• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Holographic dark energy in non-conserved gravity theory

    2024-05-09 05:19:50Fazlollahi
    Communications in Theoretical Physics 2024年4期

    H R Fazlollahi

    Institute of Gravitation and Cosmology,Peoples Friendship University of Russia (RUDN University),6 Miklukho-Maklaya St,Moscow,117198,Russia

    Abstract Recently,reconsidering the Rastall idea =a,μ through relativistic thermodynamics gives a new form for the scalar fielda which led us to construct modern modified theory of gravity debugged ‘non-conserved gravity theory’ Fazlollahi 2023 Euro.Phys.J. C 83 923.This theory unlike other modified theories of gravity cannot directly explain the current acceleration expansion in the absence of the cosmological constant and or existence of other forms of dark energy.Hence,in this study we have reinvestigated holographic dark energy ρX~H2 in the non-conserved theory of gravity.In this context,the density and pressure of dark energy depend on the non-conserved term and density of the dust matter field.As shown,due to nonconservation effects on large-scale structures,unlike the original holographic model,our model onsets an acceleration epoch for the current Universe satisfies observations.Moreover,the interaction and viscous scenarios are studied for this model.

    Keywords: non-conserved gravity,covariant form of thermodynamics,holographic dark energy

    1.Introduction

    The current acceleration expansion of the Universe is one of the puzzles in modern cosmology.Reviewing general relativity and its field equations shows that the matter-radiation field,due to its gravitational effects,cannot explain current acceleration epoch.Keeping general relativity and its deep analyzing also reveals that the Universe may include another component with negative pressure [2].The cosmological constant Λ as its simplest form can present such a field in large-scale structure with a constant equation of stateωΛ=-1[3].However,this model suffers from two theoretical (fine-tuning) and cosmological (coincidence) problems [4].In this context,a dozen different approaches are presented to alleviate these problems.

    The modified theories of gravity are one of these straightforward scenarios.In such theories the usual Einstein–Hilbert action modified by different scalar terms built by the Riemann tensor and its derivatives [5–8],curvature-matter interaction terms [9–11] and or non-Einsteinian matter field[12,13].As result,dark energy given as extra terms in Friedmann equations depends on some linear and/or nonlinear relation between geometry and matter.Although in most of these models,the modified theories of gravity support observations,there is no strong evidence around the validity of them,theoretically.For instance,according to the Rastall idea,one may assume that the conservation law is broken in curved spacetime and thus there is a flux of energy-momentum in non-flatness geometry due to the gravitational field[14].This idea may open new windows to investigate field equations in high levels of gravity energy.However,this proposal in which the flux of the energy-momentum is proportional to the scalar curvatureRis questionable.

    Studying relativistic thermodynamics in this case may give some robust clues in finding the flux of the energymomentum tensor in special relativity,theoretically [15].As discussed in[1],generalizing this model into curved spacetime yields a new modified theory of gravity that satisfies the main Rastall idea,≠0,in which a fulx of energy-momentum is given by the evolution of thermodynamical parameters and not the scalar curvature.Although such a theory of gravity alleviates the coincidence problem of the cosmological constant model,in the absence of a dark energy model when we face with the pure non-conserved theory of gravity,this alternative theory cannot explain the current acceleration phase.This issue traces back to its behavior in the Friedmann–Robertson–Walker Universe;one can assume extra terms in the time component of the field equation as density of dark energy,but there is no corresponding terms in the second Friedmann equation as pressure of dark energy.Unlike other alternative theories of gravity,it shows that the pure nonconserved theory gives no dark energy,directly.As a result,to investigate late-time Universe one needs to add the density of dark energy by hand.Hence,in this study,we will study one of the candidates of dark energy in a non-conserved theory of gravity,in which the density of the dark energy comes from the fundamental properties of quantum circumstance.Inspired by the investigation of the thermodynamics of a black hole [16],Hooft proposed the famous holographic principle [17].According to this principle all of the information contained in a volume of space can be given as a hologram,which corresponds to a theory located on the boundary of that space.With this principle,Cohen and his collaborators suggested that in quantum field theory,a short distance cut-off is related to a long-distance cut-off due to the limit set by formations of a black hole[18].With this idea at hand,the energy density of an unknown field is proportional to the square of the cut-off length,inversely i.e.,ρ0≈?-2.A related idea was discussed in[19,20],whereinρ0given by the Hubble scale,?=H-1.This selection alleviates the fine-tuning problem in which dark energy is scaled by the cosmological parameter and not the Planck length.However,this cut-off selection cannot explain the acceleration expansion of the Universe in late-time [21].Consequently,it is worthwhile to explore such a model of dark energy in non-conserved theory and check whether this theory solves this problem or not.

    The contents in this paper are organized as follows.In section 2,the non-conserved theory of gravity is revisited,briefly.In sections 3 and 4,late-time cosmology when the density of dark energy is given byρX~H2is studied for noninteraction and interaction scenarios,respectively.We also explore viscous scenario in section 5.Remarks are given in section 6.

