• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Suboptimal Robust Stabilization of Discrete-time Mismatched Nonlinear System

    2018-01-26 03:50:56NiladriSekharTripathyIndraNarayanKarandKolinPaul
    IEEE/CAA Journal of Automatica Sinica 2018年1期

    Niladri Sekhar Tripathy,Indra Narayan Kar,,and Kolin Paul,

    I.INTRODUCTION

    REQUIREMENT of exact system model to design a feedback control law is the primary shortcoming of the classical feedback control technique.An uncertain system model is a more realistic representation and has far greater significance over the exact system model.However,there are open problems of designing a control law to deal with system uncertainties.To deal with parametric uncertainty,F.Lin and D.Wanget al.have proposed a continuous-time robust control technique for both linear and nonlinear system[1]?[5].In both the cases,they have formulated an equivalent optimal control problem to derive the proposed robust control input.The optimal control problem is solved based on the nominal dynamics by minimizing a quadratic cost-functional with the know ledge of uncertainty bound.Similar concepts are used for nonlinear continuous system in[6],[7],where a non-quadratic cost-functional is considered.The discrete-time version ofthe proposed robust-optimal control approach is still an open problem.Recently,Wanget al.[8]have extended the Lin’s approach[1]?[3]for a discrete-time nonlinear system.To realize the robust control law,the assumption in their work is that the physical system is affected by matched uncertainty(i.e.,uncertainty is in the range space of input matrix[9]?[11]).But there are several physical systems like maglev suspension system[12],[13],aircraft engine system[14],the movement control of truck-trailer problem[15],where the so-called matching condition does not hold.Therefore considering mismatched uncertainty in both state and input functions is a more realistic control problem.In general,it is known that the existence of stabilizing control law can be guaranteed for matched uncertainty but not so form is matched system.

    In this paper,a discrete-time robust control technique for uncertain nonlinear system is proposed.The system is primarily affected by mismatched uncertainty due to bounded parametric variation.To stabilize such systems,a robust control law is derived by solving a nonlinear optimal control problem for nominal virtual system with a cost-functional.To solve the nonlinear optimal control problem,the solution of a discretetime general Hamilton-Jacobi-Bellman (DT-GHJB) equation is approximated using a neural network implementation.Based on the approximated solution of DT-GHJB,the cost-functional and control inputs are estimated.The block diagram representation of proposed control approach is shown in Fig.1.

    Fig.1.The block diagram of proposed discrete-time robust control technique is shown in this figure.Here notations and represent the system’s state and two estimated control inputs,respectively.Using NN based approximation technique,the estimated cost-functional converges to its optimal costUsingthe optimal inputsandare computed.Inputis applied to the nonlinear uncertain system to solve the robust control problem.

    Mathematical analysis is done to prove the stability of the uncertain system by applying the approximated suboptimal control inputs.Finally,numerical results are reported to prove the efficacy of the proposed control algorithm.The key contributions of this work are:

    1)A robust control algorithm is proposed for a discrete time nonlinear system with mismatched uncertainty.A robust control law is derived by formulating an equivalent optimal control problem for a nominal virtual system with a quadratic cost-functional.The virtual dynamics have two control inputsuandv.The concept of virtual inputvis used to derive the existence of stabilizing control inputu.The virtual inputvhelps to tackle the mismatched uncertainty.The proposed robust control law ensures asymptotic convergence of uncertain closed-loop system.

    2)An optimal solution of a DT-GHJB equation is approximated through a NN implementation,to solve the nonlinear optimal control problem.The approximated inputs ensure the asymptotic convergence of uncertain states both analytically and numerically.The convergence of both the NN weight and cost-functional are also shown through the simulation results.

    3)This paper also shows that some of the existing results[8]of matched system are special cases of the proposed results.

    Notation&Definitions:The symbol‖x‖denotes the Euclidean norm of a vectorx∈Rn.The Rnrepresents thendimensional Euclidean real space and Rn×mis a set of all(n×m)real matrices.The notationsandX Tdenote the negative definiteness,inverse and transpose of matrixX,respectively.TheIis used to represent an identity matrix.The minimum and maximum eigenvalue of symmetric matrixP∈Rn×nare represented by the notationsλmax(P)andλmin(P),respectively.The number of iteration for discrete-time system is represented byk.Thekthinstant state and control input for a discrete-time system are denoted byxkanduk.A set ? is used to denote a continuous Lipschitz compact set where statexk(including the initial points)satisfy the conditionxk∈?[16].To prove the theoretical results,following definition is used in this paper.

    Definition 1[17],[18]:Consider a nonlinear discrete-time system as

    wherexk∈Rnanduk∈Rmare system state and input vector respectively.The functionsf(xk)andg(xk)are continuous nonlinear functions andf(xk)+g(xk)uk(xk)is Lipschitz continuous on a set ? including the origin.The control inputuk(xk)ensures the asymptotic convergence of closed loop system(1),?xk∈?.Let ?uis a set of admissible control inputs and inputukminimizes the cost-functional

    Then,the control inputukis considered as an admissible(i.e.,uk∈?u)with-respect to its state penalty functionand control energy penalty functionuTk Ruk,?xk∈?,if the following conditions hold:

    1)?xk∈?,inputuk(xk)is continuous;

    2)uk(0)=0;

    3)ukmust stabilizes(1)for?xk∈?;

    II.ROBUST CONTROL DESIGN

    System Description:A discrete-time uncertain nonlinear system is described by the state equation in the form

    wherexk∈Rnis the state anduk∈Rmis the periodic control input andf∈Rn,g∈Rn×mare the nonlinear functions.It is assumed that(3)is Lipschitz continuous on a compact set ?∈Rnand origin is the equilibrium point,i.e.,f(0)=0 andg(0)=0.The unknown functiond(xk)∈Rnis used to represent the system uncertainty and it is always upper bounded by a known functiondmax(xk),that is

    Generally system uncertainties are classified as matched and mismatched uncertainty and they are defined as follows[3],[8]?[10].

