冀飛
近年來,區(qū)別于以往的一種獲得性感音神經性聽力損失——“隱性聽力損失(hidden hearing loss, HHL)”逐漸被人們認識,一方面,臨床出現主訴噪聲下言語識別困難但純音聽力正常的患者,且在噪聲接觸人群和老齡人群中多見;另一方面,深入的動物模型研究也發(fā)現噪聲暴露和衰老除引起可恢復的暫時性毛細胞損傷之外,還導致了耳蝸內毛細胞與蝸神經I型傳入纖維之間的部分突觸的永久性損傷,而這種突觸損傷并未影響聽覺電生理閾值;臨床和基礎兩方面的研究結果提示,這類聽覺功能障礙的主要損傷部位是內毛細胞突觸,且其損傷早于毛細胞的損傷,這與以往傳統認識中感音神經性聽力損失主要病變部位是毛細胞、臨床表現為純音聽閾受損、耳蝸神經的損傷繼發(fā)于毛細胞損傷等特征相左[1~4]。這種“新”的聽力損失正在引起更多研究者的關注,關于HHL的文獻近幾年大量涌現,本文總結近年來與HHL相關的文獻,旨在探討有關這一疾病的診治、預防以及需要進一步研究的問題。
HHL這一術語最早由Schaette 和 McAlpine在對聽閾正常耳鳴患者的研究中提到[5],作者認為這類患者雖然常規(guī)測試頻率(0.25~8 kHz)的純音聽閾正常,但ABR的波Ⅰ振幅降低,提示了耳蝸神經纖維的損傷,正是這種“隱藏”在正常聽閾背后的損傷觸發(fā)了耳鳴的發(fā)生;作者當時將該臨床研究結果與Kujawa等[6]在噪聲暴露后小鼠體內的發(fā)現聯系在了一起。因此,在后續(xù)關于噪聲暴露后類似聽力障礙的文獻中沿用了HHL的提法[7~11],也有的使用hidden hearing deficit[12];近幾年國內的相關文獻也相應地使用“隱性聽力損失”[13~16]或“隱匿性聽力損失”[17]。
事實上,聽閾正常但聽覺存在困難的病例在上個世紀即有報道和研究[18, 19]。Saunders等[20, 21]將臨床上聽閾“正?!钡鞔_自覺噪聲下言語識別困難且無其他明顯誘因的聽力障礙定義為聽功能異常(obscure auditory dysfunction,OAD),認為是聽覺、心理學以及語言學等多種因素導致的綜合征。1992年Hinchcliffe等借鑒 Kopet-zky和King的早期發(fā)現,提出了King-Kopetzky 綜合征(King-Kopetzky Syndrome, KKS)的概念,用以描述純音聽閾正常卻在噪音環(huán)境中聆聽困難的現象,作者認為軀體性焦慮、噪聲下句子識別測試與患者的SHHI(social hearing handicap index)得分相關性較強,是KKS患者聽覺言語障礙的主要決定因素。胡旭君等對KKS做了非常全面的綜述可供參考[19]。不少研究者提到KKS就是OAD[22]。相較于HHL,KKS或OAD涵蓋了除了外周聽覺損害(主要是耳蝸)以外更多心理學(如:焦慮)和中樞功能(如:聽覺整合能力)方面的內容,有的學者甚至直接將KKS和OAD等同于聽覺處理障礙(auditory processing disorder, APD),這也可能源于當時對確切病變部位的研究不夠深入以及鑒別診斷的手段尚不足以分辨外周和中樞病變。
與HHL同一時期被提出的另一個術語是耳蝸突觸病(cochlear synaptopathy)[1, 3, 23]。突觸病(synaptopathy)早期常與聽神經病(auditory neuropathy)一起被提及[24],作為聽神經病的一個亞型[25]。近年來的文獻中,耳蝸突觸病常用于指由于噪聲暴露[3, 4, 26]、年齡老化[23, 27]和(或)藥物損傷[28, 29]等因素導致的內毛細胞和螺旋神經節(jié)之間的突觸損傷,該病變常規(guī)頻率純音測聽閾值正常(這一點與AN不同),噪聲環(huán)境中言語識別率下降。“耳蝸突觸病”更注重由動物實驗[1]或尸檢[27]得到的確切的外周病變部位的證據,“隱性聽力損失”則更注重該病的臨床特征[7, 11],這兩個術語也常一起使用[4, 14, 26]。本文從臨床角度出發(fā),沿用“隱性聽力損失”及其英文縮寫HHL。
