• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Iterative Relaxation Approach to the Solution of the Ham ilton-Jacobi-Bellman-Isaacs Equation in Nonlinear Optimal Control

    2018-01-26 03:51:01Aliyu
    IEEE/CAA Journal of Automatica Sinica 2018年1期

    M.D.S.Aliyu,

    I.INTRODUCTION

    O PTIMAL control problems can be solved using either the minimum principle of Pontryagin[1],[2]or the dynamic programming principle of Bellman,also known as Hamilton-Jacobi theory[1],[2].The latter approach involves the solution of a nonlinear partial-differential equation also known as the Hamilton-Jacobi equation,which was originally derived by Hamilton[3]in 1834 from a mechanics perspective,and later on improved by Jacobi[3]in 1838.The Hamilton-Jacobi equation(HJE)gives necessary and sufficient conditions for the existence of an optimal control for both constrained and unconstrained problems.Lateron,Bellman[1],[2]developed the discrete-time equivalent of the Hamilton-Jacobi equation also known as the dynamic programming principle,and it became known as the Hamilton-Jacobi-Bellman equation.Finally,in 1952,Isaacs[4],[5]further modified it in the context ofN-player non-zero sum differential games,and it became known as the Hamilton-Jacobi-Bellman-Isaacs equation(HJBIE).

    Unfortunately,a bottle-neck in the practical application of nonlinear optimal control theory is the difficulty in solving the HJBIE[6]?[17]There are no closed-form solutions for it,and no proven established systematic numerical approaches for solving it.

    Several attempts have however been made to find computationally sound methods for solving the HJBIE,and there is a vast literature on the subject.The reader can refer to[18],[19]for an excellent literature review of past approaches.In Glad[14],Lukes[15],Isidori[20],[21],and Huang[22],Taylor series approximations are presented.While in[16]?[19],[23]Gallerkin and other basis functions expansions are used.More recently,in[24],[25]policy iterations are used to deriveiterative solutions in closed-form.This method is also similar in spirit with the ones presented in[18],[19].However,the validity of the method has only been demonstrated with scalar systems.A similar recursive approach is utilized in[7].

    In addition,attempts to find exact and analytical approaches for solving the HJBIE have also been made in[5],[8]?[10],[26].The approaches attempt to convert the HJBIEs to algebraic equations,the solution of which can yield the gradient of the desired scalar function.In fact,these were some of the first attempts to derive closed-form solutions to the HJBIEs.However,the success of the approaches in[8],[9]is significantly undermined by the difficulty of solving the resulting discriminant equations.Alternatively,in[26]an attempt is made to find the algebraic gradient from the maximal involutive ideal that contains the Hamiltonian function of the corresponding Hamiltonian system.This approach is mainly useful for Hamiltonians in polynomial form.

    On the other hand,in[12],[22]neural network or basis functions and Taylor series approximations respectively,are utilized to obtain recursive solutions to the discrete-time problem.These methods share a lot of spirit with the one originally developed in[23],and are so far some of the most tangible approaches to the discrete-time problem.

    The problems with most of the methods so far presented are two fold:1)they are computationally expensive,requiring the solution of a system ofNnonlinear equations,forNbasis functions;2)they do not approximate the scalar function directly,but instead,approximate its gradient.This can lead to undesirable solutions.Consequently,more efficient approaches are still required and desirable.

    Thus,in this paper,we present yet a new iterative approach to the solution of the HJBIEs.We apply fixed-point iterations[27],[28]in Banach spaces with a relaxation parameter,to successively approximate the scalar value-function directly,as opposed to its gradient,and we establish convergence of the approach under fairly mild assumptions.The approach is computationally efficient and can easily be automated using symbolic algebra packages such as MAPLE,MATHEMATICA,and MATLAB.It is hoped that the results presented in this paper and subsequent papers will represent the first attempts for establishing a systematic computationally efficient approach for solving the HJBIE which hitherto has been lacking.

    The rest of the paper is organized as follows.In Section II,we begin with preliminaries and problem definition.Then in Section III,we develop the iterative relaxation method for the HJBIE in deterministic nonlinear optimal control.Convergence results for the method are established and some examples are presented.Then in Section IV,we extend the results of Section III to Lyapunov equations,and an example is also worked-out.Finally,conclusions and suggestions for future work are presented in Section V.

    II.PRELIMINARIES

    We consider the time-invariant or stationary HJBIEs associated with the infinite-horizon optimal control of the following smooth affine nonlinear state-space system Σdefined over a subsetX?Rnin coordinates(x1,...,xn):

    wherex=(x1,...,xn)T∈Xis the state vector;w∈W?Rsis the disturbance into the system which belongs to the setWof admissible disturbances;u∈Uis the control input,which belongs to the setU?Rpof admissible controls;andz∈Rris an objective or error function.Whereas1:X→Rn×s,andg2:X→Rn×p,h:X→Rm.We also assume that foru∈U,and anyx(t0)∈X,there exist smooth solutions to the system Σ[29].In addition,x0=0 is an equilibrium point of the system such that forw=0,u=0,f(x0)=0.