    Definition 2:System(3)suffers through the matched uncertainty if the uncertaintyd(xk)satisfy the following

    whereφ(xk)is the unknown function andUmatchedis the upper bound of‖φ(xk)‖.In other words,d(xk)is in the range space ofg(xk).

    Definition 3:System(3)has mismatched uncertainty if the uncertain componentd(xk)is not in the range space of input matrixg(xk).

    For the simplification,uncertainty can be decomposed in matched and m ismatched component as follows

    whereandare the matched and mismatched components respectively.The matrixg(xk)+=(gT(xk)g(xk))?1g(xk)Tdenotes the left pseudo inverse of matrixg(xk)[19]andSis a scaling matrix whereS/=g(xk).For a matrixS=g(xk),the uncertainty(7)reduces to a matched one as defined in(5).The decomposition of uncertainty into a matched and mismatched components will be used to define a nominal virtual system for(3)which is discussed in the subsequent subsection.

    Problem Statement:Design a state feedback control lawuk=K(xk),to stabilize the discrete-time uncertain nonlinear system(3),such that the closed-loop system is asymptotically stable in the presence of uncertainty(7).

    Proposed Solution:This problem is solved in two steps.First,the controller is designed by adopting nonlinear optimal control theory and then an algorithm is used to approximate the solution of DT-GHJB equation.The approximate solution of DT-GHJB equation is used to compute the stabilizing and virtual control inputsukandvk,respectively.

    Robust Control Problem:Design a state feedback control lawuk=K(xk)such that the uncertain closed-loop system(3)is asymptotically stable? ‖d(xk)‖≤dmax(xk).In order to stabilize(3),the robust control lawukis designed using an optimal control approach.

    Optimal Control Approach:The key idea is to design a discrete-time nonlinear optimal control law for virtual nominal system by minimizing a cost-functionalJ,which depends on the upper-bound of system uncertainty.An extra term(I?g(xk)g(xk)+)Sv(k)is added with the nominal dynamics of(3)to define a virtual system(8).The derived optimal input for virtual system is shown to be a robust input for original uncertain system.The virtual nominal dynamics and cost-functional for solving robust control problem are given below:

    where matricesandR2>0.Herevmaxis a scalar.

    Inspired by the results reported in[20]and[21],the discrete-time HJB(DT-HJB)equation for(8)with the optimal cost-functionalof(9)is

    Using(10),the optimal control input for(8)is

    LetV(xk)be a positive definite continuously differentiable function,which satisfiesV(x0)=J(x0,u).Applying Taylor series expansion of the cost-functional,the DT-HJB(10)reduces to discrete-time general HJB as in[21]

    That meansandwhich correspond to

    The scalarV?(xk)is the optimal value ofV(xk)and it satisfies equation(12).After further simplification,from(14)and(15),the optimal inputs are

    To address the stability issue of virtual nominal system(8)by applying the optimal inputs(16),following Lemma is used.

    Lemma 1:Suppose there exists a Lyapunov functionV(xk)for(8)and DT-GHJB(12)is satisfied.Then the optimal inputsanddefined in(16)ensure the asymptotic convergence of virtual nominal system(8).

    Proof:ConsiderV(xk)is a Lyapunov function for(8).Using(12),the ΔV(xk)=Vk+1?Vkreduces to

    The negative-definiteness of ΔValong the solution of(8)proves the asymptotic stability of(8)through the inputs(16).

    Remark 1:In DT-GHJB,the derivative of cost-functional is linearly related but it is nonlinear for DT-HJB.As a result,solving DT-GHJB corresponds to solving a linear partial difference equation.This makes the DT-GHJB computationally easier to solve than the DT-HJB.However it is still difficult to achieve a closed form solution as it is a partial difference equation.

    Now,the control inputs(16)can be computed if the matrix

    is invertible.HereR1,R2and??2Vare the positive definite matrices.So the sub-matrixis positive definite asand henceNow a suitable selection of design matricesR1andR2helps to satisfy condition 2).

    The realization of optimal control inputs(16)depend on the solution of DT-GHJB(12).In the next section,a brief description of NN based approximation technique is discussed to achieve the estimated solution of(12)which helps to design the optimal inputs(16).

    A.NN Based Approximation Using Least Squares Approach

    Neural network(NN)has universal function approximation property.Using this approximation property,several researchers have used NN to approximate the solution of HJB orGHJB as reported in[6],[20]and[21].The key aim of this section is to approximate the optimal cost functionalV?(xk),using a NN based algorithm.Applying NN based algorithm,the cost-functionalis approximated as.The estimated cost functionalis used to compute the approximate control inputs?ukand?vk.To estimateusing NN,the basis functionand weight vectorare selected.The scalarldenotes the number of hidden layers in the NN.The selection of activation function depends on the following polynomial[17],[18]

    whereLandnrepresent the order of approximation and the dimension of the system respectively.The equation(19)corresponds to the activation function for a 2-dimensional system as

    The selected basis functionσ(xk)is smooth and continuous moreover it also holds the propertyσ(0)=0,?xk=0.Applying the basis functionσ(xk)and NN weight?w,the estimated cost functional reduces to

    with a residual error(er)

    This helps to derive the weight update law with least square error minimizing rule as

    whereXandYare defined as(23)and(24),shown at the bottom of this page.

    Using estimated weight(22),the cost-functional is also estimated by applying(20).The estimated cost-functional(20)is applied to derive the approximated control inputsandAn algorithmic representation of numerical steps to achieve the suboptimal inputsandis given next.

    Remark 3:Given admissible control inputsu0∈?uandv0∈?v,the solutionof DT-GHJB(12)iteratively converges to its optimal solutionV?by updating the control inputs using(25).This claim can be proved analytically using the results reported in[17],[21].

