• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Robust Formation Maneuvers Through Sliding Mode for Multi-agent SystemsWith Uncertainties

    2018-01-26 03:50:50DianweiQianChengdongLiSukGyuLeeandChaoMa
    IEEE/CAA Journal of Automatica Sinica 2018年1期

    Dianwei Qian,Chengdong Li,SukGyu Lee,and Chao Ma

    I.INTRODUCTION

    WITH the development of artificial intelligence,multiagent systems have been hailed as a novel paradigm for conceptualizing,designing,and implementing intelligent systems[1]?[3].A multi-agent system is a coupled network of some agents,where the agents can interact to achieve some goals that are beyond the individual capacities or knowledge of each agent[4],[5].The advantages of the multi-agent system include but are not limited to efficiency,extensibility and reliability.On the other hand,many increasing applications in reality require the agents that have to work together[6].To enable these applications,requirement of coordination of the agents has substantially increased.

    As one of coordination task,the consensus problem is emerging because it integrates both graph theory and control theory[7].The consensus problem covers some typical control tasks,i.e.,formation control,rendezvous,attitude alignment,flocking and foraging[8].Among the tasks,the formation control concentrates on forming up a multi-agent system as well as making the agents move in given geometrical shapes.The task is rooted in the real applications.For example,the agents have to maintain some formations when they move at disaster sites,warehouses and hazardous areas[9].See[10]for a complete review of recent philosophies in this field.

    One scheme of multi-agent formations is called“l(fā)eader follower”[11].As the name suggests,one agent in a multiagent system is named as leader and other agents are successively designated as followers.The sole leader takes charge of tracking a predefined trajectory.The followers keep on tracking the leader to form up a desired formation while the multi-agent system moves.The scheme has been successfully applied to the analysis and design of multi-agent formations.

    Inherently,the leader-follower scheme is centralized and heavily depends on the leader and it suffers from the problem of“single point of failure”[12].Besides,the scheme has been paid increasing attention because its dynamics are not only experimentally modelled,but the internal formation stability can be theoretically guaranteed[13].Adopting the scheme,various control methods have been developed for multi-agent formations,that is,neural network-based adaptive design[1],robust control[14],adaptive output feedback method[15],nonlinear predictive mechanism[16],and iterative learning technique[17],to name but a few.

    The methodology of sliding mode control(SMC)is popular due to its invariance property[18].Some SMC-based methods have been addressed to solve the formation-control problem of multi-agent systems,that is,fuzzy SMC[19],[20],first-order SMC[21],terminal SMC[22],backstepping SMC[23],[24],etc.Previous contributions have verified the feasibility of the SMC methodology for multi-agent formations.

    In a multi-agent system,uncertainties exist everywhere.Each agent may contain uncertainties,i.e.,external disturbances,unmodelled dynamics and parameter perturbations.Originated from the uncertainties of the agents,formation dynamics of the multi-agent system become uncertain.In previous works about the SMC-based multi-agent formations,uncertainties are considered because they adversely affect the formation stability.However,two solutions can be summarized from the aforementioned works.One solution is to discuss the formation stability by means of graph theory[19],[24].The other is to analyze the formation stability in light of Lyapunov’s theorem[20]?[23].To guarantee the formation stability,the uncertainties are usually assumed to be bounded by a known boundary.Unfortunately,the assumption is not mild because the uncertainties are rather hard to exactly measure or to know in advance.The lack of such a boundary may result in severe problems,i.e.,decrease of the formation robustness,deterioration of the formation performance as well as deficiency of the formation stability.In order to obtain the important information,it is desired to adaptively approximate the formation uncertainties.

    The technique of nonlinear disturbance observer(NDO)has been proven to be effective in handling uncertainties and improving robustness[25].The applications of NDO have been investigated by some actual cases[26],[27].This technique can be considered as an alternative to attack the issue of uncertainties for multi-agent formations.So far,the academic problem of how to eliminate the adverse effects of uncertainties in multi-agent formations via NDO still remains unsolved.

    This paper touches the academic problem and investigates a robust control design for formation maneuvers of a multiagent system.The multi-agent system under consideration is leader-follower-based,and the communication topology is considered in order to strengthen the adaptability,reliability and practicability of the leader-follower scheme.Since the multi-agent system is subjected to uncertainties,the robust control design contains two parts.One is to develop an SMC-based controller and the other is to present an NDO-based observer.The controller and observer work together to realize formation maneuvers of the multi-agent system in the presence of uncertainties.The main contributions of this paper can be summarized as follows:1)a formation control design that integrates SMC and NDO is proposed for each follower agent;2)the presented design with guaranteed stability is extended to the multi-agent system under a given communication topology;3)some comparisons are drawn to illustrate the feasibility and validity of the presented design.

    The remainder of this paper is organized as follows.The modelling of one single agent and the communication topology of the agents are given in Section II.Formation design is presented in Section III.Simulation results are illustrated in Section IV.Finally,conclusions are drawn in Section V.

    II.SYSTEM MODELLING

    A.Modelling One Agent

    The multi-agent system under consideration consists ofNmobile robots.The robots are identical and each robot can be treated as an agent.Fig.1 displays a robot in the multi-agent system.The robot is round with differential wheels having radiusR,and its movement is actuated by two separately driven wheels placed on either side of its body.Indexiis used to represent the robot.The Cartesian coordinate system in Fig.1 specifies(xLi,yLi)as the center of the left wheel,(xRi,yRi)as the center of the right wheel,(xci,yci)as the center of the robot’s body and(xhi,yhi)as the robot’s head.In Fig.1,xhi=xci+hcosθi,xLi=xci?lsinθi,xRi=xci+lsinθi,yhi=yci+hsinθi,yLi=yci?lcosθiandyRi=yci+lcosθi,whereris the radius of wheels,lis the distance between the center of robot and the wheel,his the distance between the center and the head position andθiis the rotation angle.Let us specify aqi=[xhi yhiθi]Tto describe the robot’s posture.

    Fig.1.Schematic diagram of one agent.

    The Lagrangian equations of motion to describe the agent can have the form of(1)with respect to the vectorqi.

    whereLi=K i?Pi(K iandPidenote the kinetic energy and the potential energy of the agent,respectively.),τi=[τLiτRi]Tis the torque vector applied to the wheels andB(qi)is a time-varying matrix.