    The time-invariant HJBIE associated with the above system either for theH2optimal control[2],[4],[18]or for theH∞optimal control[5],[21],can generally be represented by

    for some smooth functionwhereVxrepresents the row vector of partial derivatives ofVwith respect tox,a smooth matrix functionQ:X→M n×n(X),whereM n×nis the ring ofn×nmatrices overX,and for some smooth output functionh:X→Rm.For instance,in the case of the state-feedback nonlinearH∞control problem[5],the matrix functionwhile for theH2problem[14],[18],[19]

    Our aim in this paper is to find iteratively an approximate solution of the HJBIE(2)associated with the optimal control of system(1)in a region ??X.We consider the Banach space of bounded real continuous functions from ? to R with the supremum norm,BC((?,R),sup|.|),which for brevity we shall simply denote byBC(?).However,we shall focus particular attention to a subset of this set containing functions that are also smooth,i.e.,V(?):=C∞∩BC(?).

    III.RELAXATION METHOD FOR THE HJBIE

    Our aim in this section is to develop a gradient-free iterative or successive approximation method for solving HJBIE arising in optimal control problems for affine nonlinear systems.Notice that,sinceVdoes not appear explicitly in(2),a gradient based method such as the steepest-descent or New ton’s method[11],[27],[28],their variants will not be suitable to use at this point.However,the relaxation method becomes very handy in this respect.Accordingly,define the following iterative inverse map by

    where 0<γ(k)<1 is the relaxation parameter which is chosen carefully to improve convergence.

    Based on the iterative formula(3),we proceed to establish convergence results for the approximation error|Vk+1(x)?V?(x)|,and forVk,k=0,1,...to a smooth solution of the HJBIE(2).The following assumption on the system(1)will be essential.

    Assumption 1:For the nonlinear system Σ(1),the following hold:

    1)there exists a solutionV?∈V(?)to the HJBIE(2)for the system,i.e.,V?∈C∞(?)and sup?|V?(x)|<∞;

    2)(real constants)such that

    Proposition 1:Consider the HJBIE(2)and let Assumption 1 be satisfied by the system.Suppose in addition,the solutionV?to the HJBIE(2)is such that

    Then,starting with an approximationV0∈V(?),the approximation error at every iteration of the formula(3)remains point-wise bounded for all(rsmall).

    Proof:From(3)and noting thatH JB I(V?)=0,we have

    Now from(2),

    Observe also that

    Therefore,using(9),(8)in(7),we have

    It is desired to compute smooth successive approximationsVk,k=1,...to the solutionV?of(2)in the neighborhood ?r.Thus,the differencecan be estimated as

    IfV0(x)is smooth,then the iterative formula(3)generates smooth(except possibly at isolated points)successive approximationsVkto the solutionV?of(2).Thus,for‖x?x0‖<r,?ε1>0,ε2>0 such that

    whereε=ε1+ε2.The last term in(10)can be estimated from a first-order Taylor approximation of the differenceVk?V?aroundx0,as

    for allxin the neighborhood ?r.Therefore,by the triangle in equality

    Consequently,using(13)in(12),we have

    Finally,using(14)in(10),we get

    where

    This shows that the iteration error is bounded;for if we start withk=1,we see that the error|V2(x)?V?(x)|is point-wise bounded by|V1(x)?V?(x)|and|V0(x)?V?(x)|.Similarly,the error|V2(x)?V?(x)|is point-wise bounded by|V1(x)?V?(x)|,and so on.Note also that,the above result holds for ?=r+∈,∈small,and thus forˉ?r.

    We summarize next the main convergence result of the method.

    Proof:From the proof of Proposition 1,inequality(15)can without any loss of generality be represented as

    Taking the limit asin the above inequality(17)and sinceα2(k)=β2(k)<1,all terms of|V0(x)?V?(x)|go to 0 and we have

    a constant.This implies uniform convergence of the approximationsV kto the solutionV?,which may differ from it by a constant.However,application of the boundary condition in(2)guarantees that this constant is zero.Finally,by(3),V k(x)is smooth on??rand therefore.Moreover,sinceis a Banach space,thenV kconverges to a smooth solution

    Remark 1:We notice also from inequality(15)that,if we letr→∞,then the iteration error satisfies

    with

    However,sinceK2(k)>1,it means that the algorithm does not converge.

    Remark 2:The relaxation parameterγ(k)is chosen to improve the convergence.Usually,0<γ(k)<2.If 0<γ(k)<1 we have under-relaxation,and this makes a non-convergent system converges.Alternatively,if 1<γ(k)<2 we have over-relaxation,and this used to speed up the convergence of algorithm.

    Remark 3:The iterative formula(2)requires one function evaluation,i.e.,H JB IE(Vk)in each iteration.This requires the evaluation of one quadratic-form(see 2)together with two vector scalar-products and polynomial addition operations.Hence,the computational time of the algorithm is of the order ofO(n2).

    We specialize the above results to linear systems and the corresponding Riccati equation.Consider the following linear system:

    whereA∈Rn×n,B1∈Rn×s,B2∈Rn×p,H∈Rr×n,and the corresponding Riccati equation arising in the quadratic optimal control of the system[1],[2],[30],[31]

    whereLet nowP:={n×nreal symmetric matrices}.Then,application of the formula(3)withV k(x)=xT Pk x/2,leads to the following recursive inverse mapP→Pfor(19):

    It then follows that,ifP?∈Pis a solution of(19),then

    Therefore,

    The above inequality(22),can further be represented as

    where

    Thus,inequality(23)is the linear equivalent of(17),and if,then convergence of the approximations{Pk}toP?can be established from the result of Theorem 1.This result is now summarized in the following corollary to the Theorem.

