• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Inverse Scattering Transform of the Coupled Sasa–Satsuma Equation by Riemann–Hilbert Approach?

    2018-01-24 06:23:03JianPingWu吳建平andXianGuoGeng耿獻國2SchoolofScienceZhengzhouUniversityofAeronauticsZhengzhou450046China
    Communications in Theoretical Physics 2017年5期

    Jian-Ping Wu(吳建平)and Xian-Guo Geng(耿獻國)2School of Science,Zhengzhou University of Aeronautics,Zhengzhou 450046,China

    2School of Mathematics and Statistics,Zhengzhou University,100 Kexue Road,Zhengzhou 450001,China

    1 Introduction

    The nonlinear Schr?dinger(NLS)equation is wellknown to be an important integrable system in mathematical physics.There are many physical contexts where the NLS equation appears.For example,the NLS equation describes the weakly nonlinear surface wave in deep water.More importantly,the NLS equation models the soliton propagation in optical fibers where only the group velocity dispersion and the self-phase modulation effects are considered.However,for ultrashort pulse in optical fibers,the effects of the third-order dispersion,the selfsteepening,and the stimulated Raman scattering should be taken into account.Due to these effects,the dynamics of the ultrashort pulses can be described by the Sasa–Satsuma higher-order nonlinear Schr?dinger equation[1?4]

    whereq=q(x,t)is a complex-valued function.Moreover,to describe the propagations of two optical pulse envelopes in birefringent fibers,some coupled Sasa–Satsuma equations were also proposed and studied.[5?9]Particularly,a coupled form of the Sasa–Satsuma equation reads[5]

    whereq1=q1(X,T),q2=q2(X,T)are two complex functions of variablesX,T.As done in Ref.[5],in order to analyze Eq.(2),it is more convenient to rewrite it in the following form

    by use of the gauge,Galilean and scale transformations In this paper,we refer to Eq.(3)as the coupled Sasa–Satsuma equation.The complete integrability of Eq.(3)was established and soliton solutions were obtained using Darboux–B?cklund transformation.[5]In addition,the coupled Sasa–Satsuma equation has also been investigated via various methods such as Darboux transformation,Painlevé singularity analysis,Hirota method,[6?9]and so on.

    Recently,there are many investigations on solutions of nonlinear evolution equations.[10?16]It is also known that the inverse scattering transform is a powerful approach to derive soliton solutions.However,since Eq.(3)involves a 5×5 matrix spectral problem,[5]the inverse scattering transform for this equation is rather complicated to dealwith.To our knowledge,the research in this direction has not been conducted before.The aim of the present paper is to study the multi-soliton solutions of Eq.(3)by utilizing the inverse scattering transform via Riemann–Hilbert(RH)approach.[17?25]

    This paper is arranged as follows.In Sec.2,starting from the Lax pair we give direct scattering transform of Eq.(3).Then an RH problem is formulated and solved in the reflectionless cases.In Sec.3,the inverse scattering transform for Eq.(3)is established.In Sec.4,we construct multi-soliton solutions of Eq.(3).Moreover,we will give some interesting figures describing the corresponding soliton characteristics,including breather types,single-hump solitons,double-hump solitons,and two-bell solitons.

    2 Riemann–Hilbert Problem

    In this section,we give direct scattering transform of the coupled Sasa–Satsuma equation(3).According to Ref.[5],the Lax pair for Eq.(3)is

    where Ψ = Ψ(x,t;ζ)is a column vector function of the complex spectral parameterζ,and

    where

    For the sake of convenience,we extend Ψ in Eq.(4)to a matrix and then introduce a new matrix spectral functionJ=J(x,t;ζ)defined by Ψ =JeiζΛx+4iζ3Λt.Then the Lax pair(4)can be rewritten as

    Now let us construct two matrix solutionsJ±=of Eq.(5a)under the asymptotic conditions

    Here each[J±]ldenotes thel-th column ofJ±,respectively.The symbol I is the 5×5 identity matrix,and the subscripts ofJrepresent which end of thex-axis the boundary conditions are set.The matrix solutionsJ±are uniquely determined by the Volterra integral equations

    It is easy to find that[J+]1,[J+]2,[J+]3,[J+]4,[J?]5allow analytic extensions to the upper halfζ-plane C+.On the other hand,[J?]1,[J?]2,[J?]3,[J?]4,[J+]5are analytically extendible to the lower halfζ-plane C?.

    In what follows,we investigate the properties ofJ±.Indeed,from the fact thatQis traceless we know detJ±are independent ofx.Therefore we have detJ±=1 forζ∈ R.Moreover,J±eiζΛxare related by a scattering matrixS(ζ)=(skj)5×5

    which implies that

    Then it follows from the analytic property ofJ?thats55can be analytically extended to C+,whereasskj(1≤k,j≤ 4)allow analytic extensions to C?.In general,sk5,s5j(1≤k,j≤4)cannot be extended offthe realζ-axis.

