• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Inverse Scattering Transform of the Coupled Sasa–Satsuma Equation by Riemann–Hilbert Approach?

    2018-01-24 06:23:03JianPingWu吳建平andXianGuoGeng耿獻國2SchoolofScienceZhengzhouUniversityofAeronauticsZhengzhou450046China
    Communications in Theoretical Physics 2017年5期

    Jian-Ping Wu(吳建平)and Xian-Guo Geng(耿獻國)2School of Science,Zhengzhou University of Aeronautics,Zhengzhou 450046,China

    2School of Mathematics and Statistics,Zhengzhou University,100 Kexue Road,Zhengzhou 450001,China

    1 Introduction

    The nonlinear Schr?dinger(NLS)equation is wellknown to be an important integrable system in mathematical physics.There are many physical contexts where the NLS equation appears.For example,the NLS equation describes the weakly nonlinear surface wave in deep water.More importantly,the NLS equation models the soliton propagation in optical fibers where only the group velocity dispersion and the self-phase modulation effects are considered.However,for ultrashort pulse in optical fibers,the effects of the third-order dispersion,the selfsteepening,and the stimulated Raman scattering should be taken into account.Due to these effects,the dynamics of the ultrashort pulses can be described by the Sasa–Satsuma higher-order nonlinear Schr?dinger equation[1?4]

    whereq=q(x,t)is a complex-valued function.Moreover,to describe the propagations of two optical pulse envelopes in birefringent fibers,some coupled Sasa–Satsuma equations were also proposed and studied.[5?9]Particularly,a coupled form of the Sasa–Satsuma equation reads[5]

    whereq1=q1(X,T),q2=q2(X,T)are two complex functions of variablesX,T.As done in Ref.[5],in order to analyze Eq.(2),it is more convenient to rewrite it in the following form

    by use of the gauge,Galilean and scale transformations In this paper,we refer to Eq.(3)as the coupled Sasa–Satsuma equation.The complete integrability of Eq.(3)was established and soliton solutions were obtained using Darboux–B?cklund transformation.[5]In addition,the coupled Sasa–Satsuma equation has also been investigated via various methods such as Darboux transformation,Painlevé singularity analysis,Hirota method,[6?9]and so on.

    Recently,there are many investigations on solutions of nonlinear evolution equations.[10?16]It is also known that the inverse scattering transform is a powerful approach to derive soliton solutions.However,since Eq.(3)involves a 5×5 matrix spectral problem,[5]the inverse scattering transform for this equation is rather complicated to dealwith.To our knowledge,the research in this direction has not been conducted before.The aim of the present paper is to study the multi-soliton solutions of Eq.(3)by utilizing the inverse scattering transform via Riemann–Hilbert(RH)approach.[17?25]

    This paper is arranged as follows.In Sec.2,starting from the Lax pair we give direct scattering transform of Eq.(3).Then an RH problem is formulated and solved in the reflectionless cases.In Sec.3,the inverse scattering transform for Eq.(3)is established.In Sec.4,we construct multi-soliton solutions of Eq.(3).Moreover,we will give some interesting figures describing the corresponding soliton characteristics,including breather types,single-hump solitons,double-hump solitons,and two-bell solitons.

    2 Riemann–Hilbert Problem

    In this section,we give direct scattering transform of the coupled Sasa–Satsuma equation(3).According to Ref.[5],the Lax pair for Eq.(3)is

    where Ψ = Ψ(x,t;ζ)is a column vector function of the complex spectral parameterζ,and

    where

    For the sake of convenience,we extend Ψ in Eq.(4)to a matrix and then introduce a new matrix spectral functionJ=J(x,t;ζ)defined by Ψ =JeiζΛx+4iζ3Λt.Then the Lax pair(4)can be rewritten as

    Now let us construct two matrix solutionsJ±=of Eq.(5a)under the asymptotic conditions

    Here each[J±]ldenotes thel-th column ofJ±,respectively.The symbol I is the 5×5 identity matrix,and the subscripts ofJrepresent which end of thex-axis the boundary conditions are set.The matrix solutionsJ±are uniquely determined by the Volterra integral equations

    It is easy to find that[J+]1,[J+]2,[J+]3,[J+]4,[J?]5allow analytic extensions to the upper halfζ-plane C+.On the other hand,[J?]1,[J?]2,[J?]3,[J?]4,[J+]5are analytically extendible to the lower halfζ-plane C?.

    In what follows,we investigate the properties ofJ±.Indeed,from the fact thatQis traceless we know detJ±are independent ofx.Therefore we have detJ±=1 forζ∈ R.Moreover,J±eiζΛxare related by a scattering matrixS(ζ)=(skj)5×5

    which implies that

    Then it follows from the analytic property ofJ?thats55can be analytically extended to C+,whereasskj(1≤k,j≤ 4)allow analytic extensions to C?.In general,sk5,s5j(1≤k,j≤4)cannot be extended offthe realζ-axis.