    Corollary 1:Consider the Riccati equation(19),and suppose there exists a symmetric solutionP?to it.In addition,suppose for the systemcan be chosen so thatThen,starting with an initial approximationP0∈P,the iterative formula(20)converges quadratically to a solutionP?∈Pof the Riccati equation(19).

    Remark 4:The above recursive formula(20)and algorithm is similar in spirit to the ones proposed in[32]?[34].

    IV.EXTENSION TO LYAPUNOV EQUATIONS

    It is well-known that Lyapunov equations are special cases of HJBIEs[1],[2],[35].In this section,we discuss how the basic relaxation algorithm(3)can be extended to solve Lyapunov equations that arise in certain factorization problems for nonlinear systems[36].For the nonlinear system(1),we consider the Lyapunov equation[36]:

    Adapting the iterative formula(3)to the above Lyapunov equation(23),we have the following recursion

    Consequently,we have the following result on the convergence of this iterative procedure.

    Proof:From(24),we have

    By inequality(14),for any two successive approximations

    Therefore,

    V.COMPUTATIONAL EXAMPLES AND SIMULATIONS

    In this section,we present some simple examples and simulation results to demonstrate the effectiveness of the methods developed.

    Example 1:Consider the following system and the example:

    The resulting HJBIE for theH2problem is

    where

    Remark 5:What we see in the above example is that,all the approximationsV2,V3,V4,are locally positive-definite.Thus,starting with a positive-definite initial approximationsV0,V1,the algorithm has the tendency to maintain the sign definiteness of the successive approximations.Whereas,the values of the functionH JB I(Vk),k=1,2,3 are increasingly negative-semidefinite.That is,the successive approximationsVk,k=2,3,4,try to satisfyH JB I(V)≤0 or the inequality form of the HJBIE.It is well-known that a solution for the latter is also a solution for the former[5].

    The corresponding control laws for the above approximationsV2,V3,V4are given by

    The system was simulated with the above control laws and the results of the simulation are shown respectively on Figs.1?3.The result of the simulation shows that the new iterative method can indeed find stabilizing solutions of the HJBIE.

    We consider the following example to solve the Lyapunov equation.

    Example 2:Reconsider the system of Example1 above.The corresponding Lyapunov equation(23)for the system is

    Remark 6:Notice in the above example,the approximationsare locally positive-definite.

    Fig.1.Closed-loop state trajectories with control law u2.

    Fig.2.Closed-loop state trajectories with control law u3.

    Fig.3.Closed-loop state trajectories with control law u4.

    VI.CONCLUSION

    In this paper,we have presented a new iterative approach for solving the HJBIE arising in the optimal control of affine nonlinear systems.Fixed-point iterations in Banach spaces and a relaxation method are combined to successively approximate the scalar value-function directly,and convergence results for the approach have been established under fairly mild conditions.Some examples have also been worked-out to demonstrate the effectiveness of the approach.In addition,the approach can easily be automated using symbolic algebra packages.Applications or extensions to Lyapunov equations have also been discussed.

    However,the results presented are really preliminary,and it will require many experimentation to establish conclusively it’s usefulness and computational efficiency.It is sufficient here to observe that from the few examples that have been solved,the approach will be suited for affine nonlinear systems with polynomial nonlinearities.As such,future efforts will go into computational experimentations with the method on practical nonlinear systems such as the nonlinear bench-mark problem[16],as well as seeking improvements and refinements of the algorithm.It will also be worth-while to see if convergence of the algorithm can be established under much weaker and more general assumptions.

    [1]M.Athans and P.L.Falb,Optimal Control:An Introduction to the Theory and its Applications.New York:Dover Publishers,2006.

    [2]D.E.Kirk,Optimal Control Theory.Englewood Cliffs:Prentice Hall,1970.

    [3]R.Abraham and J.E.Marsden,Foundations of Mechanics.Reading,MA,USA:Addison Wesley,1978.

    [4]T.Basar and P.Bernhard,H∞Optimal Control and Related Minimax Design,Boston:Birkhauser,1991.

    [5]M.D.S.Aliyu,Nonlinear H∞Control,Hamiltonian Systems and Hamilton-Jacobi Equations.Boca Raton,FL.USA:CRC Press,Taylor and Francis,2011.

    [6]V.Barbu and G.Da Prata,Hamilton-Jacobi Equations in Hilbert Spaces.London:Pitman Advanced Publishing Program,1983.

    [7]Y.Feng,B.D.O.Anderson,and M.Rotkow itz,“A game theoretic algorithm to compute local stabilizing solutions of HJBI equations in nonlinearH∞control,”Automatica,vol.45,no.4,pp.881?888,Apr.2009.

    [8]M.D.S.A liyu,“An Approach for solving the Hamilton-Jacobi-Isaacs equation(HJIE)in nonlinearH∞control,”Automatica,vol.39,no.5,pp.877?884,May 2003.

    [9]M.D.S.Aliyu,“A transformation approach for solving the hamiltonjacobi-bellman equation inH2deterministic and stochastic optimal control of affine nonlinear Systems,”Automatica,vol.39,no.7,pp.1243?1249,Jul.2003.