    2.Covariant thermodynamics and new gravity models

    The transformation of heat and temperature in relativity theory under the Lorentz group is one of the unsolved issues and opening topics in this theory.For instance,Einstein and Planck proposed [22,23]

    while Ott and Arzelies proposed another transformation form[24,25]

    whereδQandTdenote heat and temperature,respectively,the variables with subscript0 represent those observed in the comoving frame,andγis the Lorentz factor.In addition to these options,Landsberg suggested that heat and temperature behave as absolute parameters and thus comoving and independent observers measure the same heat and temperature[26].However,just two first options,(1)and(2),can satisfy a relativistic Carnot cycle[27].The covariant form of relativity theory,in particular,may be essential to formulate relativistic laws of thermodynamics.In this context,one of the pioneer attempts are given by Israel and collaborators [15]:

    where the number of 4-vector=njiuμ,represents the flux densities of conserved chargesjfor componenti-th andexpresses the 4-flux of entropy of fluidi-th.βν=uν/T0presents the inverse temperature 4-vector proposed by Van Kampen [28],andαj=ζj/T0.The parameterζjdenotes the relativistic injection energy or chemical potential per particle of typej,related to its classical counterpart by:

    It is to be noted that the 4-vectorSμfor the flux of entropy behaves in a similar way to the 4-vector for the flux of particle number.So,like the particle number that is the scalar for the comoving observer,it is shown that entropy in its comoving frame is a scalar as well[29].As a result,this model is not in conflict with the standard expression of thermodynamical expression only when it is considered in a comoving frame.Relation (3) not only shows that Rastall’s idea is true in curved spacetime,but it is valid even in Minkowskian geometry when the flux of energy-momentum tensor is given as evolution in entropy and temperature of the whole system.

    To expand this model to curved geometry,one just needs to apply the principle of general relativity [1],

    in which the usual (scalar) derivative is replaced by the covariant derivative.To derive and find the total energymomentum tensor,one only needs to use definitionsβν=uν/T0andαj=ζj/T0,which yields

    Such a relation shows that the flow of the energy-momentum tensor is a function of the thermodynamical parameters entropy,temperature,and mutual interaction among all participating particles.Equation (6) actually proves Rastall’s idea,not only in the presence of the gravity but also for Minkowskian geometry.It should be noted that since the energy-momentum tensor in general relativity is a symmetric one,the right-hand side of equation (6) is also a symmetric tensor.

    The general relativity principle is applied and after some manipulations,the field equations can be derived as such

    whereκ′ is the proportional constant.Taking a covariant derivative of the above field equations and usingGμν;μ=0 recasts equations (6) to (7).Defining the non-conserved term for each component participated in our system as

    let one have compact form for field equation (7),namely

    which shows each fluid (component)plays an explicit role in the field equations.Summation on all different components participating in the system (summation on indexi),yields,

    where we denote the effective termsthrough

    whenX=? and/orT.

    Since these field equations must shrink to standard Einstein field equations without losing generality,one can assumeκ′=κ.

    In the following we assume that the Universe is a homogenous and isotropic medium and describe with the Friedmann–Robertson–Walker metric

    wherea=a(t)is the cosmic scale factor andk=0,1 and -1 corresponds to the flat,close,and open Universe,respectively.Observations confirm that the Universe is flat and thus we assumek=0.With the aid of this assumption and using field equation (10),the Friedmann equations become

    in which we consider the matter as a dust field and subscriptsmandXdenote the matter and dark energy fields,respectively.

    With these Friedmann equations at hand,we will consider late-time Universe for non-interaction and interaction scenarios in the next two sections while dark energy density is given by theαas an arbitrary constant

    At the end of this section,we encourage interested readers to see the main paper of the non-conserved theory of gravity to review and check the effects of the cosmological constant and also the evolution of the Universe in the inflation era [1].

    3.Non-interaction scenarios

    In this section,at first glance we will consider the Friedmann equations (13) and (14) for dark energy density given by equation (15) when there is no interaction between matter and dark energy.Plugging equation (15) into the first Friedmann equation (13) and solving it for the Hubble parameter yields,

    Comparing the Hubble form (16) and density (15) directly reveals that the density of dark energy depends on the matter field and thus the coincidence problem alleviates.Moreover,if both density of matter and non-conserved termcan be positive,to have the valuable Hubble parameter,one finds out

    Definingx=ln(a) and taking a derivative with respect toxfrom the first Friedmann equation and using its result in equation (14),gives the continuity equation

    To reconstruct the standard density of matter,one may decouple the above equation as follows:

    whereQrepresents the mutual interaction between the dark energy and matter field.With some computations and using the above equations,one finds:

    This expression of the pressure of the dark energy shows that in the non-interaction scenario,pXis just the function of the non-conserved termand its first derivative.As a result,equation(21)illustrates that the origin of the pressure of the dark energy is a non-conservation term in our model.