2.1正常耳蝸傳入突觸和HHL的主要損傷部位 正常人類耳蝸長度約32 mm,包含約3 200個內毛細胞(inner hair cell,IHC)和約10 000個外毛細胞(outter hair cell,OHC)。OHC具有主動非線性放大機制,通過肌動蛋白prestin的電致運動特性使得基底膜產生足夠大的振動,對IHC產生驅動作用;IHC是機械-電信號轉換的神經感受器,主要與I型傳入聽神經纖維形成突觸連接。I型傳入聽神經占傳入神經細胞的95%,是雙極神經細胞,其胞體在螺旋神經節(jié)內,分別向IHC方向(外周)和耳蝸核方向(中樞)投射有髓鞘的神經纖維[3]。其中向IHC投射的神經纖維在骨螺旋板內部走行的樹突是無髓鞘的,通過韁孔進入耳蝸,在IHC底部形成特殊的帶狀突觸。研究表明,這些I型傳入纖維與IHC之間的帶狀突觸對于聲音信號的強度和時間編碼都非常重要,突觸前的感受器對膜電位的等級性變化產生去極化反應,帶狀突觸則以鎖相方式確保突觸遞質的快速和精確釋放[13, 30]。在人類,每個I型傳入聽神經纖維只與1個IHC形成突觸連接,而每個IHC則與4~13個I型纖維連接[27]。I型傳入神經纖維可根據閾值和自發(fā)放電率(spontaneous discharge rate, SR)分為兩大類:低閾值、高SR(SR>17.5 spikes/s)纖維和高閾值、低SR(SR≤17.5 spikes/s)纖維[31, 32]。高SR纖維約占I型傳入神經的60%,主要分布于IHC靠近柱細胞的一側,直徑較粗,含有較多的線粒體,動態(tài)范圍較窄;低SR纖維約占I型傳入神經的40%,主要分布于IHC靠近蝸軸的一側,直徑較細,線粒體較少,動態(tài)范圍較寬[2, 3](約占40%)。基于上述特點,低SR纖維從功能上并不影響神經對聲刺激反應的閾值[33],而對較高聲壓級信號的時間和強度編碼以及對抗連續(xù)背景噪聲掩蔽非常重要,也就是說低SR纖維的作用主要是擴展動態(tài)范圍和提升困難聆聽條件下的分辨能力[34, 35]。截至目前的研究顯示,低SR、高閾值纖維損傷是HHL最主要的損傷機制,這種損傷早于毛細胞的損傷[3, 4, 9]。HHL的功能性障礙可能源自噪聲等危險因素作用后低SR、高閾值神經纖維的喪失[2, 3],也可能源自損傷突觸不完全的自我修復[4, 36]。
2.2HHL的危險因素——噪聲、衰老和耳毒性藥物 噪聲、衰老和耳毒性藥物是目前明確與HHL相關的3種危險因素,其中對噪聲損傷的研究是目前最為深入的。在強噪聲環(huán)境中短時間引起的、可在幾小時甚至幾天內恢復的聽閾升高稱為暫時性閾移(temporary threshold shift, TTS)。以往的觀點認為,TTS主要源于耳蝸OHC靜纖毛之間連接的斷裂、靜纖毛與蓋膜之間聯系的消失等可逆的改變[37],聽閾也能夠回到暴露前的水平,而神經損傷在毛細胞損傷之后出現。上世紀90年代,李興啟等[38]在對脈沖噪聲暴露后豚鼠耳蝸電位及毛細胞形態(tài)學的觀察中即已發(fā)現,脈沖噪聲暴露后CAP的幅度與CM的幅度不成比例的嚴重下降,提示強脈沖噪聲對豚鼠聽器的損傷除作用于OHC外,還作用于電-化學-神經沖動環(huán)節(jié)(即突觸),后者可能更為重要,該研究結果提示聽神經復合動作電位(CAP)可能是檢測突觸功能的一個指標。近年來動物實驗研究認為,在噪聲暴露導致的TTS中,毛細胞并沒有受到損傷,ABR的閾值最終恢復正常,卻有超過50%的內毛細胞和聽神經之間的突觸連接受到了不可逆的永久性損傷,高刺激強度引出ABR的波Ⅰ幅度明顯下降[2, 6, 26];這一結果在小鼠、豚鼠[34, 39]、南美栗鼠[40]、大鼠[41]、猴子[2]等動物實驗中得到了驗證,這種結果被證明是由于上文所述的高閾值、低SR聽神經纖維在噪聲作用下選擇性破壞引起的[9, 34]。另一組學者在豚鼠中的研究發(fā)現與上述結果略有不同,其計數資料顯示低強度噪聲短時暴露后帶狀體突觸數量存在下降——部分恢復的過程,CAP也相應地有類似過程[4, 13, 36, 42];這一突觸不完全修復理論相對于上述高閾值、低SR纖維不可逆損傷的理論是一個很好的補充,也修正了原來關于噪聲所致突觸損傷完全可逆的觀點[13, 43]。此外,由于噪聲等危險因素導致螺旋神經節(jié)外周有髓鞘的軸突纖維急性脫髓鞘也是一種可能的損傷部位和機制[44, 45]。噪聲所致的上述損傷均會造成聽覺系統的時域編碼和噪聲下識別等聽功能受損,這些功能性損傷(主觀測試結果)恰是人類臨床與動物實驗結果之間聯系的橋梁[7, 12]。