    Concerning the agent,its motion is restricted to horizontal plane,its potential energy is kept unchanged andPican be defined as 0.Therefore,Lican be written by

    whereK bi,K LiandKRiare the kinetic energies of the agent’s body,left wheel and right wheel,respectively.The kineticenergies can be formulated byandwherembandIbare the mass and the moment of inertia of the agent’s body,respectively;mwandIware the mass and the moment of inertia of the agent’s wheel,respectively.

    LetandBy the Lagrangian method,the dynamic model of the agent can be formulated by

    where the matricesandin order are determined by

    From Fig.1,two symbols of the agent are kept unexplained,that is,the linear velocityviand the rotation angular velocityωi.Differentiatingqiwith respect to timetyields

    Substituting(4)into(3)gives

    In(3),det[M(qi)]=0 if and only ifConsequently,it is justified to assume thatis invertible in(5).Taking the assumption into consideration,the equations of motion describing the behavior of the agent can be written as

    Recall(4)such that the equations of motion of the agent at its head has a form of

    Differentiating(7)with respect to timetyields

    whereandsinθi.

    Considering the agent’s uncertainties,the equations of motion of the agent can be described by

    whereδxiandδyidenote the uncertain terms.

    This paper deals with formation maneuvers of multi-agent systems in the presence of uncertainties.It is justified to assume that the uncertainties are bounded by an unknown constant,that is,andwhereandare constant but unknown.In order to implement the technique of nonlinear disturbance observer,the designed observer should evaluate or calculateδxiandδyimuch faster than the changing rates ofδxiandδyi.In this sense,bothδxiandδyiare assumed to be slow ly time-varying,that is,and

    B.Modelling Communication Topology

    Recall the multi-agent system.Its formation maneuvers are leader-follower-based.In the leader-follower scheme,the sole leader agent takes the responsibility of tracking a pre-defined trajectory while other follower agents keep on tracking the leader.Such a scheme indicates that the sole leader does not need to receive any information from the followers.On the other hand,the followers need to receive some information by communication link in order to form up a desired formation.Here some ideal conditions are considered,such as no communication delay or no packet loss.

    The communication topology of the multi-agent system can be modelled via the theory of algebraic graph.Define a directed graphG=(V,E)composed of a vertex setVand an edge setE,wherethe nodeνidenotes theith agent andi=1,2,...,N.This paper investigates the directed graphGin the multi agent system.Assuming thatGof the multi-agent system has a spanning tree,the zero eigenvalue ofLis simple.Consider theith agent whose collection of neighbors is defined asN i={νj∈V: (νi,νj)∈E}.The ordered pair(νi,νj)∈Emeans that thejth agent can send information to theith agent,but the information cannot be sent vice versa.

    The weighted adjacency matrixAofGhas a form of

    whereaijindicates the weight of the pair(νi,νj);andaii=0.

    The degree matrix ofGis a diagonal matrix,determined byD=diag{d1,d2,...,dN}∈RN×N.In the diagonal matrix,diis the in-degree ofνi,formulated by(i=1,2,...,N).Accordingly,the Laplacian matrix ofGcan be defined byL=D?A∈RN×N.As proven in[4],Lhas at least one zero eigenvalue as well as all other eigenvalues are located at the open right-half plane ifGis connected.

    ConcerningL,its zero eigenvalue is simple.For the zero eigenvalue,an eigenvector ofLis1N,that is,L1N=0Nholds true,where1N=[1,1,...,1]T∈RN×1and0N=[0,0,...,0]T∈RN×1.Further,rank(L)=N?1 for the simple zero eigenvalue[4].

    Without loss of generality,theNth agent in the multi-agent system is named leader and otherN?1 agents are followers,that is,aNi=0(i=1,2,...,N)and the Laplacian matrixLofGcan be written as

    Further,the communication topology among all the followers can be described by a directed graphApparently,is a subgraph ofG.The weighted adjacency matrixA∈R(N?1)×(N?1)ofis defined by

    Similarly,assuming that the subgraphGis itself a directed graph,can be drawn.Here1N?1= [1,1,...,1]T∈R(N?1)×1and0N?1=[0,0,...,0]T∈R(N?1)×1.Moreover,define a matrixwhere1,2,...,N?1).Apparently,it holds rank(L+B)=rank(L)=N?1.

    III.FORMATION DESIGN

    The formation maneuvers in this paper are leader-follower based.Concerning the leader’s duty,its control problem is the tracking-control problem of a single robot,which can be well controlled by a developed technology[9].In the multi-agent system,theNth agent has been named as leader that can be treated as a nominal one in the formation-control problem,that is,δxN=δyN=0.Accordingly,the otherN?1 agents act as followers and they are equipped with the designed formation controllers to achieve the formation maneuvers of the multiagent system.

    In order to concentrate on the formation-control design of theith follower(i=1,2,...,N?1),recall its equations of motion(9).The equations in(9)are decoupled in thexaxis andy-axis.Consequently,its formation-control design can be divided into the design of thex-axis subsystem and the design of they-axis subsystem.Here the design of thex-axis subsystem is taken into account at first.From(9),thex-axis subsystem with uncertainties can be written by

    which can be re-written by the following state-space representation.

    A.Design of NDO-based Observer

    Consider thex-axis subsystem(15)and design its NDO-based observer(16)[25].

    wherepxiis the internal state variable of the observer,is the approximation ofδxiand the gain vector Lxi∈R2×1is designed such that the constantis positive.

    Define an estimation-error variableHere an assumption of the estimation-error variable iswhereis constant but unknown.Differentiate the error variable with respect to timetand substitute(16)into the derivative ofexid.Subsequently,(17)can be obtained.

    The solution of(17)iswhereexid(0)is the initial condition att=0.Owing toλxi>0,this fact indicates that the estimation-error variableexidis exponentially convergent to 0 as

    B.Design of SMC-based Controller

    The formation maneuvers of the multi-robot system need to achieve a designated formation pattern with velocity consensus,where the agents have to transmit information among local neighbors according to a designated communication topology.Therefore,the error function is defined as

    whereρxi>0 is a pre-defined constant,is the pre-defined relative position between theith follower and thejth follower andis the pre-defined relative position between theith follower and the leader.