    In the absence of enough microscopic observations of the interaction term,one may attempt to consider field equations (13) and (14) whenQ=0,(non-interaction scenario).However,since we are faced with an extra parameterin our model,in this step it is necessary to have a valuable form for that.Reconsidering equation (8) reveals that it includes two parts:T0Stand all interactions among particles.Keeping to the second law of thermodynamics shows thatT0Stmust grow up with time,and thus it can be given byeγxin whichγ>0,while due to relation (4),the second part is proportional to the density of the matter field,namely

    Consequently with these assumptions for the expanding Universe,we may suggest that

    whereβandηare proportional constants.

    As a result and in the absence of the interaction term,Q=0,the density of the matter,and the density and pressure of the dark energy are,

    respectively.

    For such a dark energy model,the equation of the state and deceleration parameter given by:

    To constrain the model with current observations,we setH0=67.4,Ωm0=0.315 andωX0=-1[30],wherein Ωm0is a current fractional density of the dust matter,defined by

    Hence,and by using equations (16) and (27),two free parametersβandηbecome

    In order to constrainα,one may use the approach given in[31,32].In such an approach,defining the transition redshift

    with the aid of the deceleration parameter(28)obtainsαas a function ofxTwhenq(xT)=0is used

    The joint analysis of SNe+CMB data and the Λ cold dark matter (CDM) theory obtainszT=0.52-0.73[33].With this range at hand,the free parameterαis given by these observations.

    Figure 1. The equation of the state of the dark energy in the noninteraction scenario when H0=67.4 and Ωm0=0.315 and γ=0.1(left panel) and γ=1.1(right panel) for zT=0.52(solid curve),zT=0.62(dashed curve) andzT=0.72(dash-dotted curve).

    Figure 2. Deceleration parameter in the non-interaction scenario whenγ=0.1(left panel) andγ=1.1(right panel) forzT=0.52(solid curve),zT=0.62(dashed curve) andzT=0.72(dash-dotted curve).

    In figures 1 and 2 the evolution of the equation of the state and the deceleration parameter as a function of the redshiftzforγ=0.1and 1.1 are plotted1With these values of γ,the condition (14) is satisfied..As shown,our model is valuable due to the non-conservation effects presented,while in the absence of the non-conservation term,the holographic dark energyρX=αH2evolves like pressureless matter during the expansion of the Universe,ωX=0[21],and thus it cannot explain the current epoch.As plotted in figure 1,the dark energy in this model behaves like a dust matter field in the past Universe,coinciding with Λ CDM theory atz=0 and evolving like a phantom fluid in the future.From figure 2,sinceq→0.5forz?0,there are no deviations in matter structure formation during the matterdominated era.Furthermore,restrictingαwith a transition point shows that the model is not in conflict with the observations [33].

    To explore the effects of the perturbations on the classical stability of the model,the speed of sound squaredshould be positive and ≤1.

    With the aid of equations (30) and (31),one obtains

    Figure 3. The speed of sound squared versus the redshift for the noninteraction scenario whenγ=0.1(left panel) andγ=1.1(right panel) for zT=0.52(solid curve),zT=0.62(dashed curve) and zT=0.72(dash-dotted curve).

    As discussed in this section,it is revealed that the nonconservation term alleviates the original holographic model of the dark energy problem in which it can onset a trigger of current acceleration expansion.

    In the two next sections,we will explore the interaction and pure viscous scenarios for our model.

    4.Interaction scenarios

    In this section,we assume that the interaction termQ≠0,given byQ=c1(ρm+)in whichc1,is an arbitrary constant.With this assumption,and using equations (16) and(19),the density of the matter field and dark energy is given by

    As a result,the pressure for the corresponding dark energy becomes

    Consequently,with the same initial conditions constraining model with the current values of the Hubble parameter and the fractional density of matter,one has

    Figure 4. Equation of state for the interaction scenario when H0=67.4,Ωm0=0.315andc1=α=0.1is used for γ=0.47(solid curve),γ=0.63(dashed curve),γ=0.8(dash-dotted curve)and γ=0.96for dotted curve.

    Figure 5. The deceleration parameter versus the redshift when H0=67.4,Ωm0=0.315andc1=α=0.1is used for γ=0.47(solid curve),γ=0.63(dashed curve),γ=0.8(dash-dotted curve)and γ=0.96for dotted curve.

    The volution of the equation of state,deceleration parameter,and speed of sound squared for this scenario is plotted in figures 4–6,which depicts that the model is not in conflict with the Λ CDM theory.As shown in figure 3,this model presents quintessence dark energy fluid and behaves like dust matter in high redshift while coinciding with the Λ theory atz=0.Investigating the deceleration parameter just shows that the transition point in the interaction scenario satisfies the observations (see figure 4).

    Figure 6. Speed of sound squared as the function of the redshiftz for γ=0.47(solid curve),γ=0.63(dashed curve),γ=0.8(dashdotted curve) and γ=0.96for dotted curve when H0=67.4,Ωm0=0.315andc1=α=0.1..