    B.Stability of Uncertain Systems Using Approximate Inputs

    The derived approximated optimal inputs(26)for(8)ensure the asymptotic stability of uncertain system(3).This information is stated as a theorem in Algorithm 1.

    Theorem 1:Suppose there exists a continuously differentiable positive function?V?(xk)which satisfies(12)with the inequality

    The approximated optimal control inputdefined in(26)for(8)will be the robust solution of unmatched system(3)if the following condition holds

    Algorithm 1 Optimal inputs using NN based approximation

    Proof of Theorem 1:LetV(xk)is the solution of(12)and it is approximated asusing the estimated inputs(26).The approximated solution?V?(xk)and inputs(26)also satisfy the following equation

    Now,with the control inputs(26),the difference ofalong the solution of(3)is

    Using(7)in(30),the following is obtained

    where matrixN=g+S.After further simplification,equation(26)can be rewritten as

    Applying(29),(32)and(33)in(31),is simplified as

    After further simplificationreduces to

    The proposed robust control framework considers the general system uncertainty,which includes both matched and mismatched component.Without mismatched part,system(3)reduces to matched system(defined in(5)),i.e.

    Moreover,due to the absence of mismatched part,the virtual control inputvkis not necessary in(8)and(9).Therefore the nominal system and cost-functional for(35)reduce to

    where

    As a special case of Theorem 1,Corollary 1 is introduced for matched system.

    Corollary 1:Suppose there exists a continuously differentiable positive functionwhich satisfies

    Then the designed optimal control input

    for(36)which minimizes(37)is also a robust solution of(35)if the uncertaintyd(xk)satisfies the following bound

    Proof:Due to space limitation,the proof of this corollary is omitted.

    C.Robustness With Input Uncertainty

    The proposed framework can be extended in the presence of input uncertainty.A system with mismatched input uncertainty is described as

    where functiond(xk)is the bounded uncertainty affecting the input functiong(xk).To design the robust control input the virtual nominal system(8)and cost-functional(9)are considered.To tackle the mismatched uncertainty in input function,the optimal control problem is solved for(8)and(9)with the control inputs(26).The following theorem states the robust problem under presence of input uncertainty.

    Theorem 2:Suppose there exists a continuously differentiable positive function?V?(xk)which satisfies(29)with the inequality

    The approximate optimal control inputdefined in(26)for(8)which minimizes(9)will be the robust solution of(41)if the following condition holds

    Proof:The proof of this theorem is similar to the proof of Theorem 1.

    Remark 4:It is observed that the DT-HJB(10)is approximated using Taylor series expansion and it reduces to DTGHJB(12).Due to this approximation,the optimal input(11)is converted to near optimal input(16).The approximated virtual inputis not used to stabilize system(3)but it is used to design theThe inputis used to verify the condition(28).

    D.Comparison With Existing Results

    This subsection compares the main results of this paper with the existing work reported in[8].In 2016,D.Wanget al.have proposed an approximate optimal control based robust control technique for discrete-time nonlinear system.To realize the robust control law,they have considered that the system is affected by matched uncertainty.For the purpose of comparison with the results described in[8],the mismatched component of the uncertainty is neglected.It is observed that without mismatched component,the virtual inputvkis not necessary.Therefore without virtual inputvk,the nominal dynamics and cost-functional defined in this paper are in a form similar to that as mentioned in[8].

    So the results reported in[8]can be recovered as a special case of the proposed work.To solve the nonlinear optimal control problem,a NN based approximation technique is adopted from[8],[21].But,the presence of control inputvkin nominal system(8)modifies the DT-HJB equation reported in[8],[21].To tackle the mismatched uncertainty,the cost functional(9)consists of two extra terms asandThese two extra terms directly affect the computation of matricesXandYas mentioned in(23)and(24)respectively.Moreover,the computation of approximated cost functional?V?also depends on both the control inputsandThe absence of virtual inputvkin[8],[21],makes it easy to compute?V?.

    III.ADDITIONAL RESULTS

    A discrete-time linear system with state uncertainty is described as

    whereAandBare state and input matrices.The uncertain matrixaffects the system due to bounded variation of the uncertain parameterp.The uncertainty is bounded by a known matrixFand it is defined as

    where matrixPis a positive-definite matrix.To solve the robust control problem,the virtual nominal system and cost functional are selected as

    where matrixM=(I?BB+)S.With a quadratic Lyapunov functionV?(x)=xTk Pxk,the gradient vector and Hessian matrix can be expressed as?V=2Pxkand?2V=2P.For the system(46),with a cost-functional(47),the DT-GHJB is

    After further simplification,equation(48)reduces to

    The optimal control inputsandare

    where matricesKandLare the controller gains.It is observed that the equation(49)is a discrete-time Algebraic Riccati equation(DT-ARE).Therefore the DT-ARE related with the optimal control problem for a linear system can be recovered from the proposed DT-GHJB(12).To address the robust control problem for the linear system(44),following lemma is included.

    Lemma 2:Suppose their exists a positive definite solutionPof Riccati equation(49).The optimal input(50)ensures the asymptotic convergence of uncertain closed-loop system(44)for all bounded variation of uncertain parameterp,if it satisfies the inequalities(45)andwhereAc=A+BK.

    Proof:Proof of this Lemma is omitted.

