com| 欧美另类亚洲清纯唯美| 国产精品亚洲一级av第二区| 两个人免费观看高清视频| 亚洲黑人精品在线| 欧洲精品卡2卡3卡4卡5卡区| 国产视频一区二区在线看| 日韩制服丝袜自拍偷拍| 亚洲精品国产区一区二| 国产主播在线观看一区二区| 亚洲av熟女| 久久久久国产一级毛片高清牌| av网站在线播放免费| 成人精品一区二区免费| 国产不卡一卡二| 日韩精品免费视频一区二区三区| 欧美成狂野欧美在线观看| 看片在线看免费视频| 亚洲精品久久午夜乱码| 韩国精品一区二区三区| 五月开心婷婷网| 国产精品 国内视频| 欧美中文综合在线视频| 欧美日韩黄片免| 激情视频va一区二区三区| 亚洲精品中文字幕在线视频| 精品国产一区二区三区久久久樱花| 91麻豆av在线| 国产精品国产高清国产av | 国产一区二区三区综合在线观看| 国产精品 国内视频| 18禁裸乳无遮挡动漫免费视频| 一边摸一边抽搐一进一出视频| 亚洲欧美色中文字幕在线| 亚洲av第一区精品v没综合| 国产精品久久电影中文字幕 | 久热这里只有精品99| 91字幕亚洲| 视频区欧美日本亚洲| 久久午夜亚洲精品久久| 久久ye,这里只有精品| 久久精品亚洲熟妇少妇任你| 亚洲成人免费av在线播放| 国产精品自产拍在线观看55亚洲 | 久久午夜亚洲精品久久| 欧美丝袜亚洲另类 | e午夜精品久久久久久久| 国产精品久久电影中文字幕 | 久久精品国产99精品国产亚洲性色 | cao死你这个sao货| 精品福利永久在线观看| 国产精品一区二区在线观看99| 黑人操中国人逼视频| 丝袜美足系列| 欧美国产精品va在线观看不卡| 久久久久国产精品人妻aⅴ院 | 亚洲精品av麻豆狂野| 欧美日韩av久久| 日韩欧美国产一区二区入口| 国产蜜桃级精品一区二区三区 | av电影中文网址| 亚洲第一欧美日韩一区二区三区| 在线观看免费午夜福利视频| 国产精品电影一区二区三区 | 亚洲第一av免费看| 久久精品国产综合久久久| 亚洲一码二码三码区别大吗| 亚洲av熟女| 精品福利永久在线观看| av线在线观看网站| 亚洲精品在线观看二区| 欧美精品高潮呻吟av久久| 国产一区有黄有色的免费视频| 在线永久观看黄色视频| av超薄肉色丝袜交足视频| 亚洲熟妇中文字幕五十中出 | 日韩免费高清中文字幕av| 人妻 亚洲 视频| 久久精品成人免费网站| 看黄色毛片网站| 久久国产乱子伦精品免费另类| 精品免费久久久久久久清纯 | 美女国产高潮福利片在线看| 亚洲精品一二三| av福利片在线| 夫妻午夜视频| 三上悠亚av全集在线观看| 国产精品久久久av美女十八| 电影成人av| 国产成人一区二区三区免费视频网站| 中文字幕最新亚洲高清| 天堂俺去俺来也www色官网| 视频区欧美日本亚洲| 最新在线观看一区二区三区| 精品国产超薄肉色丝袜足j| 精品免费久久久久久久清纯 | 男人舔女人的私密视频| 天天添夜夜摸| av电影中文网址| 亚洲人成77777在线视频| 国产精品久久电影中文字幕 | 国产一区二区三区综合在线观看| 伦理电影免费视频| 久久久精品区二区三区| 大陆偷拍与自拍| 一级片'在线观看视频| 亚洲中文日韩欧美视频| 一进一出好大好爽视频| 最近最新中文字幕大全电影3 | 一进一出好大好爽视频| 国产区一区二久久| 嫩草影视91久久| 中国美女看黄片| 国产在线精品亚洲第一网站| 国产精品免费一区二区三区在线 | 手机成人av网站| 深夜精品福利| 久久久久久亚洲精品国产蜜桃av| 免费黄频网站在线观看国产| 亚洲人成电影观看| 日本黄色视频三级网站网址 | 免费日韩欧美在线观看| 美女高潮喷水抽搐中文字幕| 免费在线观看日本一区| 国产又爽黄色视频| 免费久久久久久久精品成人欧美视频| 韩国精品一区二区三区| 