    Using the analytic properties ofJ±,we can construct a matrix functionP1=P1(x,ζ)which is analytic forζ∈ C+

    Moreover,we have the large-ζasymptotic behavior ofP1

    In order to obtain an RH problem for Eq.(3),we have to construct an analytic matrixP2in C?.To this end,we shall consider the adjoint equation of Eq.(5a)

    It is easy to check that the matrix inverses ofJ±satisfy Eq.(13).Let us denote

    and the large-ζasymptotic behavior ofP2can be shown to be

    In addition,it is easy to find thatare related by the scattering matrixR(ζ)≡ (rkj)5×5=S?1(ζ)

    Moreover,similar to the scattering coeffcientsskjabove,we can show thatr55allows an analytical extension to C?,whereasrkj(1≤k,j≤4)have analytic extensions to C+.In addition,rk5,r5j(1≤k,j≤4)are only defined on the realζ-axis.

    Summarizing the above results,we have constructed two matrix functionsP1andP2,which are analytic in C+and C?,respectively.Now we denote the limit ofP1from the left-hand side of the realζ-axis asP+,and the limit ofP2from the right-hand side of the realζ-axis asP?.Consequently,we obtain an RH problem for the coupled Sasa–Satsuma equation(3)

    where the matrixG=G(x,ζ)is as follows

    and the canonical normalization condition for this RH problem is

    In order to investigate the inverse scattering transform for Eq.(3),let us solve the RH problem(18).To this end,we assume that the RH problem(18)is irregular.Here the irregularity means both detP1and detP2have certain zeros in their analytic domains.Recalling the definitions ofP1andP2,we have

    To specify these zeros,we notice that there is a symmetry relation forQin Eq.(5a)

    where?means the Hermitian conjugate.Therefore from Eq.(13),we get

    Then it follows that

    which implies the following relations

    Furthermore,from the definitions ofP1andP2,the following property also holds

    To solve the RH problem(18),we have to consider one more symmetry relation

    where

    From Eq.(27)we obtain that

    which leads to

    Obviously,Eq.(29)implies that

    Furthermore,we point out that Eq.(28)also yields a property forP1itself

    Therefore,from Eqs.(20),(21),and(25c),we find that ifζjis a zero of detP1,thenis a zero of detP2.Moreover,in view of Eq.(30c),we know thatis also a zero of detP1.Thus we can investigate the zeros of detP1in two cases.Firstly,we assume that detP1has a total number of 2Nsimple zerosζj(1 ≤j≤ 2N)satisfyingwhich are all in C+.Correspondingly,detP2possesses 2Nsimple zeros(1≤j≤2N)satisfyingwhich are all in C?.Obviously,the zeros of detP1and detP2always appear in quadruples in this case.The second case is that detP1possesses onlyNsimple zerosζj(1 ≤j≤N)in C+,where eachζjis pure imaginary.Then detP2hasNsimple zerosin C?,whereThe scattering data we need to solve the RH problem(18)consists of the continuous scattering data{s15,s35}as well as the discrete scattering data{ζj,ζj,vj,vj}.Herevjandare nonzero column and row vectors,respectively,satisfying

    Next we deducevjandvjsuch that multi-soliton solutions can be obtained for the coupled Sasa–Satsuma equation(3).For the first type of zeros,we obtain a special relation by using Eqs.(26)and(32)

    On the other hand,from(31)we obtain a particular column vector relation

    Now we shall get the vectorsvj(1≤j≤N).For this purpose,we take thex-derivative ofP1(ζj)vj=0.Then utilizing Eq.(5a),we obtain without loss of generality that

    wherevj,0is independent ofx.Therefore,using Eqs.(33)–(35),all the vectorsvjandcan be determined explicitly.Note that,to derive soliton solutions for Eq.(3),we choose the matrixGin(18)to be the 5×5 identity matrix.This is guaranteed by settings15=s35=0,which corresponds to the reflectionless case.Consequently,the unique solution for the special RH problem is

    whereM=(mkj)2N×2Nis a matrix whose entries aremkj=vkvj/(ζj?ζk).For the second type of zeros,the corresponding vectorsvj,(1≤j≤N)can be derived as

    wherevj,0is independent ofx.Using these vectors,the RH problem(18)in the reflectionless case can also be solved exactly

    whereM=(mkj)N×Nis a matrix with entriesmkj=

    3 Inverse Scattering Transform

    In this section,we give the inverse scattering transform of the coupled Sasa–Satsuma equation(3),from which we recover the potentialsu,vby using the scattering data.In fact,we can expandP1(ζ)as