年齡是HHL的另一個重要危險因素。高齡老年人中經??梢娧哉Z識別率與純音聽閾不成比例下降等現象[46],且不斷有解剖證據證明在老年性聽力損失或者年齡相關聽力損失中,耳蝸突觸和神經纖維的損傷往往先于毛細胞損失和聽閾的上升[27, 47, 48]。上述發(fā)現噪聲導致高閾值、低SR聽神經纖維損傷的團隊,專門以未經噪聲暴露的小鼠為對象,研究了衰老對耳蝸突觸的單一作用,結果發(fā)現隨著年齡的增加耳蝸突觸減少早于聽覺反應閾值和毛細胞計數的改變,聽神經的損傷則略滯后于突觸,而這一損傷與ABR的波Ⅰ幅度降低相對應[23],也與早期老年性聾動物模型中低SR纖維選擇性損傷的比例相對應,證明了年齡對于HHL的獨立作用。但不可忽視的是,年齡導致的功能性聽覺損傷除了作用于外周的效應之外,聽覺中樞處理能力的逐漸喪失也是效應之一[7, 49]。
耳毒性藥物對于突觸的損傷也在近年來引起研究者的注意。柳柯等[29]發(fā)現慶大霉素主要作用于耳蝸突觸,有意思的是,當不再施加耳毒性藥物時,帶狀突觸的數量和聽閾都有所恢復,這與上面提到的噪聲暴露后突觸的不完全修復非常相似[50]。
2.3關于HHL損傷機制尚待研究的方面 到目前為止,尚沒有證據證明噪聲、衰老和藥物這三種因素所導致的耳蝸突觸損傷機制是否完全一致[2];此外,三者對于人類聽覺系統的隱性損害是否存在交互作用或者是否存在主次之分,目前尚在研究中。以往有長期臨床觀察發(fā)現年輕時有噪聲暴露史的患者,其老年時聽力損失程度更嚴重[51],在小鼠中也觀察到了類似現象[52],但噪聲對年齡因素的長期強化作用當時并不清楚[53]。最近有學者比較了兩種不同強度的噪聲暴露后小鼠耳蝸衰老的過程,結果發(fā)現同樣的暴露時間,100 dB SPL噪聲暴露造成了接近一半突觸的急性損傷,繼而在衰老過程中螺旋神經節(jié)的數量減少、外毛細胞損傷和聽閾升高較對照組更顯著,而未造成急性突觸損傷的91 dB SPL噪聲暴露動物則與正常衰老的動物沒有差別,提示噪聲因素對年齡因素具有加速作用的前提是噪聲導致了急性突觸損傷[54],但這一損傷是否即刻造成功能性損失尚不確定[55]。這是目前關于幾種因素交互作用的最深入的研究。
另一方面,上述大量研究主要關注HHL在聽覺傳入通路的損傷,幾種危險因素是否對傳出通路也有損傷,這種損傷是否也是造成HHL的原因目前也不太清楚。已證實耳蝸傳出系統中的橄欖耳蝸束(olivocochlear bundle,OCB)對聽神經纖維的活動具有調控作用和保護作用[15, 26]。早期C57小鼠實驗提示,傳出系統特別是內側耳蝸橄欖束(medial olivocochlear bundle,MOC)隨年齡增長的功能快速退化是外周聽敏度下降的重要原因之一,而MOC退化是在OHC損傷之前發(fā)生[56]。在YFP轉基因鼠的實驗進一步證明MOC的這種退化源于其與OHC之間的傳出突觸的喪失,而傳出突觸的喪失與OHC的損傷沒有相關性[57]。臨床研究也發(fā)現OHC損傷對于噪聲下言語識別功能有影響而安靜條件下言語識別不受影響[58]。這些結果體現了傳出通路損害造成HHL的可能性[15],但尚無直接證據,需進一步研究。
2.4HHL“隱性”的原因 HHL之所以被稱為“隱性”聽力損失,是由于無論在基礎實驗中還是臨床上,HHL都難以用傳統方法定量分析。歸納起來有以下幾方面:①HHL中IHC-聽神經突觸的損傷部位主要是位于骨螺旋板內的無髓鞘部分,對這部分突觸的計數使用常規(guī)光學顯微鏡無法完成,需要借助共聚焦顯微鏡手段,且工作量巨大,導致這種損傷在早期基礎實驗中未被發(fā)現[2, 4];②HHL是選擇性地損傷高閾值、低SR神經纖維及其突觸,這部分纖維對聽閾的影響極小,以往以分析閾值和潛伏期為主的電生理方法無法發(fā)現異常[11, 33];③從臨床角度,HHL患者的突觸損傷早于毛細胞,聽敏度不受影響,常規(guī)頻率純音測聽顯示聽閾正常,其聽覺障礙往往在完成較為困難的聆聽任務(如:噪聲下言語識別、時域分辨測試等)時才表現出來[2, 7, 9],關于噪聲性聽力損失的經典觀點均以毛細胞和聽閾升高為主要關注點;④更為重要的一點,現在文獻中所確認或者疑似的HHL患者均以純音測聽正常為前提,事實上臨床上遇到的很多患者有聽閾改變,但言語識別特別是噪聲下識別言語困難,與聽閾的相關性不高,這在高齡老年患者中并不罕見[46],也見于一些輕、中度聽力損失患者,這類患者是否可以看做“隱藏”在明確聽力損失背后的“隱性”聽力損失[3]值得探討。