    IV.RESULTS

    The section uses a numerical example to validate the proposed control algorithm.Consider a state space form of uncertain discrete-time nonlinear system as(3)where functionsf(xk),g(xk)andφ(xk)are defined as

    wherepis the uncertain parameter.This system has mismatched uncertainty and hence the results of[8]are not applicable.To solve the optimal control problem for virtual nominal system,the design parametersQ=I,R1=0.5IandR2=0.5Iare selected.The scaling matrixSis selected asS= £0.1 0.2?T.The upper bound of uncertaintyd(xk),defined in(4)is considered asdmax=‖xk‖2.The parameterpcan vary within?0.5 to 0.5.To estimate the optimal cost function through the NN realization,the NN is constructed as

    The mesh pointρ=6 and mesh size Δx=0.01 are selected.For simulation,the initial admissible control inputsu0=x1+1.5x2andv0=0.049x1are used.The simulation is carried out in MATLAB simulation platform for 10 iterations with the initial states[0.5,?0.5]T.After 5 iterations,the NN weightwconverges to

    Analysis of Simulation Results:Fig.2(a)shows that the system has converged to its equilibrium point through the admissible control inputsu0.Figs.3(a)and 3(b)show the convergence of NN weight and approximated value function.In Fig.2(b),the systems state trajectories reach their equilibrium point in-spite-of uncertainty.The simulation results show that the proposed robust suboptimal control technique guarantees the closed-loop stability in presence of mismatched uncertainty.The variation of stabilizing inputand virtual inputis shown in Figs.4(a)and 4(b).

    Now,for a selection of the scaling matrixS=g(xk),the same example is solved numerically.This selection converts them is matched system(3)to a matched system as defined in(35).The closed loop behavior of(35),is shown in Fig.5a and 5b which replicates the results of matched system as stated in[8].

    Fig.2.Results of proposed robust control technique.(a)Convergence of state trajectory(x1,x2)with the initial admissible control inputs u0 and v0 for p=0.(b)Convergence of state trajectory(x1,x2)with the designed robust control input?u?k for p=0.5.

    Fig.3.Results of NN based approximation.(a)Convergence of norm of weight vector(‖?w‖).(b)Convergence of approximated cost-functional.

    Fig.4.Convergences of control inputs.(a)Convergence of approximated control input(b)Convergence of approximated virtual input

    Fig.5.Results for matched uncertain system.(a)Convergence of system states with matched uncertainty for p=0.5.(b)Convergence of approximated control input for matched system.

    V.CONCLUSION

    A discrete-time robust control technique for an uncertain nonlinear system is proposed in this paper.It is considered that the system is primarily affected by mismatched uncertainty.The control law is designed by formulating an optimal control problem for a virtual nominal system with a modified cost functional.The virtual input is defined to design the stabilizing controller gain along with the stability condition.An analytical proof for ensuring asymptotic convergence of closed-loop uncertain system is also given.A comparative study between existing and proposed results is also reported.This paper has several promising future research directions.Few of them are discussed below.

    The proposed control algorithm can be applied in several application and can also be extended to networked control system where subsystems are interconnected by a digital network[25].To address this problem,coupled DT-HJB equation can be formulated[26].The proposed control framework can also be treated as a differential game problem by considering control inputsukandvkas maximizing and minimizing inputs[27].

    [1]F.Lin,“An optimal control approach to robust control design”,Int.J.Controlvol.73,no.3,pp.177?186,2000.

    [2]F.Lin and R.D.Brandt,“An optimal control approach to robust control of robot manipulators”,IEEE Trans.on Robot.and Automat.,vol.14,no.1,pp.69?77,1998.

    [3]F.Lin,W.Zhang and R.D.Brandt,“Robust hovering control of a PVTOL aircraft”,IEEE Trans.on Control Syst.Technol.,vol.7,no.3,pp.343?351,1999.

    [4]D.Wang,D.Liu,Q.Zhang,and D.Zhao,“Data-based adaptive critic designs for nonlinear robust optimal control with uncertain dynamics”,IEEE Trans.on Syst.Man and Cybern.:Syst.,pp.1?12,2016.

    [5]D.Wang,D.Liu,and H.Li,“Policy iteration algorithm for online design of robust control for a class of continuous-time nonlinear systems.”IEEE Trans.Autom.Sci.Eng.,vol.11,no.2,pp.627?632,2014.

    [6]D.M.Adhyaru,I.N.Karand M.Gopal,“Fixed final time optimal control approach for bounded robust controller design using Hamilton Jacobi Bellman solution”,IET Control Theory and Appl..vol.3,no.9,pp.1183?1195,2009.

    [7]D.M.Adhyaru,I.N.Kar and M.Gopal,“Bounded robust control of systems using neural network based HJB solution”,Neural Comput and Applic,vol.20,no.1,pp.91?103,2011.

    [8]D.Wang,D.Liu,H.Li,B.Luo and H.Ma,“An approximate optimal control approach for robust stabilization of a class of discrete-time nonlinear systems with uncertainties”,IEEE Trans.on Syst.Man and Cybern.:Syst.,vol.46,no.5,pp.1?5,2016.

    [9]IR Petersen,“Structural stabilization of uncertain systems:necessity of the matching condition”,SIAM J.Control Optim.,vol.23,no.2,pp.286?296,1985.

    [10]I.N.Kar,“Quadratic stabilization of a collection of linear systems”,Int.J.Syst.Sci.,vol.33,no.2,pp.153?160,2002.

    [11]Y.A.R.I.Mohamed,“Design and implementation of a robust current control scheme for a PMSM vector drive with a simple adaptive disturbance observer”,IEEE Trans.Ind.Electron.,vol.54,no.4,pp.1981?1988,2007.

    [12]H.W.Lee,K.C.Kim,and J.Lee,“Review of maglev train technologies”,IEEE Trans.Magn.,vol.42,no.7,pp.1917?1925,2006.

    [13]J.Yang,S.Li and X.Yu,“Sliding-mode control for systems with mismatched uncertainties via a disturbance observer”,IEEE Trans.Ind.Electron.,vol.60,no.1,pp.160?169,2013.

    [14]L.Ma,Z.Wang,Y.Bo and Z.Gua,“RobustH∞sliding mode control for nonlinear stochastic systems with multiple data packet losses”,Int.J.Robust&Nonlin.Control,vol.22,no.5,pp.474?491,2012.