    [10]M.D.S.A liyu and L.Smolinsky,“Aparametrizationapproach for solving the Hamilton-Jacobi equation and application to theA2Toda lattice,”Nonlinear Dyn.Syst.Theory,vol.5,no.4,pp.323?344.2005.

    [11]M.D.S.Aliyu,“Adaptive solution of Hamilton-Jacobi-Isaacs equation and PracticalH∞stabilization of nonlinear systems,”inProc.IEEE Int.Conf.Control Applications,Anchorage,A laska,USA,2000,pp.343?348.

    [12]A.A l-Tam im i,F.L.Lew is,and M.Abu-Khalaf,“Discrete-time nonlinear HJB solution using approximate dynamic programming:Convergence proof,”IEEE Trans.Syst.,Man Cybern.,vol.38,no.4,pp.943?949,Aug.2008.

    [13]S.H.Jr.Benton,The Hamilton-Jacobi Equation:A Global Approach.New York:Academic Press,1977.

    [14]S.T.Glad, “Robustness of nonlinear state feedback-a survey,”Automatica,vol.23,no.4,pp.425?435,Jul.1987.

    [15]D.L.Lukes,“Optimal regulation of nonlinear dynamical systems,”SIAM J.Control,vol.7,no.1,pp.75?100,Feb.1969.

    [16]P.Tsiotras,M.Corless,and M.A.Rotea,“AnL2disturbance attenuation solution to the nonlinear benchmark problem,”Int.J.Robust Nonlinear Control,vol.8,no.4?5,pp.311?330,Dec.1998.

    [17]M.J.Yazdanpanah,K.Khorasani,and R.V.Patel,“Uncertainty compensation for a flexible-link manipulator using nonlinearH∞control,”Int.J.Control,vol.69,no.6,pp.753?771,Apr.1998.

    [18]R.W.Beard,G.N.Saridis,and J.T.Wen,“Galerkin approximations of the generalized Hamilton-Jacobi-Bellman equation,”Automatica,vol.33,No.12,pp.2159?2177,Dec.1997.

    [19]R.W.Beard and T.W.Mclain,“Successive Galerkin approximation algorithms for nonlinear optimal and robust control,”Int.J.Control,vol.71,no.5,pp.717?743,Nov.1998.

    [20]A.Isidori and W.Kang,“H∞control via measurement feedback for general nonlinear systems,”IEEE Trans.Automat.Control,vol.40,no.3,pp.466?472,Mar.1995.

    [21]A.Isidori and W.Lin,“GlobalL2-Gain design for a class of nonlinear systems,”Syst.Control Lett.,vol.34,no.5,pp.295?302,Jul.1998.

    [22]J.Huang,“An algorithm to solve the discrete HJI equation arising in theL2gain optimization problem,”Int.J.Control,vol.72,No.1,pp.49?57,Jan.1999.

    [23]H.Guillard,S.Monaco,and D.Normand-Cyrot,“Approximated solutions to nonlinear discrete-timeH∞Control,”IEEE Trans.Automat.Control,vol.40,no.12,pp.2143?2148,Dec.1995.

    [24]M.Abu-Khalaf,F.L.Lew is,and L.Huang,“Policy iterations on the Hamilton-Jacobi-Isaacs equation forH∞state feedback control with input saturation,”IEEE Trans.Automat.Control,vol.51,no.12,pp.1989?1993,Dec.2006

    [25]M.Abu-Khalaf and F.L.Lew is,“Nearly optimal control laws for nonlinear systems with saturating actuators using a neural network HJB approach,”Automatica,vol.41,no.5,pp.779?791,May 2005.

    [26]T.Ohtsuka,“Solutions to the Hamilton-Jacobi equation with algebraic gradients,”IEEE Trans.Automat.Control,vol.56,no.8,pp.1874?1885,Aug.2011.

    [27]E.Zeidler,Nonlinear Functional Analysis and Its Applications:I:Fixed-Point Theorems.New York:Springer-Verlag,1986.

    [28]J.M.Ortega and W.C.Rheinboldt,Iterative Solution of Nonlinear Equations in Several Variables.London:Academic Press,1970.

    [29]H.K.Khalil,Nonlinear Systems,3 rd Edition,Prentice Hall,Upper Saddle River,NJ,USA,2002.

    [30]S.Bittanti,A.J.Laub,and J.Willems,The Riccati Equation.Germany:Springer-Verlag,1991.

    [31]K.M.Zhou,J.C.Doyle,and K.Glover,Robust and Optimal Control.New Jersey:Prentice Hall,1996.

    [32]G.G.L.Meyer and H.J.Payne,“An iterative method of solution of the algebraic Riccati equation,”IEEE Trans.Automat.Control,vol.17,no.4,pp.550?551,Aug.1972.

    [33]D.L.K leinman,“On an Iterative technique for Riccati equation Computations,”IEEE Trans.Automat.Control,vol.13,no.1,pp.114?115,Feb.1968.

    [34]K.Vit,“Iterative solution of the Riccati equation,”IEEE Trans.Automat.Control,vol.17,no.2,pp.258?259,Apr.1972.

    [35]J.M.Saniuk and I.B.Rhodes,“A matrix inequality associated with bounds on Solutions of algebraic Riccati and Lyapunov equations,”IEEE Trans.Automat.Control,vol.32,no.8,pp.739?740,Aug.1987.