    Differentiatingexiin(18)with respect to timetand substituting thex-axis subsystem(14)into the derivative ofexiyields

    Successively,differentiatingin(19)with respect to timetand substituting thex-axis subsystem(14)into the second derivative ofexiyields

    With regard to thex-axis subsystem(14),a sliding surface with the output of the NDO-based observer(16)is defined as

    wherecxi>0 is constant.

    Differentiating the sliding-surface variable with respect to timetgives

    Substituting(18),(19)and(20)into(22)yields

    Design the following formation-control law for thex-axis subsystem of theith follower.

    whereκxi>0 is a predefined parameter and sgn(·)is the sign function.In(24),the control signaluxiis determined by a first-order differential equation with the zero initial condition.Further,the control signals of other agents also contribute touxi,which can be obtained by the given communication topology.

    Substituting(24)into(23)and re-arranging˙sxiin(23)gives

    C.Stability Analysis

    Theorem 1:For theith follower agent,consider itsxaxis subsystem(14),design the NDO-based observer(16),define the sliding-mode surface(21)and utilize the SMC-based control law(24).The closed-loop control system of thex-axis subsystem is asymptotically stable ifκxi>[(cxiρxi

    Proof:Pick up a Lyapunov candidate function

    DifferentiateVwith respect to timetin(27).The derivative ofVcan be written byReplacewith(26).The derivative ofVhas the form of

    Selectsuch thatexists.ConcerningV≥0,the closed-loop control system of thex-axis subsystem is asymptotically stable in the sense of Lyapunov.

    D.Extension to the Multi-agent System

    For theNth leader agent,the following augmented vectors can be defined,that is,zN=[xhN yhN]T,uN=[uxN uyN]TandvN=[vxN vyN]T.HerezN,uNandvN∈R2×1.

    Further,define the following diagonal matrices

    whereΥ,c,Λandκ∈R2(N?1)×2(N?1).

    The augmented tracking-error vectorecan be written by

    whereI2is a 2×2 identity matrix and?means the Kronecker product.

    Differentiatingein(29)with respect to timetgives

    Considering the properties of uncertainties in(9),we haveHereis a zero vector.Further,the second derivative ofewith respect to timethas the form of

    The augmented sliding-surface vector is formulated by

    Differentiatingswith respect to timetyields

    Design the following control law(34).

    Substituting(34)into(33)gives

    Theorem 2:Take the multi-agent system into consideration,suppose that its communication graph has a directed spanning tree.The stability of the leader-follower-based formation control is guaranteed if the controller parameters of each follower agent are designed by Theorem 1.

    Proof:Define a Lyapunov candidate function

    where‖·‖2means 2-norm.

    DifferentiateV′(t)with respect to timetin(36).The derivative ofV′can be written by

    Replacing˙sin(37)with(35)yields

    Note thataii=0(i=1,...,N?1)in(12)such thatLetSubsequently,(39)can be re-arranged by

    wherewheremeans∞-norm.

    If the controller parameters of each follower agent are selected by Theorem 1,˙V′<0 can be deduced from(40).ConsideringV′≥0,the formation control of the multi-agent system is asymptotically stable in the sense of Lyapunov.

    From Theorem 1 and Theorem 2,the formation stability is concerned to the tracking-error variablethat is constant but unknown as well,indicating that it is hard to determineκikin Theorem 1 as well asκin Theorem 2.To guarantee the formation stability,a conservative value ofshould be designated.From this aspect,there seem no benefits earned from such a robust control method.However,exidoriginated from the presented method is exponentially convergent as proven,meaning that a small value ofcould be chosen.According to Theorem 1,the kind of formation-control design could contribute to the decrease of chattering phenomenon as well as the improvement of the formation performance.

    IV.SIMULATION RESULTS

    This section implements some simulations on a multi-agent platform and discusses the results.The platform consists of four mobile robots.These robots are structured by the leader follower scheme.One robot is designated as leader and the other three as followers.The follower agents are numbered as indexes1,2 and 3,respectively.The sole leader is identified by index 4.Some physical parameters of these agents are picked up from[24],listed asl=0.0265m,h=0.04m,r=0.02m,m b=0.018 kg,mw=0.007 kg,Ib=1.44×10?4kg·m2andIw=1.44×10?6kg·m2.The communication topology of this multi-agent system under consideration is illustrated in Fig.2.

    Fig.2.Communication topology of the multi-agent platform.

    According to this communication topology,the communication graphGin Fig.2 becomes a standard spanning tree,where the adjacency and Laplacian matrices are determined by

    Further,the communication subgraphis derived fromG,whose adjacency and Laplacian matrices are formulated by

    Apparently,the subgraphGis itself a directed graph.

    For theith follower agent(i=1,2,3),the presented robust control design of itsx-axis subsystem can be implemented.The uncertain term of thex-axis subsystem is designed byδxi=0.02×rand(),where rand()is a uniformly distributed random number in the closed interval[?1 1].Some parameters of the SMC-based controller are predefined ascxi=9 andκxi=0.4.The gain vector of the NDO-based observer is chosen as L=[0 6]Tby trial and error such thatλxi=LTB=6 and the constantρxiin(18)is set as 1.0.Successively,the SMC-based controller and the NDO-based observer of theyaxis subsystem are kept unchanged from those corresponding parameters of thex-axis subsystem.Considering the motor load of the follower agents,bothuxianduyiare limited touxi≤0.5 anduyi≤0.5.

    In order to achieve formation maneuvers of the multi-agent system,a given formation task is taken into consideration.In the formation task,the leader agent 4 moves along a straight line and the other follower agents keep tracking the leader and form up into a diamond-shaped formation.

    The straight trajectory of the leader is presented as follows.In a Cartesian coordinate system,the initial head position of the leader is located at(0m,0.6m).Correspondingly,its velocities in thex-direction andy-direction are setby 0.2m/s and 0.1m/s,respectively.In order to form up into the desired diamond in this coordinate system,the initial head positions of follower agent 1,follower agent 2 and follower agent 3 in order are placed at(0m,1.1m),(0m,0.8m)and(0m,0.3m),respectively.Their relative coordinations in order are designated as(?0.2m,0.2m),(?0.4m,0m)and(?0.2m,?0.2m)with respect to the leader agent 4.