    5.Viscous model

    In this section,we study the bulk viscosity on holographic dark energy in the non-conserved theory of gravity.The bulk viscosity scenario is introduced by dissipating just through redefining the effective pressurep[e]=p-ζHwhereζis the bulk viscosity coefficient.

    In the absence of interaction between the dust matter field and the dark energy,using equation (18) yields the effective pressure of viscous dark energy as

    Here,we are interested in exploring the Universe dominated by a dust matter field and the holographic dark energy given in equation (15).In the following and as a toy model,we assume thatζ=.Hence,with aid of equation (15),the bulk viscosity term is given by

    Computing the equation of state,deceleration parameter and speed of sound squared,one finds

    in which the prime denotes the derivative with respect toxand we defineωX0=-1,we have

    Constraining the model for the current Universe,x=0,when

    Figure 7. Equation of the state versus the redshift for zT=0.52(solid curve),zT=0.55(dashed curve) and zT=0.58(dash-dotted curve).

    Figure 8. The evolution of the deceleration parameter as a function of the redshift for zT=0.52(solid curve),zT=0.55(dashed curve)and zT=0.58(dash-dotted curve).

    Using transition point (32) for deceleration parameter (46)obtains

    Figure 9. The speed of sound squared for the viscous model when we use zT=0.52(solid curve),zT=0.55(dashed curve) and zT=0.58(dash-dotted curve).

    In figures 7–9,the evolution of the parameters given in equations (44)–(46) are plotted when we setβ=110andγ=0.1.As shown,the viscous dark energy gives another way to alleviate the transition point while the dark energy evolves as matter fluid in the past Universe to a cosmological constant-like model inz=0 and behaves like a strong phantom field in the future.

    6.Conclusions

    To summarize,we have considered the original holographic dark energy in a new modified theory of gravity,‘non-conserved gravity’.As discussed,in this theory the Rastall idea is reconsidered and shows that the energy-momentum tensor is not conserved when its flux is given by thermodynamical parameters of the system.Also,such a theory cannot present a current acceleration phase alone,and thus one needs to dilute the theory with other modified theories of gravity or add some parameters of dark energy by hand.

    In this study,we have attempted to check the original holographic dark energy in which a cut-off length is proportional to the inverse of the Hubble parameter,i.e.,?=H-1.This model of dark energy cannot onset a late-time acceleration epoch in standard gravity theory as shown,due to the effects of the non-conservation term in our model,such a scenario of dark energy can explain the present phase.As discussed,in both non-interaction and interaction scenarios,the model presents dark energy which behaves like the cosmological constant atz=0,while for high redshifts it evolves as dust matter.However,such quintessence dark energy behaves as a phantom field in the future Universe.Futhremore,this dark energy is stable,wherein for both scenarios one finds≥0.

    As another plausible scenario we have studied the viscous model.As shown,this scenario also satisfies our observations.In this scenario,the dark energy,due to its viscosity,presents matter with positive pressure in the past Universe while in the current Universe,it coincides with the Λ CDM model.

    We encourage any interested researchers to apply another dark energy model in the non-conserved theory of gravity to investigate and check this theory theoretically and observationally.

    Acknowledgments

    The authors thank A H Fazlollahi for his helpful cooperation and comments,and the referee(s)for their considerations also.