    [15]Y.Zheng,G.M.Dimirovski,Y.jing and M.Yang,“Discrete-time sliding mode control of nonlinear systems”,American Control Conf.,New York City,USA.pp.3825?3830,2007.

    [16]H.K.Khalil,Nonlinear Systems,Prentice Hall,3rd Edition,New Jersey,2002.

    [17]J.Sarangapani,“Neural network control of nonlinear discrete-time systems”,CRC press,Florida,USA,2006.

    [18]R.W.Beard,“Improving the closed-loop performance of nonlinear systems.”Ph.D.diss.,Rensselaer Polytechnic Institute,1995.

    [19]R.A.Horn and C.R.Johnson,Matrix Analysis,Cambridge University Press,Cambridge,UK.1990.

    [20]A.Al-Tamini,F.L.Lew is and M.Abu-Khalaf,“Discrete-time nonlinear HJB solution using approximate dynamic programming:Convergence Proof”,IEEE Trans.on Syst.,Man and Cybern.B:Cybern.,vol.38,no.4,pp.943?949,2008.

    [21]Z.Chen and S.Jagannathan,“Generalized Hamilton-Jacobi-Bellman formulation-based neural network control of affine nonlinear discrete time systems”,IEEE Trans.on Neural Netw.,vol.19,no.1,pp.90?106.2008.

    [22]D.S.Naidu,Optimal control systems,CRC press,India,2009.

    [23]I.N.Imam,“The Schur complement and the inverseM-matrix problem”,Linear Algebra and its Appl.,vol.62,pp.235?240,1984.

    [24]B.A.Finlayson,“The method of weighted residuals and variational principles”,Academic Press,New York,USA,1972.

    [25]N.S.Tripathy,I.N.Kar,and K.Paul,“Stabilization of uncertain discrete-time linear system with limited communication”,IEEE Trans.Autom.Control,vol.62,no.9,pp.4727?4733,2017.

    [26]Z.Gajic and M.T.J.Qureshi,“Lyapunov matrix equation in system stability and control”,Dover Publication,New York,USA.2008.

    [27]I.R.Petersen,“Linear quadratic differential games with cheap control”,Syst.&Control Lett.,vol.8,pp.181?188,1986.