    Fig.3 displays the simulation results of the presented robust control method by the multi-agent system.In Fig.3(a),the four agents form up into the diamond-shaped formation from a string while moving in straight lines,whereas filled triangles denote the initial positions of the agents and filled circles indicate the agents’positions in the dynamic process.In order to demonstrate the formation maneuver,the dashed lines bond the agents together at the same moment.

    These results in Figs.4 and 5 are adopted for performance comparisons and our motivation is to highlight the superiority of the presented control scheme.Fig.4 illustrates the simulation results of the sole sliding-mode control approach by the same multi-agent system.In this formation-control system,the parameter of the sliding-surfacecxiis kept unchanged from the presented control method and the parameter ofκxiis selected as 1.1,where the value ofκxiis conservative to guarantee the formation stability.Compared with the results in Figs.4(f)?(g),the presented robust control method in Figs.3(f)?(g)can apparently decrease the chattering phenomenon because its formation stability is concerned with the exponentially-convergent tracking errorwhich is also the benefit we can earn from the presented robust control method.

    As another comparison,the simulation results of the adaptive fuzzy sliding-mode control approach[24]is displayed in Fig.5 by the same multi-agent system.From Fig.5(a),the approach in[24]can also realize the same formation maneuver as the formation in Fig.4(a).However,the presented robust control method has better control performance in Figs.4(f)?(g)via the comparisons in Figs.5(f)?(g)because it can apparently decrease the magnitude of control action.On the other hand,the presented method in the paper and the approach in[24]focus on dealing with formation maneuvers in spite of uncertainties.In[24],a fuzzy inference system(FIS)is designed to resist the uncertainties such that the control performance is subject to the number of fuzzy logic rules.The FIS with the limited number of fuzzy rules is hard to keep better performance against the variations of uncertainties.The uncertainties in this paper are formulated by 0.02×rand(),compared with the expression of 0.005×rand()in[24].

    Fig.3.Simulation results of the presented robust control method.(a)Formation maneuvers in the Cartesian coordinate system.(b)Curves of epxi.(c)Curves of epyi.(d)Curves of evxi.(e)Curves of evyi.(f)Curves of uxi.(g)Curves of uyi(i=1,2,3).

    Fig.4.Simulation results of the sole sliding-mode control approach without an NDO-based observer.(a)Formation maneuvers in the Cartesian coordinate system.(b)Curves of epxi.(c)Curves of epyi.(d)Curves of evxi.(e)Curves of evyi.(f)Curves of uxi.(g)Curves of uyi(i=1,2,3).

    Fig.5.Simulation results of the adaptive sliding mode control approach[24].(a)Formation maneuvers in the Cartesian coordinate system.(b)Curves of epxi.(c)Curves of epyi.(d)Curves of evxi.(e)Curves of evyi.(f)Curves of uxi.(g)Curves of uyi(i=1,2,3).

    V.CONCLUSIONS

    This paper has investigated the formation-control problem of multiple agents.The agents under consideration are wheeled mobile robots.The formation mechanism is leader-follower based.The uncertainties originated from each individual agent result in the formation uncertainties.It is conveniently assumed that the formation uncertainties are bounded by an unknown boundary.In order to resist the formation uncertainties when forming up the agents,a robust control method that integrates the technique of NDO-based observer and the method of SMC-based controller is addressed.According to a given communication topology,the theoretical analysis has proven that the formation control of multiple agents in the presence of uncertainties is asymptotically stable.The control scheme has achieved the formation maneuvers by amulti-robot platform.The simulation results have demonstrated the effectiveness of the control scheme through some performance comparisons.In order to focus on the motivation of control design,some difficulties in reality,such as communication delays and collisions between agents,are not considered during the control design.The no-communication-delay and no-collision conditions are mild enough for small-scale formations but they are rather idealized for large-scale formations.In order to take the presented robust control method into practical account,this field is of our continuous interest and some contributions are still in progress.

    [1]L.Cheng,Z.G.Hou,M.Tan,Y.Z.Lin,and W.J.Zhang,“Neural network-based adaptive leader-following control for multiagent systems with uncertainties,”IEEE Trans.Neural Netw.,vol.21,no.8,pp.1351?1358,Aug.2010.

    [2]L.Cheng,Y.P.Wang,W.Ren,Z.G.Hou,and M.Tan,“On convergence rate of leader-following consensus of linear multi-agent systems with communication noises,”IEEE Trans.Autom.Control,vol.61,no.11,pp.3586?3592,Nov.2016.

    [3]L.Cheng,Y.P.Wang,W.Ren,Z.G.Hou,and M.Tan,“Containmennt control of multiagent systems with dynamic leaders based on aP I-type approach,”IEEE Trans.Cybern.,vol.46,no.12,pp.3004?3017,Dec.2016.

    [4]W.Ren and R.W.Beard,Distributed Consensus in Multi-Vehicle Cooperative Control.London,UK:Springer,2008.

    [5]C.L.P.Chen,G.X.Wen,Y.J.Liu,and F.Y.Wang,“Adaptive consensus control for a class of nonlinear multiagent time-delay systems using neural networks,”IEEE Trans.Neural Netw.Learn.Syst.,vol.25,no.6,pp.1217?1226,Jun.2014.

    [6]H.G.Zhang,T.Feng,G.H.Yang,and H.J.Liang,“Distributed cooperative optimal control for multiagent systems on directed graphs:An inverse optimal approach,”IEEE Trans.Cybern.,vol.45,no.7,pp.1315?1326,Jul.2015.

    [7]H.Zhang,R.H.Yang,H.C.Yan,and F.W.Yang,“H∞consensus of event-based multi-agent systems with switching topology,”Inf.Sci.,vol.370?371,pp.623?635,Nov.2016.

    [8]H.Rezaee and F.Abdollahi,“Average consensus over high-order multiagent systems,”IEEE Trans.Autom.Control,vol.60,no.11,pp.3047?3052,Nov.2015.

    [9]M.Biglarbegian,“A novel robust leader-following control design for mobile robots,”J.Intell.Robot.Syst.,vol.71,no.3?4,pp.391?402,Sep.2013.

    [10]J.Y.C.Chen and M.J.Barnes,“Human-agent team ing for multirobot control:A review of human factors issues,”IEEE Trans.Hum.Mach.Syst.,vol.44,no.1,pp.13?29,Feb.2014.