    Then substituting it into Eq.(5a),and then comparingO(1)terms gives

    which implies thatu,vcan be obtained as

    4 Multi-Soliton Solutions

    To derive solutions for the coupled Sasa–Satsuma equation(3),we have to investigate the temporal evolutions of the scattering data.From(5b)and(9),and noticing the decaying properties ofuandv,we arrive at

    which leads to the temporal evolutions

    In addition,using Eq.(5b)we obtain thatTherefore,for the first type of zeros,we obtain

    Now for the first type of zeros of detP1,we setvj,0=(αj,βj,γj,μj,1)Tto be complex constant vectors.Then utilizing Eqs.(43)and(46)–(47),from Eq.(42)we obtain anN-soliton solution formula for Eq.(3)

    whereM=(mkj)2N×2Nwith

    Now we are interested in the simplest situation that occurs whenN=1 in Eq.(50).To illustrate the single-soliton solution explicitly,we shall specify the corresponding parameters in Eq.(50).Firstly,we setβ1=α?1andμ1=γ?1in Eq.(50).Then by denotingζ1=ξ1+iη1(ξ1/=0,η1>0),a breather-type solution for the coupled Sasa–Satsuma equation(3)is obtained from Eq.(50)

    where

    Its breather-type behavior is plotted in Fig.1.

    Fig.1 The breather-type solution via(51) with the parameters

    Secondly,we chooseβ1=μ1=0 in(50),then another type of soliton solution for the coupled Sasa–Satsuma equation(3)is obtained

    where

    We remark that the single-soliton solution(52)features that it can be single-humped or double-humped,which is similar to the case for the Sasa–Satsuma equation.[1,20]By choosing appropriate parameters,we plot the single-hump and double-hump soliton solutions in Figs.2–3,respectively.

    Fig.2 The single-hump soliton via Eq.(52)with the parameters

    Fig.3 The double-hump soliton via Eq.(52)with the parameters

    Fig.4 Collisions between two single-hump solitons via Eq.(50)with N =2,and(α1,β1,γ1,μ1)=(1,0,0,0),(α2,β2,γ2,μ2)=(1,0,1,0),ζ1=0.4+0.5i,ζ2=0.7+0.8i.

    Now we shall investigate the case forN=2 in Eq.(50).To illustrate the corresponding two-soliton interactions,we first choose the parameters in Eq.(50)as(α1,β1,γ1,μ1)=(1,0,0,0),(α2,β2,γ2,μ2)=(1,0,1,0),ζ1=0.4+0.5i,ζ2=0.7+0.8i.Then a type of polarization-changing collision[2]between two single-hump solitons will be obtained.The polarization-changing collisions lead to the enhancement of intensity in one component of|u|or|v|,and the suppression of intensity in the other component,as shown in Fig.4.This figure also shows that one component of|v|even becomes zero after collision.Moreover,for the caseN=2 in Eq.(50),another type of two-soliton interaction can be obtained by choosing proper parameters.For example,we set(α1,β1,γ1,μ1)=(1,1,1,1),(α2,β2,γ2,μ2)=(1,0,2,0),ζ1=0.5+0.5i,ζ2=1+i.Under these parameters,the interactions of a single-hump soliton and a breather can be obtained,as can be seen in Fig.5.This figure demonstrates that a single-hump soliton changes into a breather when interacting with a breather.

    Fig.5 Interactions between a single-hump soliton and a breather via Eq.(50)with N=2,and(α1,β1,γ1,μ1)=(1,1,1,1),(α2,β2,γ2,μ2)=(1,0,2,0),ζ1=0.5+0.5i,ζ2=1+i.

    Fig.6 The two-bell soliton solution Eq.(55)with the parameters α1=1,γ1=1+i,α2=i,γ2=0.5i,ζ1=0.3i,ζ2=0.5i.

    In what follows,we shall turn to the second type of zeros of detP1.In this case,we assume that detP1has onlyNsimple zerosλj(1 ≤j≤N)in C+,whereλjis pure imaginary.In this case,we obtain another kind ofN-soliton solution.Settingto be complex constant vectors,anotherN-soliton solution formula for Eq.(3)follows from(42)by using Eqs.(44),(48)–(49)

    whereM=(mkj)N×Nwith

    WhenN=1,Eq.(53)gives a bell-soliton solution for the coupled Sasa–Satsuma equation(3)

    WhenN=2,Eq.(53)reduces to a two-bell soliton solution of the coupled Sasa–Satsuma equation(3)

    whereM=(mkj)2×2with

    5 Conclusions

    In this paper,we have obtained two kinds of multisoliton solution formulae for the coupled Sasa–Satsuma equation(3).One is Eq.(50)and the other is Eq.(53).These two forms ofN-soliton solutions correspond to two different types of zero structures of the RH problem.In addition,based on the twoN-soliton solution formulae,we obtain some interesting soliton solutions which include breather-type solutions,single-hump soliton solutions,double-hump soliton solutions,and two-bell soliton solutions.

    [1]N.Sasa and J.Satsuma,J.Phys.Soc.Jpn.60(1991)409.