    ORCID iDs

    视频区图区小说| 亚洲欧美精品专区久久| 最近最新中文字幕免费大全7| 国产精品女同一区二区软件| 亚洲欧美日韩另类电影网站 | 国产高清三级在线| 一级毛片黄色毛片免费观看视频| 搡女人真爽免费视频火全软件| 久久久精品欧美日韩精品| 人妻少妇偷人精品九色| 欧美潮喷喷水| 亚洲av二区三区四区| 日日啪夜夜撸| 偷拍熟女少妇极品色| 欧美丝袜亚洲另类| kizo精华| 亚洲一区二区三区欧美精品 | 国产精品国产av在线观看| 欧美日韩综合久久久久久| 久久久久久九九精品二区国产| 久久精品久久精品一区二区三区| 亚洲自偷自拍三级| 我的老师免费观看完整版| 国产视频首页在线观看| 一级a做视频免费观看| 国产高清国产精品国产三级 | 一级片'在线观看视频| 日本爱情动作片www.在线观看| 国产精品久久久久久精品电影小说 | 久久久精品欧美日韩精品| 久久久久九九精品影院| 啦啦啦啦在线视频资源| 国产 一区 欧美 日韩| 人人妻人人爽人人添夜夜欢视频 | 久久久久精品性色| 亚洲av不卡在线观看| 午夜免费观看性视频| 你懂的网址亚洲精品在线观看| 精品人妻视频免费看| 精品久久久久久电影网| 色视频在线一区二区三区| 男人和女人高潮做爰伦理| 亚洲av不卡在线观看| 欧美一级a爱片免费观看看| 亚洲色图av天堂| 亚洲自拍偷在线| 一级a做视频免费观看| 卡戴珊不雅视频在线播放| 亚洲成人久久爱视频| 久久久久久久国产电影| 免费av观看视频| 国产精品一区二区三区四区免费观看| 波野结衣二区三区在线| 亚洲av日韩在线播放| 日产精品乱码卡一卡2卡三| 久久精品国产自在天天线| 各种免费的搞黄视频| 综合色丁香网| 熟妇人妻不卡中文字幕| 国产熟女欧美一区二区| 九色成人免费人妻av| 老司机影院成人| 天堂网av新在线| 午夜福利在线观看免费完整高清在| 一级毛片 在线播放| 久久午夜福利片| 亚洲精品一区蜜桃| 久久久久久久久久人人人人人人| 精品国产乱码久久久久久小说| 男女边吃奶边做爰视频| 春色校园在线视频观看| 久热久热在线精品观看| 赤兔流量卡办理| av天堂中文字幕网| 国产一区二区三区av在线| 高清av免费在线| 成人国产av品久久久| 成人一区二区视频在线观看| 一个人看视频在线观看www免费| 欧美日韩一区二区视频在线观看视频在线 | 国产成人精品福利久久| 国产男女超爽视频在线观看| 国产永久视频网站| 草草在线视频免费看| 亚洲av电影在线观看一区二区三区 | 制服丝袜香蕉在线| 嫩草影院精品99| 久久99热6这里只有精品| 欧美激情国产日韩精品一区| 久久99热这里只有精品18| 久久午夜福利片| 免费黄频网站在线观看国产| 男人舔奶头视频| 搡老乐熟女国产| 建设人人有责人人尽责人人享有的 | 国产日韩欧美在线精品| 国产精品成人在线| 欧美xxxx黑人xx丫x性爽| videos熟女内射| 欧美区成人在线视频| 久久国产乱子免费精品| 狂野欧美激情性xxxx在线观看| 高清欧美精品videossex| 亚洲av在线观看美女高潮| 欧美人与善性xxx| 深夜a级毛片| 国产av国产精品国产| 久久久久久久久久久丰满| 成年女人看的毛片在线观看| 嫩草影院精品99| 国产v大片淫在线免费观看| 久久久久国产网址| 国产欧美另类精品又又久久亚洲欧美| 狂野欧美激情性bbbbbb| 一个人看视频在线观看www免费| 免费播放大片免费观看视频在线观看| 女人被狂操c到高潮| 尾随美女入室| 欧美日韩视频精品一区| 亚洲va在线va天堂va国产| 国产日韩欧美在线精品| 91aial.com中文字幕在线观看| 久久精品久久精品一区二区三区| 九九爱精品视频在线观看| 精品国产一区二区三区久久久樱花 | 久久99蜜桃精品久久| 久久99热这里只频精品6学生| 久久久久久久国产电影| 男的添女的下面高潮视频| 亚洲精品国产色婷婷电影| 热re99久久精品国产66热6| 可以在线观看毛片的网站| 国产av码专区亚洲av| 交换朋友夫妻互换小说| 欧美区成人在线视频| 人体艺术视频欧美日本| 午夜福利网站1000一区二区三区| 五月伊人婷婷丁香| 亚洲国产精品专区欧美| 97在线视频观看| 国产 精品1| 熟女av电影| 国产一区二区在线观看日韩| 日韩亚洲欧美综合| 日韩成人伦理影院| 日本wwww免费看| 日本一二三区视频观看| av在线亚洲专区| 99热国产这里只有精品6| 能在线免费看毛片的网站| 午夜精品一区二区三区免费看| 男女边摸边吃奶| 