    [11]C.C.Hua,X.You,and X.P.Guan,“Leader-following consensus for a class of high-order nonlinear multi-agent systems,”Automatica,vol.73,pp.138?144,Nov.2016.

    [12]D.W.Qian,S.W.Tong,J.R.Guo,and S.Lee,“Leader-follower-based formation control of nonholonomic mobile robots with mismatched uncertainties via integral sliding mode,”Proc.Inst.Mech.Eng.IJ.Syst.Control Eng.,vol.229,no.6,pp.559?569,Jul.2015.

    [13]D.W.Qian,S.W.Tong,and C.D.Li,“Leader-following formation control of multiple robots with uncertainties through sliding mode and nonlinear disturbance observer,”ETRIJ.,vol.38,no.5,pp.1008?1018,Oct.2016.

    [14]J.Dasdemir and A.Loría,“Robust formation tracking control of mobile robots via one-to-one time-varying communication,”Int.J.Control,vol.87,no.9,pp.1822?1832,Mar.2014.

    [15]S.J.Yoo,“Formation tracker design of multiple mobile robots with wheel perturbations:Adaptive output-feedback approach,”Int.J.Syst.Sci.,vol.47,no.15,pp.3619?3630,Dec.2016.

    [16]T.P.Nascimento,A.G.S.Conceic?a?,and A.P.Moreira,“Multi-robot nonlinear model predictive formation control:The obstacle avoidance problem,”Robotica,vol.34,no.3,pp.549?567,Mar.2016.

    [17]Y.Liu and Y.M.Jia,“Robust formation control of discrete-time multiagent systems by iterative learning approach,”Int.J.Syst.Sci.,vol.46,no.4,pp.625?633,Apr.2015.

    [18]V.I.Utkin,Sliding Modes in Control and Optimization.Berlin Heidelberg,Germany:Springer,1992.

    [19]Y.H.Chang,C.W.Chang,C.L.Chen,and C.W.Tao,“Fuzzy sliding-mode formation control for multirobot systems:Design and implementation,”IEEE Trans.Syst.Man Cybern.B Cybern.,vol.42,no.2,pp.444?457,Apr.2012.

    [20]Y.Y.Dai,Y.Kim,S.Wee,D.Lee,and S.Lee,“Symmetric caging formation for convex polygonal object transportation by multiple mobile robots based on fuzzy sliding mode control,”ISA Trans.,vol.60,pp.321?332,Jan.2016.

    [21]L.J.Dong,S.C.Chai,B.H.Zhang,and S.K.Nguang,“Sliding mode control for multi-agent systems under a time-varying topology,”Int.J.Syst.Sci.,2016,vol.47,no.9,pp.2193?2200,Sep.2016.

    [22]A.M.Zou,K.D.Kumar,and Z.G.Hou,“Distributed consensus control for multi-agent systems using terminal sliding mode and Chebyshev neural networks,”Int.J.Robust Nonlinear Control,vol.23,no.3,pp.334?357,Feb.2013.

    [23]D.Zhao,T.Zou,S.Li,and Q.Zhu,“Adaptive backstepping sliding mode control for leader-follower multi-agent systems,”IET Control Theory Appl.,vol.6,no.8,pp.1109?1117,May2012.

    [24]Y.H.Chang,C.Y.Yang,W.S.Chan,H.W.Lin,and C.W.Chang,“Adaptive fuzzy sliding-mode formation controller design for multirobot dynamic systems,”Int.J.Fuzzy Syst.,vol.16,no.1,pp.121?131,Mar.2014.

    [25]W.H.Chen,J.Yang,L.Guo,and S.H.Li,“Disturbance-observer based control and related methods-an overview,”IEEE Trans.Industr.Electron.,vol.63,no.2,pp.1083?1095,Feb.2016.

    [26]B.Xiao,S.Yin,and O.Kaynak,“Tracking control of robotic manipulators with uncertain kinematics and dynamics,”IEEE Trans.Industr.Electron.,vol.63,no.10,pp.6439?6449,Oct.2016.

    [27]T.Du,L.Guo,and J.Yang,“A fast initial alignment for SINS based on disturbance observer and Kalman filter,”Trans.Inst.Meas.Control,vol.38,no.10,pp.1261?1269,Oct.2016.