    [2]T.Xu and X.M.Xu,Phys.Rev.E 87(2013)032913.

    [3]T.Xu,M.Li,and L.Li,Europhys.Lett.109(2015)30006.

    [4]J.J.C.Nimmo and H.Yilmaz,J.Phys.A:Math.Theor.48(2015)425202.

    [5]K.Nakkeeran,K.Porsezian,P.Shanmugha Sundaram,and A.Mahalingam,Phys.Rev.Lett.80(1998)1425.

    [6]X.Lü,Commun.Nonlinear Sci.Numer.Simulat.19(2014)3969.

    [7]L.C.Zhao,Z.Y.Yang,and L.M.Ling,J.Phys.Soc.Jpn.83(2014)104401.

    [8]M.N.Vinoj and V.C.Kuriakose,Phys.Rev.E 62(2000)8719.

    [9]A.Mahalingam and K.Porsezian,J.Phys.A:Math.Gen.35(2002)3099.

    [10]M.J.Ablowitz,B.Prinari,and A.Trubatch,Discrete and Continuous Nonlinear Schr?dinger Systems,Cambridge University Press,Cambridge(2004).

    [11]R.Hirota,The Direct Methods in Soliton Theory,Cambridge University Press,Cambridge(2004).

    [12]X.Lü,W.X.Ma,Y.Zhou,and C.M.Khalique,Comput.Math.Appl.71(2016)1560.

    [13]X.Lü,W.X.Ma,J.Yu,F.H.Lin,and C.M.Khalique,Nonlinear Dyn.82(2015)1211.

    [14]X.Lü and W.X.Ma,Nonlinear Dyn.85(2016)1217.

    [15]X.Lü,S.T.Chen,and W.X.Ma,Nonlinear Dyn.86(2016)523.

    [16]X.Lü and L.M.Ling,Chaos 25(2015)123103.

    [17]M.J.Ablowitz and A.S.Fokas,Complex Variables:Introduction and Applications,Cambridge University Press,Cambridge(2003).

    [18]M.J.Ablowitz and P.A.Clarkson,Solitons,Nonlinear Evolution Equations and Inverse Scattering,Cambridge University Press,Cambridge(1991).

    [19]L.D.Faddeev and L.A.Takhtajan,Hamiltonian Methods in the Theory of Solitons,Springer,Berlin(1987).

    [20]J.K.Yang,Nonlinear Waves in Integrable and Nonintegrable Systems,SIAM,Philadelphia(2010).

    [21]V.S.Shchesnovich and J.K.Yang,J.Math.Phys.44(2003)4604.

    [22]D.S.Wang,Y.Q.Ma,and X.G.Li,Commun.Nonlinear Sci.Numer.Simulat.19(2014)3556.

    [23]D.S.Wang,D.J.Zhang,and J.K.Yang,J.Math.Phys.51(2010)023510.

    [24]B.L.Guo and L.M.Ling,J.Math.Phys.53(2012)073506.

    [25]X.G.Geng and J.P.Wu,Wave Motion 60(2016)62.