    Using the analytic properties ofJ±,we can construct a matrix functionP1=P1(x,ζ)which is analytic forζ∈ C+

    Moreover,we have the large-ζasymptotic behavior ofP1

    In order to obtain an RH problem for Eq.(3),we have to construct an analytic matrixP2in C?.To this end,we shall consider the adjoint equation of Eq.(5a)

    It is easy to check that the matrix inverses ofJ±satisfy Eq.(13).Let us denote

    and the large-ζasymptotic behavior ofP2can be shown to be

    In addition,it is easy to find thatare related by the scattering matrixR(ζ)≡ (rkj)5×5=S?1(ζ)

    Moreover,similar to the scattering coeffcientsskjabove,we can show thatr55allows an analytical extension to C?,whereasrkj(1≤k,j≤4)have analytic extensions to C+.In addition,rk5,r5j(1≤k,j≤4)are only defined on the realζ-axis.

    Summarizing the above results,we have constructed two matrix functionsP1andP2,which are analytic in C+and C?,respectively.Now we denote the limit ofP1from the left-hand side of the realζ-axis asP+,and the limit ofP2from the right-hand side of the realζ-axis asP?.Consequently,we obtain an RH problem for the coupled Sasa–Satsuma equation(3)

    where the matrixG=G(x,ζ)is as follows

    and the canonical normalization condition for this RH problem is

    In order to investigate the inverse scattering transform for Eq.(3),let us solve the RH problem(18).To this end,we assume that the RH problem(18)is irregular.Here the irregularity means both detP1and detP2have certain zeros in their analytic domains.Recalling the definitions ofP1andP2,we have

    To specify these zeros,we notice that there is a symmetry relation forQin Eq.(5a)

    where?means the Hermitian conjugate.Therefore from Eq.(13),we get

    Then it follows that

    which implies the following relations

    Furthermore,from the definitions ofP1andP2,the following property also holds

    To solve the RH problem(18),we have to consider one more symmetry relation

    where

    From Eq.(27)we obtain that

    which leads to

    Obviously,Eq.(29)implies that

    Furthermore,we point out that Eq.(28)also yields a property forP1itself

    Therefore,from Eqs.(20),(21),and(25c),we find that ifζjis a zero of detP1,thenis a zero of detP2.Moreover,in view of Eq.(30c),we know thatis also a zero of detP1.Thus we can investigate the zeros of detP1in two cases.Firstly,we assume that detP1has a total number of 2Nsimple zerosζj(1 ≤j≤ 2N)satisfyingwhich are all in C+.Correspondingly,detP2possesses 2Nsimple zeros(1≤j≤2N)satisfyingwhich are all in C?.Obviously,the zeros of detP1and detP2always appear in quadruples in this case.The second case is that detP1possesses onlyNsimple zerosζj(1 ≤j≤N)in C+,where eachζjis pure imaginary.Then detP2hasNsimple zerosin C?,whereThe scattering data we need to solve the RH problem(18)consists of the continuous scattering data{s15,s35}as well as the discrete scattering data{ζj,ζj,vj,vj}.Herevjandare nonzero column and row vectors,respectively,satisfying

    Next we deducevjandvjsuch that multi-soliton solutions can be obtained for the coupled Sasa–Satsuma equation(3).For the first type of zeros,we obtain a special relation by using Eqs.(26)and(32)

    On the other hand,from(31)we obtain a particular column vector relation

    Now we shall get the vectorsvj(1≤j≤N).For this purpose,we take thex-derivative ofP1(ζj)vj=0.Then utilizing Eq.(5a),we obtain without loss of generality that

    wherevj,0is independent ofx.Therefore,using Eqs.(33)–(35),all the vectorsvjandcan be determined explicitly.Note that,to derive soliton solutions for Eq.(3),we choose the matrixGin(18)to be the 5×5 identity matrix.This is guaranteed by settings15=s35=0,which corresponds to the reflectionless case.Consequently,the unique solution for the special RH problem is

    whereM=(mkj)2N×2Nis a matrix whose entries aremkj=vkvj/(ζj?ζk).For the second type of zeros,the corresponding vectorsvj,(1≤j≤N)can be derived as

    wherevj,0is independent ofx.Using these vectors,the RH problem(18)in the reflectionless case can also be solved exactly

    whereM=(mkj)N×Nis a matrix with entriesmkj=

    3 Inverse Scattering Transform

    In this section,we give the inverse scattering transform of the coupled Sasa–Satsuma equation(3),from which we recover the potentialsu,vby using the scattering data.In fact,we can expandP1(ζ)as

    Then substituting it into Eq.(5a),and then comparingO(1)terms gives

    which implies thatu,vcan be obtained as

    4 Multi-Soliton Solutions

    To derive solutions for the coupled Sasa–Satsuma equation(3),we have to investigate the temporal evolutions of the scattering data.From(5b)and(9),and noticing the decaying properties ofuandv,we arrive at

    which leads to the temporal evolutions

    In addition,using Eq.(5b)we obtain thatTherefore,for the first type of zeros,we obtain