    色吧在线观看| 久久久久久免费高清国产稀缺| 婷婷色av中文字幕| 亚洲视频免费观看视频| 欧美精品人与动牲交sv欧美| 久久久精品国产亚洲av高清涩受| 久久热在线av| 国产精品一二三区在线看| 成年动漫av网址| 国产男女超爽视频在线观看| 两性夫妻黄色片| av一本久久久久| 一本久久精品| 久久久久久久亚洲中文字幕| 亚洲第一区二区三区不卡| 国产麻豆69| 国产av国产精品国产| 狂野欧美激情性bbbbbb| 久热这里只有精品99| 大陆偷拍与自拍| 日本av免费视频播放| 欧美中文综合在线视频| 一级a爱视频在线免费观看| 国产色婷婷99| 电影成人av| 国产成人免费观看mmmm| 亚洲欧美一区二区三区久久| av在线app专区| 岛国毛片在线播放| 国产精品秋霞免费鲁丝片| 国产精品女同一区二区软件| 蜜桃国产av成人99| 日韩,欧美,国产一区二区三区| 中文天堂在线官网| 午夜激情久久久久久久| 超碰成人久久| 新久久久久国产一级毛片| 看免费成人av毛片| 午夜日本视频在线| 免费久久久久久久精品成人欧美视频| 最近2019中文字幕mv第一页| 国产伦理片在线播放av一区| 亚洲精品日韩在线中文字幕| 成人影院久久| 国产精品免费视频内射| 人妻一区二区av| 久久久久久久久久久久大奶| 成人影院久久| 妹子高潮喷水视频| 尾随美女入室| 久久精品久久久久久噜噜老黄| 青春草亚洲视频在线观看| 亚洲精品第二区| 亚洲精品久久成人aⅴ小说| 最近最新中文字幕大全免费视频 | 亚洲国产看品久久| 母亲3免费完整高清在线观看 | 亚洲少妇的诱惑av| 最近最新中文字幕大全免费视频 | 精品一区二区免费观看| 一区二区三区乱码不卡18| 自线自在国产av| 色94色欧美一区二区| 免费在线观看黄色视频的| 免费观看无遮挡的男女| 热re99久久精品国产66热6| 80岁老熟妇乱子伦牲交| 国产黄色免费在线视频| 搡老乐熟女国产| 亚洲欧美精品综合一区二区三区 | 久久久久视频综合| 2021少妇久久久久久久久久久| 亚洲少妇的诱惑av| av网站免费在线观看视频| 国产麻豆69| 欧美日韩国产mv在线观看视频| 丝瓜视频免费看黄片| 欧美激情极品国产一区二区三区| 成人国产麻豆网| 国产免费一区二区三区四区乱码| av线在线观看网站| 午夜福利在线免费观看网站| 又粗又硬又长又爽又黄的视频| 午夜福利影视在线免费观看| 亚洲av在线观看美女高潮| 看十八女毛片水多多多| av网站在线播放免费| 一本大道久久a久久精品| 在线免费观看不下载黄p国产| 欧美成人午夜精品| 伊人久久国产一区二区| 少妇精品久久久久久久| 日韩一区二区视频免费看| 欧美日本中文国产一区发布| 女人久久www免费人成看片| 成年美女黄网站色视频大全免费| 91aial.com中文字幕在线观看| 一级毛片 在线播放| 中文精品一卡2卡3卡4更新| 久久久久久久久免费视频了| 国产在视频线精品| 欧美日韩精品网址| 中文字幕制服av| 免费少妇av软件| 亚洲欧美成人精品一区二区| 久久久久国产网址| av在线观看视频网站免费| 一级片'在线观看视频| 久久韩国三级中文字幕| 热99国产精品久久久久久7| 日本色播在线视频| 精品国产乱码久久久久久男人| 成人亚洲精品一区在线观看| 日本-黄色视频高清免费观看| 七月丁香在线播放| 精品国产一区二区三区久久久樱花| 国产欧美日韩综合在线一区二区| 精品午夜福利在线看| 99久国产av精品国产电影| 中文字幕亚洲精品专区| 热99久久久久精品小说推荐| 免费观看在线日韩| 亚洲av男天堂| 国产免费视频播放在线视频| 老司机亚洲免费影院| 日韩免费高清中文字幕av| 久久精品久久久久久久性| 亚洲成av片中文字幕在线观看 | 99香蕉大伊视频| 国产精品三级大全| 天天躁日日躁夜夜躁夜夜| 中文字幕制服av| 精品酒店卫生间| a级毛片在线看网站| 亚洲精品乱久久久久久| 久久综合国产亚洲精品| 亚洲国产精品成人久久小说| 国产精品蜜桃在线观看| 日本欧美视频一区| 欧美老熟妇乱子伦牲交| 波野结衣二区三区在线| 亚洲美女黄色视频免费看| 国产国语露脸激情在线看| 丰满迷人的少妇在线观看| 咕卡用的链子| 国产欧美日韩一区二区三区在线| 美女中出高潮动态图| 久久久国产精品麻豆| 亚洲一区二区三区欧美精品| av片东京热男人的天堂| 久久影院123| 97人妻天天添夜夜摸| 亚洲伊人色综图| 亚洲av电影在线进入| 又粗又硬又长又爽又黄的视频| 日韩 亚洲 欧美在线| 国产成人一区二区在线| 各种免费的搞黄视频| 热99国产精品久久久久久7| 亚洲精品久久成人aⅴ小说| 日本av免费视频播放| 久久国产亚洲av麻豆专区| 国产野战对白在线观看| 如日韩欧美国产精品一区二区三区| av卡一久久| 国产又爽黄色视频| 99香蕉大伊视频| 久久午夜福利片| 乱人伦中国视频| 国产一区二区激情短视频 | 日韩中文字幕视频在线看片| 中文字幕av电影在线播放| 在现免费观看毛片| 老熟女久久久| 久久这里有精品视频免费| 精品国产乱码久久久久久男人| 国产精品秋霞免费鲁丝片| 性色avwww在线观看| 80岁老熟妇乱子伦牲交| 成人国产麻豆网| av女优亚洲男人天堂| 91精品三级在线观看| 日日撸夜夜添| 少妇人妻精品综合一区二区| 性高湖久久久久久久久免费观看| 日韩av免费高清视频| 三级国产精品片| 国产一区二区三区综合在线观看| 2018国产大陆天天弄谢| 亚洲精品国产av蜜桃| 欧美日韩综合久久久久久| 免费久久久久久久精品成人欧美视频| 乱人伦中国视频| 久久久亚洲精品成人影院| 亚洲情色 制服丝袜| 久久精品国产鲁丝片午夜精品| a级毛片在线看网站| 国产成人免费无遮挡视频| 一个人免费看片子| 欧美亚洲 丝袜 人妻 在线| 免费观看性生交大片5| videos熟女内射| 美女大奶头黄色视频| 免费观看性生交大片5| 在线观看人妻少妇| 波多野结衣一区麻豆| 春色校园在线视频观看| 大香蕉久久网| 欧美精品av麻豆av| 亚洲欧美色中文字幕在线| 91aial.com中文字幕在线观看| 高清欧美精品videossex| 久久精品熟女亚洲av麻豆精品| 色网站视频免费| 婷婷色综合大香蕉| 看免费av毛片| 中文字幕亚洲精品专区| 国产精品二区激情视频| 亚洲熟女精品中文字幕| 9色porny在线观看| 热re99久久精品国产66热6| 亚洲,欧美精品.