    亚洲自偷自拍图片 自拍| 国产亚洲精品一区二区www| 国产成人啪精品午夜网站| xxx96com| av天堂中文字幕网| 国内揄拍国产精品人妻在线| 久久中文字幕一级| 午夜精品在线福利| 精品久久久久久成人av| 亚洲欧美日韩东京热| 日本免费一区二区三区高清不卡| 亚洲精品色激情综合| cao死你这个sao货| 美女高潮的动态| 99热这里只有是精品50| 日本黄色视频三级网站网址| 国产私拍福利视频在线观看| 又大又爽又粗| 99热这里只有精品一区 | 每晚都被弄得嗷嗷叫到高潮| 99精品欧美一区二区三区四区| 亚洲欧美一区二区三区黑人| 亚洲精品456在线播放app | 黄色视频,在线免费观看| 亚洲五月天丁香| 久久久国产成人精品二区| 国产av麻豆久久久久久久| 日本成人三级电影网站| 99久久精品热视频| 中国美女看黄片| 精品久久蜜臀av无| 日本熟妇午夜| 亚洲国产看品久久| 99国产精品一区二区蜜桃av| 成人亚洲精品av一区二区| 91在线观看av| 人人妻人人澡欧美一区二区| 91av网站免费观看| a级毛片在线看网站| 在线观看66精品国产| 久久久久久久久久黄片| 日日夜夜操网爽| av女优亚洲男人天堂 | 亚洲国产欧美一区二区综合| 视频区欧美日本亚洲| 丰满的人妻完整版| av欧美777| 嫩草影院精品99| 成人性生交大片免费视频hd| 亚洲五月婷婷丁香| 一区二区三区激情视频| 欧美精品啪啪一区二区三区| 美女免费视频网站| cao死你这个sao货| 久久久久精品国产欧美久久久| 亚洲va日本ⅴa欧美va伊人久久| 神马国产精品三级电影在线观看| 黄色视频,在线免费观看| 国产成人aa在线观看| 欧美一级a爱片免费观看看| 国产精品98久久久久久宅男小说| 在线永久观看黄色视频| 18禁黄网站禁片午夜丰满| 亚洲人成网站高清观看| 日韩欧美 国产精品| 岛国视频午夜一区免费看| 99久久无色码亚洲精品果冻| 两人在一起打扑克的视频| 看免费av毛片| 欧美最黄视频在线播放免费| 99在线人妻在线中文字幕| 嫩草影院入口| avwww免费| 啦啦啦免费观看视频1| 国产成人系列免费观看| 国产精品综合久久久久久久免费| 国产精品久久久久久亚洲av鲁大| 亚洲九九香蕉| 国产精品亚洲av一区麻豆| 黑人操中国人逼视频| 久久久久亚洲av毛片大全| 综合色av麻豆| 99久国产av精品| 亚洲最大成人中文| 国产精品久久久久久精品电影| 亚洲精华国产精华精| 色尼玛亚洲综合影院| 亚洲欧美精品综合一区二区三区| 欧美黑人欧美精品刺激| 在线免费观看不下载黄p国产 | 美女免费视频网站| 久久久久国内视频| 国产探花在线观看一区二区| 日本五十路高清| 我要搜黄色片| 国产精品永久免费网站| 三级国产精品欧美在线观看 | 欧美乱色亚洲激情| 久久亚洲精品不卡| 欧美成狂野欧美在线观看| 看免费av毛片| 在线视频色国产色| 麻豆av在线久日| 国产aⅴ精品一区二区三区波| 久久香蕉精品热| 美女黄网站色视频| 别揉我奶头~嗯~啊~动态视频| 中国美女看黄片| 日本撒尿小便嘘嘘汇集6| www.精华液| 国产精品一区二区免费欧美| 欧美日韩国产亚洲二区| 亚洲欧美精品综合一区二区三区| 99视频精品全部免费 在线 | 国产成人一区二区三区免费视频网站| 国产成人精品久久二区二区免费| 最新中文字幕久久久久 | 韩国av一区二区三区四区| 午夜影院日韩av| 日本a在线网址| 美女扒开内裤让男人捅视频| 日韩中文字幕欧美一区二区| a级毛片a级免费在线| 国产亚洲欧美98| 不卡av一区二区三区| 午夜a级毛片| 又大又爽又粗| 国产成人精品久久二区二区免费| 亚洲片人在线观看| 国产淫片久久久久久久久 | 无人区码免费观看不卡| 欧美激情久久久久久爽电影| 国产高清视频在线观看网站| 国产亚洲欧美98| 国产精品国产高清国产av| 国产蜜桃级精品一区二区三区| 久久久久九九精品影院| 看黄色毛片网站| 亚洲精品一区av在线观看| 久久精品影院6| 国产精品自产拍在线观看55亚洲| h日本视频在线播放| 免费av不卡在线播放| 12—13女人毛片做爰片一| www.自偷自拍.com| 又粗又爽又猛毛片免费看| 美女黄网站色视频| 免费观看人在逋| 久9热在线精品视频| 日本一二三区视频观看| av女优亚洲男人天堂 | 国产精品1区2区在线观看.