欧美日韩视频高清一区二区三区二| 欧美高清性xxxxhd video| 免费观看av网站的网址| 欧美日韩视频高清一区二区三区二| 日本三级黄在线观看| 制服丝袜香蕉在线| 最近中文字幕高清免费大全6| 久久精品国产a三级三级三级| 日本-黄色视频高清免费观看| 亚洲欧洲日产国产| 成年av动漫网址| 午夜福利在线观看免费完整高清在| 91久久精品国产一区二区三区| 国产精品久久久久久久久免| 午夜福利在线观看免费完整高清在| 激情 狠狠 欧美| 在线亚洲精品国产二区图片欧美 | 97精品久久久久久久久久精品| 看免费成人av毛片| 国产黄a三级三级三级人| 国产亚洲一区二区精品| 免费观看av网站的网址| 日本爱情动作片www.在线观看| 国产综合懂色| 亚洲成人中文字幕在线播放| 国产片特级美女逼逼视频| 在线播放无遮挡| 少妇丰满av| 禁无遮挡网站| 亚洲欧美日韩东京热| 亚洲天堂av无毛| 国产精品一及| 精品久久久久久久人妻蜜臀av| 欧美激情国产日韩精品一区| 欧美三级亚洲精品| 少妇丰满av| 偷拍熟女少妇极品色| 国产乱来视频区| a级一级毛片免费在线观看| 九九在线视频观看精品| 99热国产这里只有精品6| 亚洲av男天堂| 久久人人爽av亚洲精品天堂 | 国产成人福利小说| 丝袜脚勾引网站| 男人添女人高潮全过程视频| 成人毛片60女人毛片免费| 大码成人一级视频| 亚洲精品日本国产第一区| 成人美女网站在线观看视频| 亚洲经典国产精华液单| 精品久久久久久电影网| 18禁裸乳无遮挡免费网站照片| 中文字幕人妻熟人妻熟丝袜美| 久久精品人妻少妇| 大片免费播放器 马上看| 美女被艹到高潮喷水动态| 国产精品国产三级专区第一集| 国产黄a三级三级三级人| 联通29元200g的流量卡| 亚洲性久久影院| 国产黄频视频在线观看| 久久综合国产亚洲精品| 特大巨黑吊av在线直播| 亚洲无线观看免费| 精品国产露脸久久av麻豆| 国产午夜精品久久久久久一区二区三区| av一本久久久久| 午夜福利视频1000在线观看| 亚洲最大成人手机在线| 真实男女啪啪啪动态图| 99热国产这里只有精品6| 乱系列少妇在线播放| 国产毛片a区久久久久| 自拍欧美九色日韩亚洲蝌蚪91 | 国产高清国产精品国产三级 | 午夜福利在线观看免费完整高清在| 观看美女的网站| 国产日韩欧美在线精品| 看非洲黑人一级黄片| 国产成人aa在线观看| 波野结衣二区三区在线| 一区二区三区四区激情视频| 日韩在线高清观看一区二区三区| 国产av不卡久久| 成人亚洲精品av一区二区| 国产乱人视频| 2021少妇久久久久久久久久久| 麻豆成人av视频| av又黄又爽大尺度在线免费看| 在线亚洲精品国产二区图片欧美 | 熟妇人妻不卡中文字幕| 精品国产一区二区三区久久久樱花 | 黄片无遮挡物在线观看| 亚洲欧美日韩另类电影网站 | 国产黄频视频在线观看| 最近的中文字幕免费完整| av福利片在线观看| 日本爱情动作片www.在线观看| 美女被艹到高潮喷水动态| 国产精品久久久久久精品电影| 韩国高清视频一区二区三区| 国产永久视频网站| 中文乱码字字幕精品一区二区三区| 免费大片黄手机在线观看| av又黄又爽大尺度在线免费看| 亚洲av不卡在线观看| 22中文网久久字幕| 亚洲av免费高清在线观看| 亚洲色图av天堂| 欧美性猛交╳xxx乱大交人| 夜夜爽夜夜爽视频| 国产精品一及| 尤物成人国产欧美一区二区三区| 欧美bdsm另类| 超碰97精品在线观看| 寂寞人妻少妇视频99o| 欧美zozozo另类| 看黄色毛片网站| 丰满人妻一区二区三区视频av| 国产精品伦人一区二区| 街头女战士在线观看网站| 国内精品宾馆在线| 亚洲av二区三区四区| 色视频在线一区二区三区| 久久这里有精品视频免费| 国产精品久久久久久精品电影| 婷婷色av中文字幕| 亚洲自拍偷在线| 狂野欧美激情性bbbbbb| 22中文网久久字幕| 成年人午夜在线观看视频| 欧美激情国产日韩精品一区| 深爱激情五月婷婷| 欧美高清成人免费视频www| 日韩三级伦理在线观看| 观看免费一级毛片| 久久精品国产自在天天线| 建设人人有责人人尽责人人享有的 | 成年版毛片免费区| 久久99热这里只频精品6学生| 国产又色又爽无遮挡免| 亚洲欧洲日产国产| 欧美97在线视频| 国产伦精品一区二区三区视频9| 乱系列少妇在线播放| 成人亚洲欧美一区二区av| 黄色怎么调成土黄色| 亚洲精华国产精华液的使用体验| 亚洲精品国产色婷婷电影| 青春草视频在线免费观看| 