    免费看光身美女| 色哟哟哟哟哟哟| 成年女人看的毛片在线观看| 3wmmmm亚洲av在线观看| 亚洲精品国产成人久久av| 久久九九热精品免费| 欧美日韩亚洲国产一区二区在线观看| 国产精品亚洲美女久久久| 身体一侧抽搐| 变态另类丝袜制服| 亚洲四区av| 日韩欧美在线二视频| 日本熟妇午夜| 无遮挡黄片免费观看| 亚洲最大成人av| 乱系列少妇在线播放| 国产 一区 欧美 日韩| 网址你懂的国产日韩在线| 日本色播在线视频| 日韩欧美免费精品| 99热这里只有是精品在线观看| 窝窝影院91人妻| 午夜福利在线观看免费完整高清在 | 日韩欧美国产在线观看| 成年女人看的毛片在线观看| АⅤ资源中文在线天堂| 亚洲人与动物交配视频| 韩国av一区二区三区四区| av福利片在线观看| 免费av不卡在线播放| 三级男女做爰猛烈吃奶摸视频| 亚洲精华国产精华液的使用体验 | 丰满的人妻完整版| 亚洲熟妇熟女久久| а√天堂www在线а√下载| 日韩欧美精品免费久久| 久久精品国产亚洲网站| 色av中文字幕| 国产色婷婷99| 一个人看视频在线观看www免费| 国产精品1区2区在线观看.| 欧美bdsm另类| a级毛片a级免费在线| 久久6这里有精品| 午夜亚洲福利在线播放| 成人精品一区二区免费| av在线老鸭窝| 国产真实伦视频高清在线观看 | 国产精华一区二区三区| 在线看三级毛片| 欧洲精品卡2卡3卡4卡5卡区| 亚洲三级黄色毛片| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲中文字幕日韩| 亚洲国产精品sss在线观看| 精品午夜福利在线看| 两个人视频免费观看高清| 午夜精品久久久久久毛片777| 蜜桃亚洲精品一区二区三区| av福利片在线观看| 国产高清视频在线观看网站| 非洲黑人性xxxx精品又粗又长| a级一级毛片免费在线观看| 国产高潮美女av| 亚洲18禁久久av| 精品欧美国产一区二区三| 精品久久久噜噜| 一进一出抽搐gif免费好疼| 哪里可以看免费的av片| 亚洲成a人片在线一区二区| 搡老熟女国产l中国老女人| 最好的美女福利视频网| 99久久无色码亚洲精品果冻| 淫妇啪啪啪对白视频| 国产极品精品免费视频能看的| 欧美黑人欧美精品刺激| x7x7x7水蜜桃| 亚洲va日本ⅴa欧美va伊人久久| av国产免费在线观看| 日韩av在线大香蕉| 观看免费一级毛片| 91午夜精品亚洲一区二区三区 | 欧美激情久久久久久爽电影| 国产精品,欧美在线| 桃红色精品国产亚洲av| 中文字幕高清在线视频| 国产一区二区三区av在线 | 中文字幕熟女人妻在线| 国产精品久久久久久久久免| 成年版毛片免费区| 国产精品,欧美在线| 国内精品宾馆在线| 中文资源天堂在线| 国产伦精品一区二区三区视频9| 亚洲精品久久国产高清桃花| 成人一区二区视频在线观看| 午夜福利18| 男女之事视频高清在线观看| 国产 一区 欧美 日韩| 日本黄大片高清| 国产黄a三级三级三级人| 能在线免费观看的黄片| 国内精品一区二区在线观看| 免费不卡的大黄色大毛片视频在线观看 | 一进一出抽搐动态| 免费看光身美女| 国内揄拍国产精品人妻在线| 日韩高清综合在线| 午夜免费男女啪啪视频观看 | 偷拍熟女少妇极品色| 男人狂女人下面高潮的视频| 国产视频一区二区在线看| 国产精品一区二区三区四区久久| 18禁黄网站禁片午夜丰满| 韩国av一区二区三区四区| 亚洲成人中文字幕在线播放| 亚洲四区av| 免费一级毛片在线播放高清视频| 日韩精品青青久久久久久| 欧美一区二区亚洲| 色尼玛亚洲综合影院| 日本黄色视频三级网站网址| 我要看日韩黄色一级片| 中文字幕免费在线视频6| 国产精品亚洲一级av第二区| АⅤ资源中文在线天堂| 色av中文字幕| 欧美一区二区精品小视频在线| 听说在线观看完整版免费高清| 婷婷丁香在线五月| 一级黄色大片毛片| 国产精品日韩av在线免费观看| xxxwww97欧美| 精品不卡国产一区二区三区| 欧美性猛交黑人性爽| 一级av片app| 老熟妇乱子伦视频在线观看| 国产一区二区激情短视频| 成人鲁丝片一二三区免费| 国产精品98久久久久久宅男小说| 亚洲精品色激情综合| 乱系列少妇在线播放| 国产伦一二天堂av在线观看| 国产精品久久久久久精品电影| 日本欧美国产在线视频| 韩国av一区二区三区四区| 最新中文字幕久久久久| av女优亚洲男人天堂| 久久久久免费精品人妻一区二区| 香蕉av资源在线| 精品一区二区三区视频在线| 成人国产综合亚洲| 国产高清视频在线观看网站| 婷婷丁香在线五月| 不卡一级毛片| 搡老妇女老女人老熟妇| 亚洲在线自拍视频| 久久国产乱子免费精品| 久久午夜亚洲精品久久| 韩国av一区二区三区四区| 91av网一区二区| 精品久久久久久久末码| 赤兔流量卡办理| 精品久久久久久久久亚洲 | 男人舔奶头视频| 亚洲七黄色美女视频| 国产aⅴ精品一区二区三区波| 国产精品综合久久久久久久免费| 丝袜美腿在线中文| 精品欧美国产一区二区三| 女人被狂操c到高潮| 天堂av国产一区二区熟女人妻| 国产爱豆传媒在线观看| 亚洲av成人av| videossex国产| 亚洲久久久久久中文字幕| 精品久久久久久久久久久久久| 成人一区二区视频在线观看| 欧美区成人在线视频| 男人舔女人下体高潮全视频| 热99在线观看视频| 久久久久久国产a免费观看| 美女xxoo啪啪120秒动态图| 天天躁日日操中文字幕| 中文字幕免费在线视频6| 成人高潮视频无遮挡免费网站| 国产精品无大码| 国产精品女同一区二区软件 | 国产爱豆传媒在线观看| 免费电影在线观看免费观看| 成年免费大片在线观看| 亚洲一区二区三区色噜噜| 国产一区二区三区在线臀色熟女| 老女人水多毛片| 人人妻,人人澡人人爽秒播| 啪啪无遮挡十八禁网站| 国产激情偷乱视频一区二区| 色综合亚洲欧美另类图片| 日韩 亚洲 欧美在线| 欧美不卡视频在线免费观看| 露出奶头的视频| 