| 伊人久久大香线蕉亚洲五| 97人妻精品一区二区三区麻豆| 床上黄色一级片| 热99re8久久精品国产| 91九色精品人成在线观看| 色噜噜av男人的天堂激情| 性色avwww在线观看| 脱女人内裤的视频| 一a级毛片在线观看| 高清毛片免费观看视频网站| 欧美高清成人免费视频www| 一级a爱片免费观看的视频| 中亚洲国语对白在线视频| 午夜精品一区二区三区免费看| 久久欧美精品欧美久久欧美| 成人无遮挡网站| 一级毛片女人18水好多| 国产真人三级小视频在线观看| 国模一区二区三区四区视频 | 免费观看人在逋| www.熟女人妻精品国产| 国产av在哪里看| 男女视频在线观看网站免费| 精品久久久久久久人妻蜜臀av| 少妇人妻一区二区三区视频| 国产精华一区二区三区| 免费一级毛片在线播放高清视频| 91av网一区二区| 99riav亚洲国产免费| 亚洲av中文字字幕乱码综合| 久久婷婷人人爽人人干人人爱| 精品一区二区三区视频在线 | 免费人成视频x8x8入口观看| 久久国产精品人妻蜜桃| 少妇人妻一区二区三区视频| 18禁裸乳无遮挡免费网站照片| 丁香六月欧美| 午夜免费成人在线视频| 老熟妇仑乱视频hdxx| 一级作爱视频免费观看| 国模一区二区三区四区视频 | 国产激情欧美一区二区| 日韩精品中文字幕看吧| 亚洲国产看品久久| 一个人免费在线观看的高清视频| 香蕉国产在线看| 国产高清videossex| 亚洲自偷自拍图片 自拍| 三级男女做爰猛烈吃奶摸视频| 黄色 视频免费看| 97超视频在线观看视频| av视频在线观看入口| 97超级碰碰碰精品色视频在线观看| 99热精品在线国产| 亚洲中文字幕一区二区三区有码在线看 | 亚洲精品久久国产高清桃花| 人人妻人人看人人澡| 亚洲片人在线观看| 亚洲成a人片在线一区二区| 变态另类成人亚洲欧美熟女| 亚洲国产欧美人成| 成人亚洲精品av一区二区| 免费在线观看影片大全网站| 中亚洲国语对白在线视频| 99国产精品99久久久久| 国产高清激情床上av| av女优亚洲男人天堂 | 青草久久国产| 亚洲va日本ⅴa欧美va伊人久久| 亚洲18禁久久av| 性欧美人与动物交配| 久久精品91蜜桃| 黄色视频,在线免费观看| 国产人伦9x9x在线观看| 国产真人三级小视频在线观看| 精品欧美国产一区二区三| 无限看片的www在线观看| 日韩欧美三级三区| 99热这里只有精品一区 | 久久久久九九精品影院| 国产精品一区二区三区四区免费观看 | 久久久久久国产a免费观看| 欧美黄色淫秽网站| 精品电影一区二区在线| 俺也久久电影网| 搡老熟女国产l中国老女人| 1024香蕉在线观看| 熟女少妇亚洲综合色aaa.| 亚洲 国产 在线| 欧美成人一区二区免费高清观看 | 我要搜黄色片| 精品久久久久久久人妻蜜臀av| 99久久精品热视频| 人妻久久中文字幕网| 国产乱人视频| 欧美xxxx黑人xx丫x性爽| 人人妻人人看人人澡| 国产91精品成人一区二区三区| 欧美3d第一页| 午夜视频精品福利| 久久久久九九精品影院| 无限看片的www在线观看| 亚洲av成人av| 天堂影院成人在线观看| 精品国产三级普通话版| 少妇的丰满在线观看| 999精品在线视频| 亚洲aⅴ乱码一区二区在线播放| 天堂av国产一区二区熟女人妻| 国产高清激情床上av| 国产日本99.免费观看| 99视频精品全部免费 在线 | 不卡一级毛片| 国产成人精品无人区| 天堂av国产一区二区熟女人妻| 欧美午夜高清在线| 精品午夜福利视频在线观看一区| 日本五十路高清| 久久久色成人| 亚洲人成网站在线播放欧美日韩| 久久久久久久精品吃奶| 中文资源天堂在线| 久久久久久大精品| 窝窝影院91人妻| 国产欧美日韩一区二区三| 首页视频小说图片口味搜索| 日韩精品青青久久久久久| 高清毛片免费观看视频网站| 亚洲欧美精品综合一区二区三区| 国产成人精品无人区| 国产伦精品一区二区三区四那| 欧美一区二区精品小视频在线| avwww免费| 一二三四社区在线视频社区8| 日韩有码中文字幕| 日本一本二区三区精品| 欧美最黄视频在线播放免费| 婷婷精品国产亚洲av| ponron亚洲| 中文字幕人成人乱码亚洲影| 欧美成人性av电影在线观看| 一级毛片女人18水好多| 国产高清视频在线观看网站| 国产精品一区二区免费欧美| 宅男免费午夜| 蜜桃久久精品国产亚洲av| 国产av在哪里看| 在线观看日韩欧美| 我的老师免费观看完整版| 久久天躁狠狠躁夜夜2o2o| 天天一区二区日本电影三级| 黄频高清免费视频| 国产亚洲精品一区二区www| 亚洲精品国产精品久久久不卡| 国产 