    [36]J.M.A.Scherpen and A.J.Van der Schaft,“Normalized coprime factorizations and balancing for unstable nonlinear systems,”Int.J.Control,vol.60,no.6,pp.1193?1222,1994.

    五月玫瑰六月丁香| 亚洲精品色激情综合| 国产精品一区二区在线不卡| 夜夜骑夜夜射夜夜干| 深夜a级毛片| 亚洲国产欧美在线一区| 亚洲精品日本国产第一区| 内地一区二区视频在线| 亚洲中文av在线| av在线观看视频网站免费| 国产国拍精品亚洲av在线观看| 一级毛片我不卡| 嘟嘟电影网在线观看| 欧美高清成人免费视频www| 午夜福利网站1000一区二区三区| 国产成人免费观看mmmm| 亚洲欧美清纯卡通| 在线观看一区二区三区激情| 欧美日韩综合久久久久久| 国产 一区精品| 国产精品一区二区在线不卡| 亚洲欧美中文字幕日韩二区| 国产大屁股一区二区在线视频| 伦理电影大哥的女人| 日本色播在线视频| 国产成人a∨麻豆精品| 免费在线观看成人毛片| 高清视频免费观看一区二区| 汤姆久久久久久久影院中文字幕| 男女边吃奶边做爰视频| 日韩一区二区三区影片| 人人妻人人爽人人添夜夜欢视频 | 网址你懂的国产日韩在线| 亚洲欧美日韩无卡精品| 欧美zozozo另类| 国产精品久久久久久精品古装| 熟女av电影| 亚洲精品日韩在线中文字幕| 国国产精品蜜臀av免费| 日本黄色片子视频| 国产精品一区二区三区四区免费观看| 美女国产视频在线观看| 中文乱码字字幕精品一区二区三区| 观看免费一级毛片| 亚洲第一区二区三区不卡| 成人国产av品久久久| 一本—道久久a久久精品蜜桃钙片| 男男h啪啪无遮挡| 纯流量卡能插随身wifi吗| 内射极品少妇av片p| 免费人妻精品一区二区三区视频| 国产精品爽爽va在线观看网站| 乱系列少妇在线播放| 日韩一区二区视频免费看| 国产精品一区二区性色av| 亚洲国产欧美在线一区| 久久久久国产精品人妻一区二区| 久久这里有精品视频免费| 你懂的网址亚洲精品在线观看| 一级毛片 在线播放| 能在线免费看毛片的网站| 尤物成人国产欧美一区二区三区| 成人亚洲欧美一区二区av| 黄片wwwwww| 日日摸夜夜添夜夜爱| 精品99又大又爽又粗少妇毛片| 免费大片黄手机在线观看| 久久精品国产自在天天线| 国产黄片视频在线免费观看| 亚洲精品456在线播放app| 亚洲欧美日韩东京热| 26uuu在线亚洲综合色| 高清不卡的av网站| 亚洲精品乱码久久久v下载方式| 三级经典国产精品| 爱豆传媒免费全集在线观看| 一本一本综合久久| 国产欧美日韩精品一区二区| 久久久久久九九精品二区国产| 一级毛片电影观看| 国产精品一二三区在线看| 色婷婷av一区二区三区视频| 亚洲高清免费不卡视频| 日韩视频在线欧美| av播播在线观看一区| 一级二级三级毛片免费看| 国产精品一二三区在线看| 不卡视频在线观看欧美| 亚洲av成人精品一二三区| 亚洲成人手机| av在线app专区| 免费观看在线日韩| 在线观看国产h片| 日本黄色片子视频| 女人久久www免费人成看片| 亚洲国产av新网站| 亚洲国产精品成人久久小说| 80岁老熟妇乱子伦牲交| 欧美亚洲 丝袜 人妻 在线| 深爱激情五月婷婷| 久久久久久久大尺度免费视频| 国产成人精品福利久久| 国产成人91sexporn| 我要看黄色一级片免费的| 高清在线视频一区二区三区| 天堂中文最新版在线下载| 大片电影免费在线观看免费| 久久精品夜色国产| 亚洲,欧美,日韩| 观看av在线不卡| av卡一久久| 涩涩av久久男人的天堂| 亚洲精品亚洲一区二区| 成人漫画全彩无遮挡| 国产精品久久久久久精品古装| 欧美激情极品国产一区二区三区 | 中文字幕久久专区| 深夜a级毛片| av卡一久久| 中文在线观看免费www的网站| 日本黄大片高清| 国产精品免费大片| 国产91av在线免费观看| 两个人的视频大全免费| 丰满迷人的少妇在线观看| 日韩一区二区三区影片| 亚洲色图av天堂| 最近最新中文字幕免费大全7| 亚洲成人一二三区av| 国产精品一区二区三区四区免费观看| 久久人人爽人人爽人人片va| 在线免费观看不下载黄p国产| 欧美日本视频| 我的女老师完整版在线观看| 麻豆成人午夜福利视频| 色综合色国产| 国产成人精品婷婷| 亚洲精品第二区| 亚洲在久久综合| 视频区图区小说| 国语对白做爰xxxⅹ性视频网站| 