色吧在线观看| av在线app专区| 美女主播在线视频| 亚洲精品456在线播放app| 国产乱人视频| 久久久久国产精品人妻一区二区| 国产乱人视频| 久久久久国产精品人妻一区二区| 久久精品人妻少妇| 亚洲精品成人av观看孕妇| 亚洲成人av在线免费| 嫩草影院精品99| 久热这里只有精品99| 中文精品一卡2卡3卡4更新| 久久精品国产鲁丝片午夜精品| 亚洲天堂av无毛| 久久精品久久久久久久性| 欧美精品人与动牲交sv欧美| 中文乱码字字幕精品一区二区三区| 在线天堂最新版资源| 午夜福利视频精品| 看免费成人av毛片| 一二三四中文在线观看免费高清| 看免费成人av毛片| 91久久精品国产一区二区成人| 99re6热这里在线精品视频| 青春草亚洲视频在线观看| 可以在线观看毛片的网站| 亚洲av福利一区| 免费黄频网站在线观看国产| 国产成年人精品一区二区| 久久久久久久久久久丰满| 日韩精品有码人妻一区| 99热这里只有精品一区| 国产精品秋霞免费鲁丝片| 极品教师在线视频| av免费观看日本| 成人二区视频| 欧美日韩视频精品一区| 亚洲国产成人一精品久久久| 国产一区二区在线观看日韩| 内地一区二区视频在线| 免费av毛片视频| 亚洲av在线观看美女高潮| 视频区图区小说| 精品99又大又爽又粗少妇毛片| 欧美日韩在线观看h| 性色av一级| 日产精品乱码卡一卡2卡三| 午夜激情福利司机影院| 亚洲精品乱码久久久久久按摩| 麻豆成人午夜福利视频| 纵有疾风起免费观看全集完整版| av女优亚洲男人天堂| 亚洲欧美精品自产自拍| 在线 av 中文字幕| 交换朋友夫妻互换小说| 97精品久久久久久久久久精品| 男女啪啪激烈高潮av片| 午夜激情福利司机影院| 久久99蜜桃精品久久| 日本黄色片子视频| 婷婷色综合大香蕉| 中文字幕亚洲精品专区| 又大又黄又爽视频免费| 别揉我奶头 嗯啊视频| 亚洲国产av新网站| 涩涩av久久男人的天堂| 自拍欧美九色日韩亚洲蝌蚪91 | 中文字幕人妻熟人妻熟丝袜美| 久久久久久久久大av| 精品亚洲乱码少妇综合久久| 99热网站在线观看| 免费黄频网站在线观看国产| 午夜激情久久久久久久| 国产午夜精品一二区理论片| 青青草视频在线视频观看| 熟女av电影| 超碰av人人做人人爽久久| av在线亚洲专区| 色视频在线一区二区三区| 日韩国内少妇激情av| 久久精品久久精品一区二区三区| 一个人看的www免费观看视频| 日本av手机在线免费观看| 欧美潮喷喷水| 色吧在线观看| 水蜜桃什么品种好| 一级毛片aaaaaa免费看小| 少妇被粗大猛烈的视频| 久久人人爽人人片av| 久久热精品热| 热99国产精品久久久久久7| 免费大片黄手机在线观看| 日韩不卡一区二区三区视频在线| 亚洲精品国产av成人精品| 97超碰精品成人国产| 成人特级av手机在线观看| 亚洲欧美成人精品一区二区| 91在线精品国自产拍蜜月| 成人高潮视频无遮挡免费网站| 国产免费视频播放在线视频| 亚洲成人av在线免费| 美女cb高潮喷水在线观看| 身体一侧抽搐| 欧美xxxx性猛交bbbb| 男人舔奶头视频| 久久精品久久久久久久性| 日本午夜av视频| 在线亚洲精品国产二区图片欧美 | 亚洲丝袜综合中文字幕| 狂野欧美激情性xxxx在线观看| 亚洲性久久影院| 亚洲,一卡二卡三卡| 99久久九九国产精品国产免费| 一个人观看的视频www高清免费观看| 在线a可以看的网站| 亚洲四区av| 在线观看av片永久免费下载| 超碰97精品在线观看| 国产精品麻豆人妻色哟哟久久| 在线观看三级黄色| 欧美变态另类bdsm刘玥| 久久99热这里只频精品6学生| 亚洲色图av天堂| 一区二区三区乱码不卡18| 成年女人看的毛片在线观看| 少妇人妻精品综合一区二区| 欧美日韩视频精品一区| 97在线人人人人妻| 国产一区亚洲一区在线观看| 免费人成在线观看视频色| 成人特级av手机在线观看| 91狼人影院| 国产免费视频播放在线视频| 欧美xxⅹ黑人| 少妇人妻精品综合一区二区| 婷婷色综合大香蕉| 最近最新中文字幕大全电影3| 亚洲内射少妇av| 日韩成人伦理影院| 欧美成人a在线观看| 日本-黄色视频高清免费观看| 水蜜桃什么品种好| av免费观看日本| 高清在线视频一区二区三区| 狂野欧美白嫩少妇大欣赏| 欧美三级亚洲精品| 久久久久国产精品人妻一区二区| 婷婷色综合大香蕉| 日本一本二区三区精品| 久久久久久国产a免费观看| 欧美日本视频| 亚洲aⅴ乱码一区二区在线播放| 精品国产露脸久久av麻豆| 简卡轻食公司| 黄片无遮挡物在线观看| 日日啪夜夜爽| 高清av免费在线| av在线亚洲专区| 一个人观看的视频www高清免费观看| 免费观看av网站的网址| 麻豆乱淫一区二区| 99热国产这里只有精品6| 又黄又爽又刺激的免费视频.