一区 欧美 日韩| 99re在线观看精品视频| 精品午夜福利视频在线观看一区| 国产精品久久久av美女十八| 久久久国产成人精品二区| 成人国产一区最新在线观看| 操出白浆在线播放| 国内少妇人妻偷人精品xxx网站 | 又粗又爽又猛毛片免费看| 亚洲欧美日韩高清专用| 女同久久另类99精品国产91| 国产精品久久视频播放| 在线观看66精品国产| 欧美zozozo另类| 一本综合久久免费| 香蕉丝袜av| 人人妻人人看人人澡| 亚洲熟妇熟女久久| 日日夜夜操网爽| avwww免费| 香蕉国产在线看| 午夜福利成人在线免费观看| 亚洲国产日韩欧美精品在线观看 | 在线观看午夜福利视频| 真实男女啪啪啪动态图| 好男人电影高清在线观看| 真人做人爱边吃奶动态| 亚洲va日本ⅴa欧美va伊人久久| 床上黄色一级片| 色av中文字幕| 国产午夜福利久久久久久| 亚洲狠狠婷婷综合久久图片| 精品无人区乱码1区二区| 亚洲专区字幕在线| 18禁国产床啪视频网站| 亚洲五月婷婷丁香| 特级一级黄色大片| 日韩欧美一区二区三区在线观看| 久久精品国产99精品国产亚洲性色| 男人舔奶头视频| bbb黄色大片| 国产高潮美女av| 欧美成狂野欧美在线观看| 国产精品亚洲一级av第二区| 99riav亚洲国产免费| 国产精品1区2区在线观看.| 69av精品久久久久久| 超碰成人久久| 91在线精品国自产拍蜜月 | 亚洲精品在线美女| 香蕉国产在线看| 全区人妻精品视频| 丝袜人妻中文字幕| 一区二区三区激情视频| 久久久色成人| 日韩免费av在线播放| 久久久色成人| 亚洲专区中文字幕在线| x7x7x7水蜜桃| 亚洲自拍偷在线| 欧美3d第一页| 亚洲国产看品久久| 在线播放国产精品三级| 美女黄网站色视频| 99热精品在线国产| 午夜福利免费观看在线| 韩国av一区二区三区四区| 亚洲性夜色夜夜综合| 中文字幕av在线有码专区| 欧美性猛交黑人性爽| 国产伦精品一区二区三区四那| 九色成人免费人妻av| 啦啦啦韩国在线观看视频| 免费高清视频大片| 成人欧美大片| 亚洲av电影在线进入| 国产激情偷乱视频一区二区| 90打野战视频偷拍视频| 在线观看舔阴道视频| 极品教师在线免费播放| 在线十欧美十亚洲十日本专区| 18禁美女被吸乳视频| 搞女人的毛片| 老鸭窝网址在线观看| 久久国产精品影院| 久久午夜亚洲精品久久| 国产爱豆传媒在线观看| 99久久精品国产亚洲精品| 午夜免费成人在线视频| 亚洲一区高清亚洲精品| 午夜a级毛片| 国内久久婷婷六月综合欲色啪| 黄色女人牲交| 99热这里只有是精品50| АⅤ资源中文在线天堂| 啦啦啦韩国在线观看视频| 成年女人永久免费观看视频| 国产亚洲精品一区二区www| 免费观看人在逋| 757午夜福利合集在线观看| 欧美zozozo另类| 一个人看的www免费观看视频| 午夜福利在线观看吧| 国产亚洲精品久久久久久毛片| 男插女下体视频免费在线播放| 欧美日韩黄片免| 男人和女人高潮做爰伦理| 一进一出抽搐gif免费好疼| 午夜精品久久久久久毛片777| 久久久久久人人人人人| 很黄的视频免费| 神马国产精品三级电影在线观看| 亚洲精品456在线播放app | 亚洲人成网站高清观看| 久久香蕉国产精品| 香蕉久久夜色| 老鸭窝网址在线观看| 国产视频一区二区在线看| 青草久久国产| 日韩精品青青久久久久久| 国产亚洲欧美98| 国产一区在线观看成人免费| 级片在线观看| 久久香蕉国产精品| 熟妇人妻久久中文字幕3abv| 久久亚洲真实| 精品一区二区三区视频在线观看免费| 国产精品美女特级片免费视频播放器 | 嫩草影院入口| 亚洲一区二区三区色噜噜| 女警被强在线播放| 日韩欧美精品v在线| 校园春色视频在线观看| 国产私拍福利视频在线观看| 亚洲欧美日韩高清在线视频| 90打野战视频偷拍视频| 久久久久国产精品人妻aⅴ院| 日本 欧美在线| 精品国产超薄肉色丝袜足j| 久久久国产成人免费| 国产精品影院久久| 欧美极品一区二区三区四区| 久久精品国产清高在天天线| 9191精品国产免费久久| 国产久久久一区二区三区| 国产精品1区2区在线观看.