中文字幕久久专区| 亚洲天堂av无毛| 国模一区二区三区四区视频| 精品视频人人做人人爽| 日本色播在线视频| 亚洲va在线va天堂va国产| 成年女人在线观看亚洲视频| 免费高清在线观看视频在线观看| 91久久精品国产一区二区成人| 国产日韩欧美亚洲二区| 日产精品乱码卡一卡2卡三| 亚洲,一卡二卡三卡| av黄色大香蕉| 午夜福利在线在线| 国精品久久久久久国模美| 伊人久久国产一区二区| av网站免费在线观看视频| 成人漫画全彩无遮挡| 欧美成人午夜免费资源| 制服丝袜香蕉在线| 亚洲,一卡二卡三卡| 亚洲国产毛片av蜜桃av| 黄片无遮挡物在线观看| 亚洲va在线va天堂va国产| 99久久精品一区二区三区| 国产精品福利在线免费观看| 国产成人a∨麻豆精品| 中文字幕久久专区| 亚洲熟女精品中文字幕| av不卡在线播放| 国产又色又爽无遮挡免| 久久久久久久久大av| 国产精品99久久99久久久不卡 | 久久这里有精品视频免费| 亚洲精品日韩av片在线观看| 最近手机中文字幕大全| 91狼人影院| 99热网站在线观看| 国产无遮挡羞羞视频在线观看| 色网站视频免费| 2018国产大陆天天弄谢| 国产91av在线免费观看| 这个男人来自地球电影免费观看 | 天堂8中文在线网| 精品人妻一区二区三区麻豆| 汤姆久久久久久久影院中文字幕| 欧美成人一区二区免费高清观看| a级一级毛片免费在线观看| 最黄视频免费看| 99久国产av精品国产电影| 蜜桃在线观看..| 亚洲av成人精品一二三区| 丝袜脚勾引网站| 看免费成人av毛片| 伦理电影免费视频| 又黄又爽又刺激的免费视频.| 午夜日本视频在线| 国产在视频线精品| 看免费成人av毛片| 久久ye,这里只有精品| 熟妇人妻不卡中文字幕| 欧美精品人与动牲交sv欧美| 亚洲,一卡二卡三卡| 国产免费又黄又爽又色| 草草在线视频免费看| 国产美女午夜福利| 熟女电影av网| 免费观看性生交大片5| 少妇精品久久久久久久| 日韩不卡一区二区三区视频在线| 简卡轻食公司| 国产av码专区亚洲av| 搡老乐熟女国产| av线在线观看网站| 欧美日韩视频精品一区| 亚洲欧美一区二区三区国产| 网址你懂的国产日韩在线| 一级毛片电影观看| 久久国产精品男人的天堂亚洲 | 极品少妇高潮喷水抽搐| 国产精品成人在线| 一本一本综合久久| 三级经典国产精品| 久久久久久久精品精品| 大又大粗又爽又黄少妇毛片口| 精品久久久久久久久亚洲| 国产片特级美女逼逼视频| 91狼人影院| 亚洲自偷自拍三级| 又爽又黄a免费视频| 久久精品人妻少妇| 日韩亚洲欧美综合| 欧美日韩综合久久久久久| 丰满迷人的少妇在线观看| 又黄又爽又刺激的免费视频.| 精品人妻视频免费看| 2021少妇久久久久久久久久久| 国产探花极品一区二区| 日本vs欧美在线观看视频 | 黄色视频在线播放观看不卡| 色5月婷婷丁香| 亚洲怡红院男人天堂| 亚洲欧美清纯卡通| 日韩电影二区| 欧美精品一区二区大全| 又粗又硬又长又爽又黄的视频| 在线 av 中文字幕| 亚洲丝袜综合中文字幕| 这个男人来自地球电影免费观看 | 欧美一级a爱片免费观看看| 免费观看在线日韩| 免费久久久久久久精品成人欧美视频 | 亚洲激情五月婷婷啪啪| 久久久久人妻精品一区果冻| 99热全是精品| 国产成人freesex在线| 亚洲欧美成人综合另类久久久| 婷婷色综合www| 日韩欧美一区视频在线观看 | av又黄又爽大尺度在线免费看| 亚洲成人手机| 久久久a久久爽久久v久久| 国产成人精品久久久久久| 午夜精品国产一区二区电影| 亚洲成人av在线免费| 精品久久久久久久久av| 嘟嘟电影网在线观看| 黄色日韩在线| 亚洲综合色惰| 日本一二三区视频观看| 在线观看一区二区三区激情| 亚洲av日韩在线播放| 男女边吃奶边做爰视频| 久久99热6这里只有精品| 欧美激情国产日韩精品一区| 草草在线视频免费看| 高清欧美精品videossex| 美女中出高潮动态图| 亚洲av欧美aⅴ国产| 精品一区在线观看国产| 超碰97精品在线观看| 国产精品99久久久久久久久| 日韩伦理黄色片| 一区二区三区乱码不卡18| 国产色婷婷99| av免费在线看不卡| 亚洲国产精品国产精品| 亚洲美女视频黄频| 在线亚洲精品国产二区图片欧美 | 亚洲国产高清在线一区二区三| 日本爱情动作片www.