| 国产一区二区亚洲精品在线观看| 亚洲国产日韩一区二区| 久久久久九九精品影院| 日韩一本色道免费dvd| 日本黄色片子视频| 免费av毛片视频| 可以在线观看毛片的网站| 午夜免费鲁丝| 日本免费在线观看一区| 麻豆乱淫一区二区| 精品久久久久久电影网| 亚洲av中文字字幕乱码综合| 欧美激情在线99| 国产精品久久久久久久电影| 狂野欧美白嫩少妇大欣赏| 97人妻精品一区二区三区麻豆| 国产在线一区二区三区精| 日韩av免费高清视频| 99re6热这里在线精品视频| 欧美日韩国产mv在线观看视频 | 久久ye,这里只有精品| 天天一区二区日本电影三级| 亚洲综合精品二区| 免费高清在线观看视频在线观看| 直男gayav资源| 啦啦啦在线观看免费高清www| 日韩在线高清观看一区二区三区| 六月丁香七月| 交换朋友夫妻互换小说| 国产精品蜜桃在线观看| 亚州av有码| 18+在线观看网站| 久久6这里有精品| 亚洲欧美一区二区三区黑人 | 久久久久九九精品影院| 欧美日韩一区二区视频在线观看视频在线 | 久久久久久久久久成人| 久久人人爽人人爽人人片va| 国产精品一二三区在线看| 亚洲熟女精品中文字幕| 成年免费大片在线观看| 国产精品国产三级专区第一集| 99热这里只有是精品在线观看| 男女边摸边吃奶| 人妻系列 视频| 深夜a级毛片| 性色avwww在线观看| 全区人妻精品视频| 嫩草影院入口| 免费av不卡在线播放| 天美传媒精品一区二区| 久久精品熟女亚洲av麻豆精品| 久久人人爽人人爽人人片va| 新久久久久国产一级毛片| 国产成人91sexporn| 在线观看人妻少妇| 18禁裸乳无遮挡动漫免费视频 | 日本wwww免费看| 成人鲁丝片一二三区免费| 中文欧美无线码| 青春草亚洲视频在线观看| 日本黄色片子视频| av在线观看视频网站免费| 人妻系列 视频| 我的老师免费观看完整版| 最近2019中文字幕mv第一页| 国产黄色免费在线视频| 香蕉精品网在线| 免费av毛片视频| av在线老鸭窝| 欧美另类一区| 午夜免费男女啪啪视频观看| 免费观看性生交大片5| 国产精品.久久久| 午夜福利视频1000在线观看| 日韩欧美 国产精品| 欧美丝袜亚洲另类| 久久久久精品久久久久真实原创| av线在线观看网站| 97超视频在线观看视频| 日本一本二区三区精品| 国产精品人妻久久久影院| 精品久久久噜噜| 亚洲精品国产成人久久av| 黄色配什么色好看| 插阴视频在线观看视频| 午夜福利网站1000一区二区三区| 亚洲欧美一区二区三区国产| 亚洲欧美一区二区三区黑人 | 成年女人看的毛片在线观看| 下体分泌物呈黄色| 汤姆久久久久久久影院中文字幕| 国产精品蜜桃在线观看| 一本色道久久久久久精品综合| 秋霞伦理黄片| 99九九线精品视频在线观看视频| 国产欧美亚洲国产| 插阴视频在线观看视频| 国内少妇人妻偷人精品xxx网站| 少妇熟女欧美另类| 亚洲熟女精品中文字幕| 久久精品国产a三级三级三级| 久久久久久久久大av| 亚洲丝袜综合中文字幕| 男女边吃奶边做爰视频| 国产精品麻豆人妻色哟哟久久| 亚洲精品国产色婷婷电影| 天天一区二区日本电影三级| 国产在视频线精品| 永久免费av网站大全| 亚洲精品第二区| 精品国产乱码久久久久久小说| 中文字幕人妻熟人妻熟丝袜美| 国产欧美另类精品又又久久亚洲欧美| 国产午夜精品一二区理论片| 一区二区三区四区激情视频| 国产熟女欧美一区二区| 丝袜脚勾引网站| 亚洲av国产av综合av卡| 干丝袜人妻中文字幕| eeuss影院久久| 18禁动态无遮挡网站| 久久99热这里只有精品18| 99热这里只有是精品50| 久久久久精品久久久久真实原创| 嫩草影院精品99| 十八禁网站网址无遮挡 | 丝袜喷水一区| 久久久久久伊人网av| 国产成人a区在线观看| 亚洲av免费在线观看| 亚洲欧美中文字幕日韩二区| 欧美老熟妇乱子伦牲交| xxx大片免费视频| 午夜免费男女啪啪视频观看| 久久99热这里只频精品6学生| av网站免费在线观看视频| 久久久色成人| 蜜臀久久99精品久久宅男| 精品人妻熟女av久视频| 亚洲自拍偷在线| 国产乱人偷精品视频| 九色成人免费人妻av| 欧美激情国产日韩精品一区| 丰满少妇做爰视频| 亚洲精品自拍成人| 99热全是精品|