中亚洲国语对白在线视频| 夫妻午夜视频| 一本大道久久a久久精品| 午夜精品国产一区二区电影| 高清视频免费观看一区二区| 国产精品自产拍在线观看55亚洲 | 国产欧美日韩精品亚洲av| 久久人妻熟女aⅴ| 久久久久精品国产欧美久久久| 成年人午夜在线观看视频| 在线观看一区二区三区激情| 91精品三级在线观看| 久久国产精品大桥未久av| 男人的好看免费观看在线视频 | 欧美精品av麻豆av| 18禁国产床啪视频网站| 久久久精品国产亚洲av高清涩受| 99久久人妻综合| 91成年电影在线观看| 真人做人爱边吃奶动态| 国产精品美女特级片免费视频播放器 | 亚洲五月天丁香| 老司机午夜福利在线观看视频| 久久ye,这里只有精品| 欧美 亚洲 国产 日韩一| 亚洲精品国产区一区二| 欧美+亚洲+日韩+国产| 大型黄色视频在线免费观看| 久久天堂一区二区三区四区| 视频区欧美日本亚洲| www.精华液| 国产精品98久久久久久宅男小说| 精品一品国产午夜福利视频| 99精品欧美一区二区三区四区| 国产色视频综合| 黑人猛操日本美女一级片| 亚洲片人在线观看| 91麻豆av在线| 国产高清激情床上av| 女警被强在线播放| 久久人人97超碰香蕉20202| 久久精品91无色码中文字幕| 国产亚洲精品久久久久久毛片 | 黄片大片在线免费观看| 欧美亚洲日本最大视频资源| 99精国产麻豆久久婷婷| 欧美激情久久久久久爽电影 | 丰满人妻熟妇乱又伦精品不卡| 国产成人欧美| 日本撒尿小便嘘嘘汇集6| 亚洲va日本ⅴa欧美va伊人久久| 大型av网站在线播放| 国产激情欧美一区二区| 精品久久久久久久毛片微露脸| 国产在线精品亚洲第一网站| 亚洲中文av在线| 伦理电影免费视频| 亚洲久久久国产精品| 亚洲avbb在线观看| 久久狼人影院| 自拍欧美九色日韩亚洲蝌蚪91| 美女午夜性视频免费| 日韩有码中文字幕| 咕卡用的链子| 亚洲七黄色美女视频| 亚洲成a人片在线一区二区| 丝袜在线中文字幕| 久久精品国产亚洲av高清一级| 777久久人妻少妇嫩草av网站| 成人亚洲精品一区在线观看| 亚洲va日本ⅴa欧美va伊人久久| 成年人免费黄色播放视频| 看黄色毛片网站| 亚洲精品一二三| 美女扒开内裤让男人捅视频| 别揉我奶头~嗯~啊~动态视频| 国产蜜桃级精品一区二区三区 | bbb黄色大片| 91九色精品人成在线观看| 欧美精品亚洲一区二区| 亚洲伊人色综图| 国产精品偷伦视频观看了| 黄色a级毛片大全视频| 男人舔女人的私密视频| 麻豆国产av国片精品| 久久久国产一区二区| 男男h啪啪无遮挡| 999久久久国产精品视频| 51午夜福利影视在线观看| 免费久久久久久久精品成人欧美视频| 亚洲三区欧美一区| 黄频高清免费视频| 男男h啪啪无遮挡| 午夜福利欧美成人| a级毛片在线看网站| 午夜久久久在线观看| 人人妻,人人澡人人爽秒播| 天天添夜夜摸| 后天国语完整版免费观看| 激情在线观看视频在线高清 | 亚洲av成人av| 母亲3免费完整高清在线观看| 国产精品免费视频内射| cao死你这个sao货| 久久久久久免费高清国产稀缺| 亚洲精华国产精华精| 老汉色∧v一级毛片| 久久精品成人免费网站| 亚洲国产欧美日韩在线播放| 中文欧美无线码| 黄色 视频免费看| 日韩大码丰满熟妇| 美女视频免费永久观看网站| 久久午夜亚洲精品久久| 日本五十路高清| bbb黄色大片| 亚洲成人免费av在线播放| 久9热在线精品视频| 亚洲精品在线观看二区| 热99re8久久精品国产| 一级黄色大片毛片| 亚洲av第一区精品v没综合| 成人永久免费在线观看视频| 日韩欧美免费精品| 国产精品乱码一区二三区的特点 | 亚洲中文字幕日韩| 电影成人av| 午夜视频精品福利| 超色免费av| 欧美日韩黄片免| 