3 參考文獻
1 Liberman MC, Kujawa SG. Cochlear synaptopathy in acquired sensorineural hearing loss: manifestations and mechanisms[J]. Hear Res, 2017, 349:138.
2 Liberman MC. Noise-induced and age-related hearing loss: new perspectives and potential therapies[J]. F1000 Res, 2017, 6:927.
3 Kobel M, Le Prell CG, Liu J, et al. Noise-induced cochlear synaptopathy: past findings and future studies[J]. Hear Res, 2017, 349:148.
4 Shi L, Chang Y, Li X, et al. Cochlear synaptopathy and noise-induced hidden hearing loss[J]. Neural Plast, 2016, 2016:6143164.
5 Schaette R, McAlpine D. Tinnitus with a normal audiogram: physiological evidence for hidden hearing loss and computational model[J]. J Neurosci, 2011, 31:13452.
6 Kujawa SG, Liberman MC. Adding insult to injury: cochlear nerve degeneration after "temporary" noise-induced hearing loss[J]. J Neurosci, 2009, 29:14077.
7 Plack CJ, Barker D, Prendergast G. Perceptual consequences of “hidden” hearing loss[J]. Trends Hear, 2014(18):1.
8 Liberman MC.Hidden hearing loss[J]. Sci Am, 2015, 313:48.
9 Song Q, Shen P, Li X, et al. Coding deficits in hidden hearing loss induced by noise: the nature and impacts[J]. Sci Rep, 2016, 6:25200.
10 Liberman MC, Epstein MJ, Cleveland SS, et al. Toward a differential diagnosis of hidden hearing loss in humans[J]. PLoS One, 2015, 11:e0162726.
11 Liberman MC, Epstein MJ, Cleveland SS, et al. Toward a differential diagnosis of hidden hearing loss in humans[J]. PLoS One, 2016, 11:e0162726.
12 Bharadwaj HM, Masud S, Mehraei G, et al. Individual differences reveal correlates of hidden hearing deficits[J]. J Neurosci, 2015, 35:2161.