在线观看| 小蜜桃在线观看免费完整版高清| 午夜激情久久久久久久| 亚洲国产精品国产精品| 亚洲精品,欧美精品| videossex国产| 日韩视频在线欧美| 精品熟女少妇av免费看| 日本vs欧美在线观看视频 | 一本久久精品| 国产免费又黄又爽又色| 国产爱豆传媒在线观看| 伦理电影免费视频| 18禁动态无遮挡网站| 最近中文字幕2019免费版| 高清av免费在线| 国产视频内射| 久久久久久久久久久免费av| 免费不卡的大黄色大毛片视频在线观看| 日韩 亚洲 欧美在线| 十八禁网站网址无遮挡 | 日韩av免费高清视频| 99热这里只有是精品在线观看| 成人亚洲精品一区在线观看 | 涩涩av久久男人的天堂| 亚洲av男天堂| 久久精品国产a三级三级三级| 五月伊人婷婷丁香| 亚洲av不卡在线观看| 久久99精品国语久久久| 天堂俺去俺来也www色官网| 国产乱人视频| 狂野欧美白嫩少妇大欣赏| 午夜福利在线观看免费完整高清在| 亚洲成人手机| 夫妻性生交免费视频一级片| 美女福利国产在线 | 激情五月婷婷亚洲| 免费看不卡的av| 国产男女内射视频| 日韩一区二区视频免费看| 国产成人精品婷婷| 国产欧美日韩精品一区二区| 婷婷色综合大香蕉| 色婷婷久久久亚洲欧美| 国产高清三级在线| 中文字幕av成人在线电影| 91久久精品国产一区二区三区| 亚洲精品第二区| 黄色一级大片看看| 亚州av有码| 久久精品久久久久久久性| 国产av精品麻豆| 噜噜噜噜噜久久久久久91| 亚洲人成网站在线播| 高清黄色对白视频在线免费看 | 啦啦啦视频在线资源免费观看| 久久国产精品男人的天堂亚洲 | 午夜免费鲁丝| 在线观看人妻少妇| 欧美亚洲 丝袜 人妻 在线| 夜夜骑夜夜射夜夜干| 免费看光身美女| 午夜免费鲁丝| 少妇高潮的动态图| 大片免费播放器 马上看| 国产精品.久久久| 欧美zozozo另类| 黄色一级大片看看| 王馨瑶露胸无遮挡在线观看| 成人亚洲欧美一区二区av| 一区二区三区免费毛片| .国产精品久久| 久久韩国三级中文字幕| 黄色一级大片看看| 欧美成人一区二区免费高清观看| 美女脱内裤让男人舔精品视频| av卡一久久| 人人妻人人澡人人爽人人夜夜| 久久国产亚洲av麻豆专区| 女人久久www免费人成看片| 免费观看无遮挡的男女| 久久久久久久久久人人人人人人| 亚洲婷婷狠狠爱综合网| 高清午夜精品一区二区三区| 国内精品宾馆在线| 22中文网久久字幕| 99热这里只有是精品在线观看| 亚洲精品,欧美精品| 久久99热6这里只有精品| 在线观看免费日韩欧美大片 | 性色avwww在线观看| 日日摸夜夜添夜夜添av毛片| 亚洲精品视频女| 日韩成人av中文字幕在线观看| 国产久久久一区二区三区| 午夜福利网站1000一区二区三区| 日本av手机在线免费观看| 成人综合一区亚洲| 日本色播在线视频| 久久久久精品性色| 久久女婷五月综合色啪小说| 我要看日韩黄色一级片| 成人美女网站在线观看视频| 精品久久久久久久久亚洲| 久久精品夜色国产| 国产有黄有色有爽视频| 校园人妻丝袜中文字幕| 亚洲丝袜综合中文字幕| 亚洲精品色激情综合| 一级av片app| 国产精品久久久久久久电影| 成人无遮挡网站| 国产熟女欧美一区二区| 亚洲国产精品成人久久小说| 亚洲精品日韩在线中文字幕| 国产无遮挡羞羞视频在线观看| 日本色播在线视频| 久久精品国产鲁丝片午夜精品| 十分钟在线观看高清视频www | 精品视频人人做人人爽| 在线观看国产h片| 久久精品国产亚洲av涩爱| 啦啦啦视频在线资源免费观看| 亚洲经典国产精华液单| 最近手机中文字幕大全| 22中文网久久字幕| 欧美3d第一页| 国产精品av视频在线免费观看| 亚洲图色成人| 国产成人精品婷婷| 日日摸夜夜添夜夜添av毛片| 一区二区三区四区激情视频| 老司机影院毛片| 日韩免费高清中文字幕av| 欧美三级亚洲精品| 少妇 在线观看| 亚洲真实伦在线观看| 蜜桃亚洲精品一区二区三区| 成人国产麻豆网| 国产乱人偷精品视频| av又黄又爽大尺度在线免费看| 亚洲丝袜综合中文字幕| 国产综合精华液| 女性生殖器流出的白浆| 亚洲四区av| 亚洲激情五月婷婷啪啪| 晚上一个人看的免费电影| 最新中文字幕久久久久| 国产成人a区在线观看| 亚洲自偷自拍三级| 中文字幕人妻熟人妻熟丝袜美| av免费观看日本| 国产在视频线精品| 日韩国内少妇激情av| 亚洲国产欧美人成| 熟妇人妻不卡中文字幕| 一区二区三区精品91| 中文乱码字字幕精品一区二区三区| 99精国产麻豆久久婷婷| 啦啦啦视频在线资源免费观看| 91狼人影院| 3wmmmm亚洲av在线观看| 国产色婷婷99| 久久热精品热| 