| 狠狠狠狠99中文字幕| 亚洲国产日韩欧美精品在线观看 | 久久久久国产一级毛片高清牌| 一区二区三区高清视频在线| 欧美成人性av电影在线观看| 国产成人精品久久二区二区免费| 久久中文看片网| 99久久综合精品五月天人人| 亚洲精品一区av在线观看| 亚洲人成电影免费在线| 色播亚洲综合网| 99精品在免费线老司机午夜| 国产91精品成人一区二区三区| 日本撒尿小便嘘嘘汇集6| 一区二区三区高清视频在线| 麻豆av在线久日| 久久久久国产精品人妻aⅴ院| 露出奶头的视频| 成人一区二区视频在线观看| 黄片小视频在线播放| 日本在线视频免费播放| 男人舔女人下体高潮全视频| 欧美3d第一页| 国产野战对白在线观看| 在线观看免费午夜福利视频| 一区二区三区激情视频| 91久久精品国产一区二区成人 | 可以在线观看的亚洲视频| 国内精品美女久久久久久| 久久久久国内视频| 国产免费男女视频| 亚洲中文av在线| 一级毛片女人18水好多| 色尼玛亚洲综合影院| a在线观看视频网站| 高潮久久久久久久久久久不卡| 亚洲乱码一区二区免费版| 99riav亚洲国产免费| 欧美乱色亚洲激情| 亚洲精品美女久久久久99蜜臀| 老司机福利观看| 又粗又爽又猛毛片免费看| 色精品久久人妻99蜜桃| 国产亚洲精品综合一区在线观看| 国产精品爽爽va在线观看网站| 丁香六月欧美| 色综合站精品国产| 国产1区2区3区精品| 哪里可以看免费的av片| 脱女人内裤的视频| 亚洲精品美女久久av网站| 亚洲在线自拍视频| www.999成人在线观看| 九色国产91popny在线| 久久久久久久久久黄片| 午夜精品一区二区三区免费看| 亚洲精品美女久久久久99蜜臀| 亚洲欧美日韩高清在线视频| 亚洲熟妇熟女久久| 国产激情偷乱视频一区二区| 亚洲av电影在线进入| 欧美日本视频| 免费大片18禁| 天天一区二区日本电影三级| 禁无遮挡网站| 欧美av亚洲av综合av国产av| 最新美女视频免费是黄的| 天天添夜夜摸| 小说图片视频综合网站| bbb黄色大片| 少妇丰满av| 国产探花在线观看一区二区| 亚洲欧美日韩卡通动漫| 黑人巨大精品欧美一区二区mp4| 国产成人影院久久av| 精品一区二区三区视频在线观看免费| 久久久国产成人免费| 免费看日本二区| 亚洲乱码一区二区免费版| 日本精品一区二区三区蜜桃| 少妇的逼水好多| 俄罗斯特黄特色一大片| 日韩有码中文字幕| 亚洲 欧美 日韩 在线 免费| 日本一二三区视频观看| 亚洲成人久久性| 中文字幕精品亚洲无线码一区| 午夜视频精品福利| 久久久久性生活片| 日韩成人在线观看一区二区三区| 成人亚洲精品av一区二区| 一进一出好大好爽视频| 99热这里只有是精品50| 国产一区二区在线av高清观看| 99国产精品99久久久久| 亚洲精品中文字幕一二三四区| 99视频精品全部免费 在线 | 国产免费男女视频| 国产精品久久视频播放| 国产一区二区三区视频了| 精品欧美国产一区二区三| 神马国产精品三级电影在线观看| 国产单亲对白刺激| 国产精品久久久久久精品电影| 九色国产91popny在线| 琪琪午夜伦伦电影理论片6080| 成人永久免费在线观看视频| 亚洲国产精品成人综合色| 久久精品91蜜桃| 一进一出抽搐动态| 天天躁狠狠躁夜夜躁狠狠躁| 国产久久久一区二区三区| 日本精品一区二区三区蜜桃| 9191精品国产免费久久| 99国产精品一区二区蜜桃av| 全区人妻精品视频| 国产麻豆成人av免费视频| 97人妻精品一区二区三区麻豆| 亚洲第一电影网av| 国产黄a三级三级三级人| 国产伦一二天堂av在线观看| 亚洲国产欧美一区二区综合| 熟女电影av网| 三级毛片av免费| 日韩人妻高清精品专区| xxxwww97欧美| 国产精品香港三级国产av潘金莲| 又爽又黄无遮挡网站| 国产精品久久久人人做人人爽| 91老司机精品| 国产精品精品国产色婷婷| 欧美日韩精品网址| 国产亚洲精品久久久com| 国产精品影院久久| 亚洲国产精品久久男人天堂| 亚洲精品美女久久av网站| 久久久久免费精品人妻一区二区| 91久久精品国产一区二区成人 | 中文字幕高清在线视频| 两个人视频免费观看高清| 国产极品精品免费视频能看的| 亚洲人与动物交配视频| 美女大奶头视频| 国产aⅴ精品一区二区三区波| 哪里可以看免费的av片| 欧美乱色亚洲激情| 又大又爽又粗| 欧美一区二区精品小视频在线| 久久久久国产一级毛片高清牌| 久久中文看片网| 91九色精品人成在线观看| 国产精品久久视频播放| 精品电影一区二区在线| 色综合欧美亚洲国产小说| 在线免费观看的www视频| 亚洲中文日韩欧美视频| 亚洲aⅴ乱码一区二区在线播放| 在线观看免费视频日本深夜| 黄色片一级片一级黄色片| 日韩精品青青久久久久久| 两人在一起打扑克的视频| 中文字幕人成人乱码亚洲影| xxx96com|