13 石麗娟, 劉莉潔, ?,? 等.噪聲致隱性聽力損失的研究進展和臨床意義[J]. 聽力學及言語疾病雜志,2016, 24:618.
14 盛海斌, 黃治物, 吳皓. 耳蝸突觸病變和隱性聽力損失[J]. 聽力學及言語疾病雜志,2016, 24:614.
15 李國慶, 呂萍, 王秋菊. 隱性聽力損失的發(fā)病機制及聽力學表現[J]. 中華耳科學雜志,2017, 15:185.
16 尹彥波, 袁雅生, 遲放魯. 隱性聽力下降小鼠耳蝸內毛細胞突觸的病理改變[J]. 復旦學報(醫(yī)學版),2017, 44:175.
17 熊浩, 陳玲, 楊海弟, 等. 聽力圖正常耳鳴患者的隱匿性聽力損失:耳鳴起源的啟示[J]. 臨床耳鼻咽喉頭頸外科雜志,2013, 27:362.
18 King P.Psychogenic deafness[J]. J Laryngol Otol, 1954, 68:623.
19 胡旭君, 史靚, 應琴琴. 聽閾正常者在噪聲下的言語交流障礙[J]. 中華耳科學雜志, 2008, 6:56.
20 Saunders GH, Haggard MP. The clinical assessment of obscure auditory dysfunction-1. Auditory and psychological factors[J]. Ear Hear,1989, 10:200.
21 Saunders GH, Field DL, Haggard MP. A clinical test battery for obscure auditory dysfunction (OAD): development, selection and use of tests[J]. Br J Audiol,1992, 26:33.
22 Zhao F, Stephens D. Hearing complaints of patients with King-Kopetzky syndrome (obscure auditory dysfunction)[J]. Br J Audiol,1996, 30:397.
23 Sergeyenko Y, Lall K, Liberman MC, et al: Age-related cochlear synaptopathy: an early-onset contributor to auditory functional decline[J]. J Neurosci, 2013, 33:13686.
24 Foerst A, Beutner D, Lang-Roth R, et al. Prevalence of auditory neuropathy/synaptopathy in a population of children with profound hearing loss[J]. Int J Pediatr Otorhinolaryngol, 2006, 70:1415.
25 Rance G, Starr A. Pathophysiological mechanisms and functional hearing consequences of auditory neuropathy[J]. Brain Res Brain Res Rev,2015, 138(Pt 11):3141.
26 Kujawa SG, Liberman MC. Synaptopathy in the noise-exposed and aging cochlea: Primary neural degeneration in acquired sensorineural hearing loss[J]. Hear Res,2015, 330(Pt B):191.
27 Viana LM, O'Malley JT, Burgess BJ, et al. Cochlear neuropathy in human presbycusis: confocal analysis of hidden hearing loss in post-mortem tissue[J]. Hear Res, 2015, 327:78.
28 Steyger PS. Is auditory synaptopathy a result of drug-induced hearing loss[J]? The Hearing Journal,2017(4):8.
29 Liu K, Jiang X, Shi C, et al. Cochlear inner hair cell ribbon synapse is the primary target of ototoxic aminoglycoside stimuli[J]. Mol Neurobiol, 2013, 48:647.
30 Nouvian R, Beutner D, Parsons T, et al. Structure and function of the hair cell ribbon synapse[J]. Journal of Membrane Biology,2006, 209:153.
31 Schmiedt R, Mills J, Boettcher F. Age-related loss of activity of auditory-nerve fibers[J]. Journal of Neurophysiology,1996, 76:2799.
32 Liberman M. Single-neuron labeling in the cat auditory nerve[J]. Science,1982, 216:1239.
33 Bourien J, Tang Y, Batrel C, et al. Contribution of auditory nerve fibers to compound action potential of the auditory nerve[J]. J Neurophysiol,2014, 112:1025.
34 Furman A, Kujawa S, Liberman M. Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates[J]. Journal of Neurophysiology,2013, 110:577.
35 Wan G, Corfasa G. No longer falling on deaf ears: mechanisms of degeneration and regeneration of cochlear ribbon synapses[J]. Hear Res,2015, 329:1.
36 Shi L, Chang Y, Li X, et al. Coding deficits in noise-induced hidden hearing loss may stem from incomplete repair of ribbon synapses in the cochlea[J]. Front Neurosci,2016, 10:231.