免费女性裸体啪啪无遮挡网站| 婷婷丁香在线五月| cao死你这个sao货| svipshipincom国产片| 午夜两性在线视频| 少妇被粗大的猛进出69影院| 国产精品成人在线| 色播在线永久视频| 涩涩av久久男人的天堂| 久久99一区二区三区| 亚洲午夜理论影院| 精品国产美女av久久久久小说| 欧美精品一区二区免费开放| 变态另类成人亚洲欧美熟女 | bbb黄色大片| 女人被躁到高潮嗷嗷叫费观| 精品一区二区三区四区五区乱码| 国产欧美日韩一区二区三区在线| 高清av免费在线| 好男人电影高清在线观看| 成人三级做爰电影| 婷婷精品国产亚洲av在线 | 日本黄色视频三级网站网址 | 高清欧美精品videossex| 国产精品久久视频播放| 超碰成人久久| 午夜精品在线福利| 亚洲精品中文字幕在线视频| 久久久久视频综合| 国产成人系列免费观看| 人人妻人人添人人爽欧美一区卜| 天堂√8在线中文| 亚洲一区二区三区不卡视频| 一区二区日韩欧美中文字幕| 日日夜夜操网爽| 人人妻人人爽人人添夜夜欢视频| 国产在视频线精品| 久久久国产精品麻豆| 啦啦啦在线免费观看视频4| 亚洲精品一二三| 韩国av一区二区三区四区| 一个人免费在线观看的高清视频| 一级黄色大片毛片| 欧美日韩成人在线一区二区| 成人国产一区最新在线观看| 国产精品欧美亚洲77777| 国产蜜桃级精品一区二区三区 | 欧美精品啪啪一区二区三区| 性色av乱码一区二区三区2| 一级毛片女人18水好多| 啦啦啦 在线观看视频| 久久热在线av| 一二三四社区在线视频社区8| 亚洲专区字幕在线| 亚洲国产精品一区二区三区在线| 少妇粗大呻吟视频| 午夜福利在线观看吧| 99国产极品粉嫩在线观看| 高清在线国产一区| 91精品三级在线观看| 欧美性长视频在线观看| 国产精品久久久久久人妻精品电影| 午夜精品国产一区二区电影| 精品无人区乱码1区二区| 91麻豆精品激情在线观看国产 | 免费av中文字幕在线| 久热这里只有精品99| 一级毛片高清免费大全| 黄色视频,在线免费观看| 丰满饥渴人妻一区二区三| 欧美精品一区二区免费开放| 欧美在线黄色| 高清在线国产一区| 精品国产乱码久久久久久男人| 搡老熟女国产l中国老女人| 亚洲av欧美aⅴ国产| 丝瓜视频免费看黄片| 国产区一区二久久| 十八禁网站免费在线| 校园春色视频在线观看| 人人妻人人澡人人爽人人夜夜| 一级片免费观看大全| 日韩制服丝袜自拍偷拍| 日本撒尿小便嘘嘘汇集6| 美女高潮喷水抽搐中文字幕| 操出白浆在线播放| 亚洲欧美精品综合一区二区三区| 久久精品亚洲av国产电影网| 99re在线观看精品视频| av一本久久久久| 亚洲性夜色夜夜综合| 91在线观看av| 亚洲av熟女| 国产精品免费视频内射| 无人区码免费观看不卡| 黄片小视频在线播放| 精品午夜福利视频在线观看一区| 亚洲中文av在线| 一级黄色大片毛片| 中文字幕人妻熟女乱码| 久久天堂一区二区三区四区| 免费观看精品视频网站| 色精品久久人妻99蜜桃| 手机成人av网站| 欧美精品一区二区免费开放| av欧美777| 亚洲欧洲精品一区二区精品久久久| 狠狠婷婷综合久久久久久88av| 免费日韩欧美在线观看| 国产熟女午夜一区二区三区| 国产免费av片在线观看野外av| 黄片播放在线免费| 国产精品久久久久久人妻精品电影| 侵犯人妻中文字幕一二三四区| 亚洲成a人片在线一区二区| 99精品欧美一区二区三区四区| 精品卡一卡二卡四卡免费| 国产黄色免费在线视频| 12—13女人毛片做爰片一| av一本久久久久| 在线免费观看的www视频| 亚洲欧美一区二区三区久久| 免费观看a级毛片全部| 中文字幕制服av| 丰满迷人的少妇在线观看| 久久中文字幕一级| 亚洲熟女毛片儿|