| 亚洲精品,欧美精品| av一本久久久久| 少妇 在线观看| 久久这里有精品视频免费| 午夜日本视频在线| 国产精品三级大全| 啦啦啦啦在线视频资源| 交换朋友夫妻互换小说| 精品国产国语对白av| 免费看不卡的av| 最新中文字幕久久久久| 日韩一区二区三区影片| 男女免费视频国产| 高清不卡的av网站| 国产成人午夜福利电影在线观看| 成年女人毛片免费观看观看9 | 日韩欧美精品免费久久| 91精品三级在线观看| 大片电影免费在线观看免费| 亚洲欧美一区二区三区国产| 夫妻性生交免费视频一级片| 色视频在线一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 国产国语露脸激情在线看| 亚洲欧美日韩另类电影网站| 天天操日日干夜夜撸| 热re99久久国产66热| 久久久欧美国产精品| 亚洲av男天堂| 自线自在国产av| 超色免费av| 国产精品嫩草影院av在线观看| 久久鲁丝午夜福利片| 国产激情久久老熟女| 欧美成人午夜免费资源| av在线观看视频网站免费| 欧美 亚洲 国产 日韩一| 国产探花极品一区二区| 国产视频首页在线观看| 成年女人在线观看亚洲视频| 中文字幕人妻熟女乱码| 超碰97精品在线观看| 狠狠婷婷综合久久久久久88av| 观看美女的网站| 午夜福利乱码中文字幕| 久久久久视频综合| 丝瓜视频免费看黄片| 91午夜精品亚洲一区二区三区| videossex国产| 99re6热这里在线精品视频| 爱豆传媒免费全集在线观看| 新久久久久国产一级毛片| 91国产中文字幕| 国产精品久久久久久精品电影小说| 老司机影院毛片| 青春草亚洲视频在线观看| 精品一区二区三卡| 国产麻豆69| 国产精品久久久久久精品古装| 99国产综合亚洲精品| 色视频在线一区二区三区| 国产免费又黄又爽又色| 亚洲av男天堂| 久久精品国产鲁丝片午夜精品| 欧美日韩视频精品一区| 最近2019中文字幕mv第一页| 精品福利永久在线观看| 精品国产国语对白av| 国产在线视频一区二区| 国产日韩一区二区三区精品不卡| 久久这里有精品视频免费| 中国三级夫妇交换| 天天躁夜夜躁狠狠躁躁| 日本色播在线视频| 999精品在线视频| 伊人亚洲综合成人网| 亚洲国产最新在线播放| 日本黄色日本黄色录像| 丰满迷人的少妇在线观看| 一级爰片在线观看| 99香蕉大伊视频| 欧美国产精品va在线观看不卡| www日本在线高清视频| 91在线精品国自产拍蜜月| 少妇精品久久久久久久| 免费观看av网站的网址| 两性夫妻黄色片| 精品少妇久久久久久888优播| 成年av动漫网址| 最近最新中文字幕大全免费视频 | 欧美日本中文国产一区发布| 中文字幕色久视频| 国产日韩欧美视频二区| 女性生殖器流出的白浆| 亚洲一级一片aⅴ在线观看| 精品国产国语对白av| 亚洲,一卡二卡三卡| 亚洲精品在线美女| 99精国产麻豆久久婷婷| 国产 一区精品| 久久国内精品自在自线图片| 女人高潮潮喷娇喘18禁视频| 国产黄色免费在线视频| 黄色怎么调成土黄色| 国产欧美日韩一区二区三区在线| 亚洲av国产av综合av卡| 嫩草影院入口| 亚洲,欧美精品.| 高清av免费在线| 久久久久久久大尺度免费视频| 大话2 男鬼变身卡| 一边亲一边摸免费视频| 国产精品一二三区在线看| 亚洲人成77777在线视频| 丰满乱子伦码专区| 久久久久久久国产电影| 免费高清在线观看日韩| 国产成人精品婷婷| 亚洲精品第二区| 五月开心婷婷网| 日韩中文字幕视频在线看片| 天堂俺去俺来也www色官网| av有码第一页| 国产精品免费大片| 国产一级毛片在线| 亚洲国产精品一区二区三区在线| 国产成人av激情在线播放| 亚洲伊人色综图| 汤姆久久久久久久影院中文字幕| 亚洲色图综合在线观看| 日日啪夜夜爽| 男的添女的下面高潮视频| 日日摸夜夜添夜夜爱| 国产精品香港三级国产av潘金莲 | 精品国产国语对白av| av国产精品久久久久影院| 黄色 视频免费看| 亚洲人成77777在线视频| 精品第一国产精品| 久久久国产欧美日韩av| 久久99蜜桃精品久久| 一级毛片我不卡| 性高湖久久久久久久久免费观看| av国产精品久久久久影院| 亚洲第一青青草原| 午夜免费鲁丝| a级片在线免费高清观看视频| 97在线视频观看| 欧美变态另类bdsm刘玥| 搡老乐熟女国产| 人妻 亚洲 视频| av网站在线播放免费| 久久狼人影院| 国产亚洲最大av| av视频免费观看在线观看| xxx大片免费视频| 一个人免费看片子| 一本色道久久久久久精品综合| 乱人伦中国视频| 日韩一卡2卡3卡4卡2021年| 999久久久国产精品视频| 在现免费观看毛片| 黄色配什么色好看| 男女边吃奶边做爰视频| 在线观看人妻少妇| 亚洲天堂av无毛| 侵犯人妻中文字幕一二三四区| 欧美精品人与动牲交sv欧美| 最近2019中文字幕mv第一页| 国产黄频视频在线观看| 蜜桃国产av成人99| 亚洲欧美成人综合另类久久久| 18禁动态无遮挡网站| 日本色播在线视频| 老熟女久久久| 七月丁香在线播放| tube8黄色片| 18禁裸乳无遮挡动漫免费视频| 国产亚洲精品第一综合不卡| 777米奇影视久久| 国产一区有黄有色的免费视频| 色吧在线观看| 亚洲精品久久成人aⅴ小说| 男女高潮啪啪啪动态图| 伦精品一区二区三区| 久久久久久久精品精品| 91精品三级在线观看| 免费观看性生交大片5| 十八禁网站网址无遮挡| 