37 Henderson D, Subramaniam M. Advances in our understanding of noise-induced hearing loss[J]. Applied Occupational & Enviromental Hygiene,1996, 11:255.
38 李興啟, 孫建和, 李暉, 等. 脈沖噪聲暴露后豚鼠耳蝸電位及毛細胞形態(tài)學實驗觀察[J]. 中華耳鼻咽喉科雜志,1991, 26:200.
39 Lin H, Furman A, Kujawa S, et al. Primary neural degeneration in the Guinea pig cochlea after reversible noise-induced threshold shift[J]. J Assoc Res Otolaryngol,2011, 12:605.
40 Hickox AE, Larsen E, Heinz MG, et al. Translational issues in cochlear synaptopathy[J]. Hear Res,2017, 349:164.
41 Singer W, Zuccotti A, Jaumann M, et al. Noise-induced inner hair cell ribbon loss disturbs central arc mobilization: a novel molecular paradigm for understanding tinnitus[J]. Molecular Neurobiology,2013, 47:261.
42 Shi L, Liu L, He T, et al. Ribbon synapse plasticity in the cochleae of guinea pigs after noise-induced silent damage[J]. Plos One,2013, 8:e81566.
43 Pujol R, Puel J. Excitotoxicity, synaptic repair, and functional recovery in the mammalian cochlea: a review of recent findings[J]. Ann N Y Acad Sci,1999, 884:249.
44 Wan G, Corfas G. Transient auditory nerve demyelination as a new mechanism for hidden hearing loss[J]. Nat Commun,2016, 8:14487.
45 冀飛, 陳艾婷, 謝琳怡. 隱性聽力損失的發(fā)生機制和聽力學表現—京津冀地區(qū)兒童聽力診斷中心2017年第三季度學術活動紀要[J]. 中華耳科學雜志,2017, 15:484.
46 Deng X, F FJ, Yang S. Correlation between maximum phonetically balanced word recognition score and pure-tone auditory threshold in elder presbycusis patients over 80 years old[J]. Acta Otolaryngol,2014, 134:168.
47 Felder E, Schrott FA. Quantitative evaluation of myelinated nerve fibres and hair cells in cochleae of humans with age-related high-tone hearing loss[J]. Hear Res,1995, 91:19.
48 Makary C, Shin J, Kujawa S, et al. Age-related primary cochlear neuronal degeneration in human temporal bones[J]. J Assoc Res Otolaryngol,2011, 12:711.
49 Ajith Kumar U,Sangamanatha AV.Temporal processing abilities across different age groups[J]. Journal of the American Academy of Audiology,2011, 22:5.
50 Liu K, Chen D, Guo W, et al. Spontaneous and partial repair of ribbon synapse in cochlear inner hair cells after ototoxic withdrawal[J]. Molecular Neurobiology,2015, 52:1680.
51 Gates G, Schmid P, Kujawa S, et al. Longitudinal threshold changes in older men with audiometric notches[J]. Hearing Research,2000, 141:220.
52 Kujawa S, Liberman M.Acceleration of age-related hearing loss by early noise exposure: evidence of a misspent youth[J]. Journal of Neuroscience,2006, 26:2115.
53 Kidd I, Bao J. Recent advances in the study of age-related hearing loss: a mini-review[J]. Gerontology,2012, 58:490.
54 Fernandez KA, Jeffers PW, Lall K, et al. Aging after noise exposure: acceleration of cochlear synaptopathy in "recovered" ears[J]. J Neurosci,2015, 35:7509.
55 Lobarinas E, Spankovich C, Le Prell CG. Evidence of "hidden hearing loss" following noise exposures that produce robust TTS and ABR wave-I amplitude reductions[J]. Hear Res,2017, 349:155.
56 Zhu X, Vasilyeva O, Kim S, et al. Auditory efferent feedback system deficits precede age-related hearing loss: contralateral suppression of otoacoustic emissions in mice[J]. Journal of Comparative Neurology,2007, 503:593.
57 Fu B, Le Prell C, Simmons D, et al. Age-related synaptic loss of the medial olivocochlear efferent innervation[J]. Mol Neurodegener,2010, 5:53.
58 Hoben R, Easow G, Pevzner S, et al. Outer hair cell and auditory nerve function in speech recognition in quiet and in background noise[J]. Front Neurosci,2017, 11:157.