国语对白做爰xxxⅹ性视频网站| a级一级毛片免费在线观看| 日韩精品有码人妻一区| 最近的中文字幕免费完整| 国产白丝娇喘喷水9色精品| 自拍欧美九色日韩亚洲蝌蚪91 | 久久久色成人| 人妻一区二区av| 一本色道久久久久久精品综合| 三级国产精品片| 九九在线视频观看精品| 成人影院久久| 亚洲图色成人| 亚洲精品久久久久久婷婷小说| 亚洲国产最新在线播放| 亚洲精品一二三| 色吧在线观看| 久久99热6这里只有精品| 亚洲国产高清在线一区二区三| 亚洲aⅴ乱码一区二区在线播放| 在线精品无人区一区二区三 | 免费少妇av软件| 亚洲欧美日韩无卡精品| 中文乱码字字幕精品一区二区三区| 黄色配什么色好看| 国产精品欧美亚洲77777| 亚洲图色成人| 最黄视频免费看| 久久久久国产精品人妻一区二区| 欧美日韩综合久久久久久| 久久人人爽av亚洲精品天堂 | www.色视频.com| 久久人人爽人人片av| 欧美xxⅹ黑人| 中文字幕精品免费在线观看视频 | 日韩av不卡免费在线播放| 亚洲国产色片| 成人免费观看视频高清| 美女脱内裤让男人舔精品视频| 久久久久人妻精品一区果冻| 亚洲丝袜综合中文字幕| 七月丁香在线播放| 国产亚洲一区二区精品| 亚洲一区二区三区欧美精品| av国产久精品久网站免费入址| 免费观看的影片在线观看| 一个人看的www免费观看视频| 中国国产av一级| 亚洲三级黄色毛片| 精品一区二区免费观看| 超碰97精品在线观看| 亚洲精品aⅴ在线观看| 91精品伊人久久大香线蕉| 91精品一卡2卡3卡4卡| 男女国产视频网站| 国产成人a区在线观看| 亚洲美女视频黄频| 国产无遮挡羞羞视频在线观看| 两个人的视频大全免费| 亚洲高清免费不卡视频| 伦精品一区二区三区| 国产精品欧美亚洲77777| 丝袜喷水一区| 亚洲av成人精品一二三区| 成年免费大片在线观看| 国产精品一区二区性色av| 亚洲婷婷狠狠爱综合网| 日韩国内少妇激情av| 狂野欧美激情性xxxx在线观看| 男人添女人高潮全过程视频| 日韩中文字幕视频在线看片 | 交换朋友夫妻互换小说| 2021少妇久久久久久久久久久| 欧美日韩一区二区视频在线观看视频在线| 亚洲欧美清纯卡通| 大话2 男鬼变身卡| 简卡轻食公司| 亚洲精品自拍成人| 国产视频内射| av免费观看日本| 狠狠精品人妻久久久久久综合| 26uuu在线亚洲综合色| 国产久久久一区二区三区| 99热网站在线观看| 成人美女网站在线观看视频| 日韩av免费高清视频| 少妇的逼水好多| 久久综合国产亚洲精品| 国产欧美亚洲国产| 美女内射精品一级片tv| 夜夜看夜夜爽夜夜摸| 日本欧美国产在线视频| 亚洲av欧美aⅴ国产| 久久人人爽人人片av| 精品人妻视频免费看| 欧美高清性xxxxhd video| 日韩大片免费观看网站| 日韩视频在线欧美| 成人影院久久| 精品少妇黑人巨大在线播放| 国产亚洲午夜精品一区二区久久| 久久精品国产亚洲av天美| 久久久久久久久大av| 国产深夜福利视频在线观看| 女性生殖器流出的白浆| 偷拍熟女少妇极品色| 中文资源天堂在线| 男女国产视频网站| 日韩一区二区视频免费看| 午夜激情久久久久久久| 亚洲av中文字字幕乱码综合| 欧美性感艳星| 久久鲁丝午夜福利片| 2018国产大陆天天弄谢| av国产精品久久久久影院| 午夜免费男女啪啪视频观看| 亚洲自偷自拍三级| 99久久精品一区二区三区| 精品少妇久久久久久888优播| 欧美区成人在线视频| 少妇人妻精品综合一区二区| 亚洲av男天堂| 成人综合一区亚洲| 精品一区在线观看国产| 精品少妇黑人巨大在线播放| 亚洲国产最新在线播放| 日韩av在线免费看完整版不卡| 欧美 日韩 精品 国产| 亚洲精品色激情综合| 欧美日本视频| 国产高清有码在线观看视频| 精品一区二区三卡| 国产精品欧美亚洲77777| 精品一品国产午夜福利视频| 中国国产av一级| 色综合色国产| 美女福利国产在线 | 国产精品无大码| 中文在线观看免费www的网站| 国产视频首页在线观看| 亚洲人成网站在线观看播放| 丰满迷人的少妇在线观看| 成人免费观看视频高清| 婷婷色综合www| 久久久久久九九精品二区国产| 国产黄色视频一区二区在线观看| 欧美日韩视频精品一区| 国产在线一区二区三区精| 高清毛片免费看| 91精品国产九色| 久久人妻熟女aⅴ| 国产人妻一区二区三区在| 精品人妻视频免费看| 极品少妇高潮喷水抽搐| 国产精品免费大片| 免费看日本二区| h日本视频在线播放| 夜夜骑夜夜射夜夜干| 成人毛片a级毛片在线播放|