嫩草影院入口| 久久精品国产亚洲av高清一级| 9热在线视频观看99| 男女啪啪激烈高潮av片| 久久精品久久久久久久性| 99香蕉大伊视频| 亚洲图色成人| 午夜激情久久久久久久| 午夜福利一区二区在线看| 伦理电影免费视频| 久久婷婷青草| 国产视频首页在线观看| 看免费成人av毛片| 午夜老司机福利剧场| 男女免费视频国产| videossex国产| 亚洲成色77777| 校园人妻丝袜中文字幕| 1024香蕉在线观看| 成人国语在线视频| 亚洲av福利一区| 啦啦啦啦在线视频资源| 久久久久国产精品人妻一区二区| 亚洲欧美一区二区三区黑人 | 日韩在线高清观看一区二区三区| 国产亚洲午夜精品一区二区久久| 国产日韩欧美亚洲二区| 日产精品乱码卡一卡2卡三| 国产片特级美女逼逼视频| 免费观看av网站的网址| 亚洲婷婷狠狠爱综合网| 美女高潮到喷水免费观看| 久久精品久久精品一区二区三区| 黄片小视频在线播放| 亚洲情色 制服丝袜| 精品少妇黑人巨大在线播放| 中文字幕最新亚洲高清| 亚洲第一青青草原| 人人澡人人妻人| 国产一区二区三区综合在线观看| 91在线精品国自产拍蜜月| www.av在线官网国产| 免费观看无遮挡的男女| 成年人免费黄色播放视频| 国产成人免费无遮挡视频| 黄色配什么色好看| 在线观看免费高清a一片| 美女高潮到喷水免费观看| 亚洲欧美成人精品一区二区| 国产欧美日韩综合在线一区二区| 日韩一区二区三区影片| 国产av码专区亚洲av| 久久综合国产亚洲精品| 一区福利在线观看| 亚洲一级一片aⅴ在线观看| 九九爱精品视频在线观看| 哪个播放器可以免费观看大片| 国产精品免费视频内射| 男女下面插进去视频免费观看| 高清欧美精品videossex| 国产成人精品福利久久| 中文字幕最新亚洲高清| 国产av一区二区精品久久| 免费久久久久久久精品成人欧美视频| 天天影视国产精品| 免费不卡的大黄色大毛片视频在线观看| 飞空精品影院首页| 制服诱惑二区| 在线观看www视频免费| 美女大奶头黄色视频| 美女国产高潮福利片在线看| 纵有疾风起免费观看全集完整版| 在线免费观看不下载黄p国产| 亚洲熟女精品中文字幕| 国产乱人偷精品视频| 啦啦啦在线观看免费高清www| 亚洲人成网站在线观看播放| 日日爽夜夜爽网站| 在线看a的网站| 99热全是精品| 日韩精品有码人妻一区| 成年动漫av网址| xxxhd国产人妻xxx| 中文字幕另类日韩欧美亚洲嫩草| 侵犯人妻中文字幕一二三四区| 日韩伦理黄色片| 丝袜喷水一区| 国产精品女同一区二区软件| 丝袜美腿诱惑在线| 在线免费观看不下载黄p国产| 99热国产这里只有精品6| 亚洲国产精品国产精品| 国产片内射在线| 久久久国产精品麻豆| 亚洲欧美中文字幕日韩二区| 99香蕉大伊视频| 国产免费又黄又爽又色| 成人漫画全彩无遮挡| 久久精品人人爽人人爽视色| 国产成人aa在线观看| 日本午夜av视频| 亚洲国产精品国产精品| 亚洲成国产人片在线观看| 亚洲欧美色中文字幕在线| 久热这里只有精品99| 麻豆av在线久日| 久久久久精品性色| 熟女av电影| 欧美另类一区| 在线观看免费视频网站a站| 可以免费在线观看a视频的电影网站 | 午夜福利网站1000一区二区三区| 亚洲av免费高清在线观看| 久久99一区二区三区| 人妻少妇偷人精品九色| 超色免费av| 亚洲美女搞黄在线观看| 大码成人一级视频| 一级爰片在线观看| 99久久中文字幕三级久久日本| 巨乳人妻的诱惑在线观看| 男女边吃奶边做爰视频| 伦精品一区二区三区| 大片免费播放器 马上看| 精品国产一区二区三区久久久樱花| 日韩免费高清中文字幕av| 成人亚洲欧美一区二区av| 人妻人人澡人人爽人人| 亚洲欧美一区二区三区黑人 | 久久久国产精品麻豆| 美女福利国产在线| 欧美xxⅹ黑人| 黄网站色视频无遮挡免费观看| 极品人妻少妇av视频| 免费看不卡的av| 精品少妇内射三级| 亚洲精品日韩在线中文字幕| 亚洲美女搞黄在线观看| 成人影院久久| 亚洲人成77777在线视频| 99热全是精品| 一本色道久久久久久精品综合| 亚洲精品一二三| 色播在线永久视频| 亚洲人成电影观看| 国产精品麻豆人妻色哟哟久久| 成人18禁高潮啪啪吃奶动态图| 欧美激情高清一区二区三区 | 91精品三级在线观看| 国产成人91sexporn| 精品国产一区二区三区四区第35| 91在线精品国自产拍蜜月| 美女大奶头黄色视频| 国产在线一区二区三区精| 国产精品欧美亚洲77777| 大香蕉久久网| 秋霞在线观看毛片| 99久久中文字幕三级久久日本| 亚洲成av片中文字幕在线观看 | 叶爱在线成人免费视频播放| 一区二区三区激情视频| 777米奇影视久久| 不卡视频在线观看欧美| 国产片特级美女逼逼视频| 亚洲欧美成人综合另类久久久| 日韩一区二区视频免费看| 亚洲国产欧美网| 成人手机av| 国产野战对白在线观看| 校园人妻丝袜中文字幕| 精品人妻偷拍中文字幕| 涩涩av久久男人的天堂| 久久午夜综合久久蜜桃| 亚洲欧美精品自产自拍| 999久久久国产精品视频| 国产人伦9x9x在线观看 | 久久久精品区二区三区| 欧美精品国产亚洲| 国产一区二区激情短视频 | av片东京热男人的天堂| 久久av网站| 中文字幕精品免费在线观看视频| 最黄视频免费看| 国产淫语在线视频| 国产1区2区3区精品| 亚洲一区二区三区欧美精品| 国产乱人偷精品视频| 日韩成人av中文字幕在线观看| 母亲3免费完整高清在线观看 | 日韩中字成人| 80岁老熟妇乱子伦牲交| av国产久精品久网站免费入址| 婷婷色麻豆天堂久久| 亚洲国产精品国产精品| 黄色怎么调成土黄色| 最近最新中文字幕大全免费视频 | 蜜桃国产av成人99| 国产精品欧美亚洲77777| 亚洲人成77777在线视频| 超碰97精品在线观看| 午夜激情久久久久久久| 成人免费观看视频高清| 国产黄色视频一区二区在线观看| 亚洲国产av影院在线观看|