日韩欧美在线二视频| 91久久精品电影网| 嫩草影院入口| 国产伦精品一区二区三区四那| 色噜噜av男人的天堂激情| 久久久国产成人免费| 搞女人的毛片| 国国产精品蜜臀av免费| 老师上课跳d突然被开到最大视频| 国产精品久久久久久亚洲av鲁大| 国产亚洲精品久久久com| 亚洲午夜理论影院| 美女黄网站色视频| 99在线视频只有这里精品首页| 联通29元200g的流量卡| 精品一区二区三区视频在线观看免费| 他把我摸到了高潮在线观看| 夜夜爽天天搞| 极品教师在线视频| 欧美人与善性xxx| 精品久久久久久,| 免费大片18禁| 日本黄色片子视频| 国产亚洲精品综合一区在线观看| 亚洲精品在线观看二区| 嫩草影院精品99| 桃色一区二区三区在线观看| 国产精品不卡视频一区二区| 国产三级在线视频| 天美传媒精品一区二区| 人妻久久中文字幕网| 婷婷精品国产亚洲av| 色吧在线观看| 99在线视频只有这里精品首页| 赤兔流量卡办理| 亚洲成人精品中文字幕电影| 成人av在线播放网站| 成人国产综合亚洲| 一级毛片久久久久久久久女| 赤兔流量卡办理| 他把我摸到了高潮在线观看| 一卡2卡三卡四卡精品乱码亚洲| 成人av一区二区三区在线看| 午夜福利视频1000在线观看| 欧美最新免费一区二区三区| 日日干狠狠操夜夜爽| 啦啦啦观看免费观看视频高清| 五月伊人婷婷丁香| 日本黄色片子视频| 两个人的视频大全免费| 日本 欧美在线| 午夜日韩欧美国产| 国产欧美日韩精品亚洲av| 欧美中文日本在线观看视频| 伦精品一区二区三区| 日本一本二区三区精品| 韩国av一区二区三区四区| 久久人人精品亚洲av| 久久精品综合一区二区三区| 麻豆国产av国片精品| 色综合婷婷激情| 无遮挡黄片免费观看| 69人妻影院| 18禁黄网站禁片午夜丰满| 人妻丰满熟妇av一区二区三区| 亚洲中文字幕日韩| 亚洲精品色激情综合| 亚洲成人久久爱视频| 午夜免费男女啪啪视频观看 | 国产一区二区三区视频了| 色哟哟·www| 在线看三级毛片| 亚洲国产精品合色在线| 热99在线观看视频| 国内精品宾馆在线| 久久久久久久久中文| 久久国产乱子免费精品| 嫩草影院入口| 日韩大尺度精品在线看网址| 免费看a级黄色片| 成人午夜高清在线视频| 内地一区二区视频在线| 国产精品久久久久久亚洲av鲁大| 午夜爱爱视频在线播放| 精品一区二区三区人妻视频| 桃红色精品国产亚洲av| 在线观看免费视频日本深夜| 日本爱情动作片www.在线观看 | 久久精品人妻少妇| 国产人妻一区二区三区在| 在线观看免费视频日本深夜| 久久久久久久精品吃奶| 少妇熟女aⅴ在线视频| 日韩强制内射视频| 午夜视频国产福利| 亚洲熟妇熟女久久| 精品国内亚洲2022精品成人| 亚洲18禁久久av| 久久精品国产鲁丝片午夜精品 | 亚洲人成网站高清观看| 一a级毛片在线观看| xxxwww97欧美| 日日啪夜夜撸| 少妇人妻精品综合一区二区 | 国产精品野战在线观看| 国产欧美日韩精品亚洲av| 日韩欧美国产在线观看| 亚洲av.av天堂| 亚洲人成网站在线播| av在线观看视频网站免费| 久久久久久久久中文| 精品人妻偷拍中文字幕| 午夜福利在线观看吧| 少妇熟女aⅴ在线视频| 深爱激情五月婷婷| 日韩在线高清观看一区二区三区 | 亚洲图色成人| 草草在线视频免费看| 欧美中文日本在线观看视频| 亚洲国产精品sss在线观看| 国内精品久久久久久久电影| 人人妻,人人澡人人爽秒播| 熟女人妻精品中文字幕| 久久热精品热| 午夜激情福利司机影院| 欧美+亚洲+日韩+国产| av女优亚洲男人天堂| 国产极品精品免费视频能看的| 18禁裸乳无遮挡免费网站照片| h日本视频在线播放| 一区二区三区四区激情视频 | 亚洲中文日韩欧美视频| 欧美一区二区国产精品久久精品| 中文字幕av在线有码专区| 麻豆国产97在线/欧美| 黄色欧美视频在线观看| 久久精品影院6| 黄色欧美视频在线观看| 亚洲精品粉嫩美女一区| av专区在线播放| 欧美精品国产亚洲| 成人综合一区亚洲| 国产成人福利小说| 赤兔流量卡办理| 女生性感内裤真人,穿戴方法视频| 大又大粗又爽又黄少妇毛片口| 免费不卡的大黄色大毛片视频在线观看 | 欧美一级a爱片免费观看看| 少妇丰满av| 亚洲欧美清纯卡通| 亚洲人成网站高清观看| 国产精品亚洲一级av第二区| 床上黄色一级片| 免费在线观看成人毛片| .国产精品久久| 日日干狠狠操夜夜爽| 亚洲三级黄色毛片| 少妇人妻一区二区三区视频| 成人午夜高清在线视频| 国产成人a区在线观看| 又粗又爽又猛毛片免费看| 性插视频无遮挡在线免费观看| 99久久精品一区二区三区| 色噜噜av男人的天堂激情| 午夜爱爱视频在线播放| 成年版毛片免费区| a级毛片a级免费在线| 老师上课跳d突然被开到最大视频| 亚洲一区二区三区色噜噜| 免费电影在线观看免费观看| 老司机午夜福利在线观看视频| 又粗又爽又猛毛片免费看| 嫁个100分男人电影在线观看| 欧美日韩瑟瑟在线播放| 我要看日韩黄色一级片| 黄色欧美视频在线观看| 国产免费av片在线观看野外av| 欧美丝袜亚洲另类 | 毛片一级片免费看久久久久 | 国内精品美女久久久久久| 国产黄色小视频在线观看| 中文字幕久久专区| 成人三级黄色视频| 亚洲国产精品成人综合色| 可以在线观看毛片的网站| 国产女主播在线喷水免费视频网站 | 国产成人一区二区在线| 搡老岳熟女国产| 桃红色精品国产亚洲av| 欧美日本视频| 我的女老师完整版在线观看| 色视频www国产| 精品一区二区三区视频在线观看免费| 国产伦人伦偷精品视频| 亚洲av成人精品一区久久| 国产真实伦视频高清在线观看 | 1000部很黄的大片| 久久久久久久精品吃奶| a级一级毛片免费在线观看| 久久99热这里只有精品18| xxxwww97欧美| 麻豆久久精品国产亚洲av| 夜夜爽天天搞| 国产伦一二天堂av在线观看| 欧美激情在线99| 国产精品1区2区在线观看.| www.www免费av| 日本-黄色视频高清免费观看| 国产欧美日韩一区二区精品| 久久久午夜欧美精品| 麻豆精品久久久久久蜜桃| 人人妻人人澡欧美一区二区| 成熟少妇高潮喷水视频| 国产精品久久久久久精品电影| 观看免费一级毛片| 成年女人永久免费观看视频| 久久久久久久久久成人| 毛片一级片免费看久久久久 | 亚洲av第一区精品v没综合| 国产精品国产高清国产av| 久久午夜福利片| 成年女人看的毛片在线观看| 狂野欧美白嫩少妇大欣赏| 99国产极品粉嫩在线观看| 免费看日本二区| 久久精品夜夜夜夜夜久久蜜豆| 又爽又黄a免费视频| 精品午夜福利在线看| 看片在线看免费视频| 亚洲最大成人av| 免费看光身美女| 最近最新免费中文字幕在线| 欧美三级亚洲精品| 热99re8久久精品国产| 欧美日本亚洲视频在线播放| 啦啦啦韩国在线观看视频| 精品99又大又爽又粗少妇毛片 | а√天堂www在线а√下载| 人人妻人人看人人澡| 久久亚洲精品不卡| x7x7x7水蜜桃| 亚洲一区二区三区色噜噜| 97热精品久久久久久| 国产精品一区二区三区四区免费观看 | 亚洲成人精品中文字幕电影| 国产成人aa在线观看| 日韩中文字幕欧美一区二区| 亚洲欧美日韩卡通动漫| 久久久久免费精品人妻一区二区| 欧美日韩中文字幕国产精品一区二区三区| 国产色婷婷99| 亚洲av美国av| 日本三级黄在线观看| 五月伊人婷婷丁香| 国产亚洲欧美98| 又粗又爽又猛毛片免费看| 亚洲国产色片| 免费在线观看影片大全网站| 禁无遮挡网站| 亚洲专区中文字幕在线| 如何舔出高潮| 深夜精品福利| 亚洲无线观看免费| 中国美女看黄片| 日韩一区二区视频免费看| av在线天堂中文字幕| 成年版毛片免费区| 精品一区二区三区视频在线| 亚洲欧美日韩无卡精品| 国产av一区在线观看免费| 少妇的逼好多水| 99久久精品一区二区三区| 亚洲熟妇熟女久久| 免费看av在线观看网站| 国产精品一区www在线观看 | 久久精品影院6| 国产又黄又爽又无遮挡在线| 午夜福利欧美成人| 成人鲁丝片一二三区免费| 日韩欧美国产一区二区入口| 国产美女午夜福利| 91久久精品电影网| 国产欧美日韩一区二区精品| 免费观看在线日韩| 午夜免费激情av| 精品不卡国产一区二区三区| 最近最新免费中文字幕在线| 亚洲色图av天堂| 午夜亚洲福利在线播放| 伦精品一区二区三区| 日韩欧美免费精品| 国产伦在线观看视频一区| 偷拍熟女少妇极品色| 亚洲国产日韩欧美精品在线观看| 日韩强制内射视频| 日韩欧美在线乱码| 国产一区二区三区在线臀色熟女| 日韩欧美在线乱码| 亚洲狠狠婷婷综合久久图片| 国产免费男女视频| 久久九九热精品免费| 国产三级在线视频| 国产又黄又爽又无遮挡在线| 国产精品精品国产色婷婷| 国产高清不卡午夜福利| 一级黄片播放器| 成人国产麻豆网| 国产精品电影一区二区三区| 成人午夜高清在线视频| 国产女主播在线喷水免费视频网站 | 欧美极品一区二区三区四区| 国产91精品成人一区二区三区| 赤兔流量卡办理| 男女视频在线观看网站免费| 国产高清视频在线播放一区| 欧美3d第一页| 日本精品一区二区三区蜜桃| 一个人看视频在线观看www免费| 春色校园在线视频观看| 午夜福利18| 男女那种视频在线观看| 18禁在线播放成人免费| 国产精品亚洲一级av第二区| 可以在线观看的亚洲视频| 在线观看av片永久免费下载| 18禁裸乳无遮挡免费网站照片| 夜夜夜夜夜久久久久| 国产男靠女视频免费网站| 久久草成人影院| 成人国产麻豆网| 国产精品永久免费网站| 香蕉av资源在线| 国产av一区在线观看免费| 久久中文看片网| 啦啦啦韩国在线观看视频| a级毛片a级免费在线| 两性午夜刺激爽爽歪歪视频在线观看| 欧美性猛交黑人性爽| av专区在线播放| 国产精品三级大全| 国产成人a区在线观看| 色综合亚洲欧美另类图片| 欧美国产日韩亚洲一区| 久久精品国产亚洲av香蕉五月| 直男gayav资源| 国产高清激情床上av| 日韩欧美国产在线观看| 亚洲18禁久久av| 国产精品野战在线观看| 露出奶头的视频| 伦精品一区二区三区| 欧美成人性av电影在线观看| 国产精品一区二区三区四区免费观看 | 日韩人妻高清精品专区| 亚洲人成伊人成综合网2020| 国产一区二区三区av在线 | 国产精品女同一区二区软件 | 色播亚洲综合网| 欧美区成人在线视频| 亚洲欧美日韩高清专用| 成人国产一区最新在线观看| 桃色一区二区三区在线观看| 国产不卡一卡二| 日韩欧美国产在线观看| 变态另类丝袜制服| 成人永久免费在线观看视频| 国产精品久久久久久av不卡| 国产黄片美女视频| 国产精华一区二区三区| 91午夜精品亚洲一区二区三区 | 精品久久久久久久久亚洲 | 亚州av有码| 男人狂女人下面高潮的视频| 亚洲中文字幕日韩| 在线免费十八禁| 精品人妻一区二区三区麻豆 | 日本色播在线视频| av女优亚洲男人天堂| 午夜影院日韩av| 精品久久久久久久久久久久久| 亚洲自偷自拍三级| 国产成人av教育| 久久精品国产自在天天线| 成人美女网站在线观看视频| 国产精品日韩av在线免费观看| 一个人看视频在线观看www免费| 久久午夜福利片| 欧美最新免费一区二区三区| 免费高清视频大片| 亚洲精华国产精华液的使用体验 | 中文亚洲av片在线观看爽| 麻豆成人午夜福利视频| 精品人妻1区二区| 欧美高清性xxxxhd video| 亚洲国产欧洲综合997久久,| 免费av观看视频| 国产伦人伦偷精品视频| 又紧又爽又黄一区二区| 亚洲成人久久爱视频| 成人三级黄色视频| 国产在视频线在精品| 久久久久久国产a免费观看| 国产毛片a区久久久久| 99在线视频只有这里精品首页| 亚洲精品在线观看二区| 成人亚洲精品av一区二区| 在线免费观看的www视频| 国产在线男女| 日日干狠狠操夜夜爽| 亚洲国产高清在线一区二区三| 精品无人区乱码1区二区| 精品国产三级普通话版| 精品国内亚洲2022精品成人| 日本免费a在线|