    Now for the first type of zeros of detP1,we setvj,0=(αj,βj,γj,μj,1)Tto be complex constant vectors.Then utilizing Eqs.(43)and(46)–(47),from Eq.(42)we obtain anN-soliton solution formula for Eq.(3)

    whereM=(mkj)2N×2Nwith

    Now we are interested in the simplest situation that occurs whenN=1 in Eq.(50).To illustrate the single-soliton solution explicitly,we shall specify the corresponding parameters in Eq.(50).Firstly,we setβ1=α?1andμ1=γ?1in Eq.(50).Then by denotingζ1=ξ1+iη1(ξ1/=0,η1>0),a breather-type solution for the coupled Sasa–Satsuma equation(3)is obtained from Eq.(50)

    where

    Its breather-type behavior is plotted in Fig.1.

    Fig.1 The breather-type solution via(51) with the parameters

    Secondly,we chooseβ1=μ1=0 in(50),then another type of soliton solution for the coupled Sasa–Satsuma equation(3)is obtained

    where

    We remark that the single-soliton solution(52)features that it can be single-humped or double-humped,which is similar to the case for the Sasa–Satsuma equation.[1,20]By choosing appropriate parameters,we plot the single-hump and double-hump soliton solutions in Figs.2–3,respectively.

    Fig.2 The single-hump soliton via Eq.(52)with the parameters

    Fig.3 The double-hump soliton via Eq.(52)with the parameters

    Fig.4 Collisions between two single-hump solitons via Eq.(50)with N =2,and(α1,β1,γ1,μ1)=(1,0,0,0),(α2,β2,γ2,μ2)=(1,0,1,0),ζ1=0.4+0.5i,ζ2=0.7+0.8i.

    Now we shall investigate the case forN=2 in Eq.(50).To illustrate the corresponding two-soliton interactions,we first choose the parameters in Eq.(50)as(α1,β1,γ1,μ1)=(1,0,0,0),(α2,β2,γ2,μ2)=(1,0,1,0),ζ1=0.4+0.5i,ζ2=0.7+0.8i.Then a type of polarization-changing collision[2]between two single-hump solitons will be obtained.The polarization-changing collisions lead to the enhancement of intensity in one component of|u|or|v|,and the suppression of intensity in the other component,as shown in Fig.4.This figure also shows that one component of|v|even becomes zero after collision.Moreover,for the caseN=2 in Eq.(50),another type of two-soliton interaction can be obtained by choosing proper parameters.For example,we set(α1,β1,γ1,μ1)=(1,1,1,1),(α2,β2,γ2,μ2)=(1,0,2,0),ζ1=0.5+0.5i,ζ2=1+i.Under these parameters,the interactions of a single-hump soliton and a breather can be obtained,as can be seen in Fig.5.This figure demonstrates that a single-hump soliton changes into a breather when interacting with a breather.

    Fig.5 Interactions between a single-hump soliton and a breather via Eq.(50)with N=2,and(α1,β1,γ1,μ1)=(1,1,1,1),(α2,β2,γ2,μ2)=(1,0,2,0),ζ1=0.5+0.5i,ζ2=1+i.

    Fig.6 The two-bell soliton solution Eq.(55)with the parameters α1=1,γ1=1+i,α2=i,γ2=0.5i,ζ1=0.3i,ζ2=0.5i.

    In what follows,we shall turn to the second type of zeros of detP1.In this case,we assume that detP1has onlyNsimple zerosλj(1 ≤j≤N)in C+,whereλjis pure imaginary.In this case,we obtain another kind ofN-soliton solution.Settingto be complex constant vectors,anotherN-soliton solution formula for Eq.(3)follows from(42)by using Eqs.(44),(48)–(49)

    whereM=(mkj)N×Nwith

    WhenN=1,Eq.(53)gives a bell-soliton solution for the coupled Sasa–Satsuma equation(3)

    WhenN=2,Eq.(53)reduces to a two-bell soliton solution of the coupled Sasa–Satsuma equation(3)

    whereM=(mkj)2×2with

    5 Conclusions

    In this paper,we have obtained two kinds of multisoliton solution formulae for the coupled Sasa–Satsuma equation(3).One is Eq.(50)and the other is Eq.(53).These two forms ofN-soliton solutions correspond to two different types of zero structures of the RH problem.In addition,based on the twoN-soliton solution formulae,we obtain some interesting soliton solutions which include breather-type solutions,single-hump soliton solutions,double-hump soliton solutions,and two-bell soliton solutions.

    [1]N.Sasa and J.Satsuma,J.Phys.Soc.Jpn.60(1991)409.

    [2]T.Xu and X.M.Xu,Phys.Rev.E 87(2013)032913.

    [3]T.Xu,M.Li,and L.Li,Europhys.Lett.109(2015)30006.

    [4]J.J.C.Nimmo and H.Yilmaz,J.Phys.A:Math.Theor.48(2015)425202.

    [5]K.Nakkeeran,K.Porsezian,P.Shanmugha Sundaram,and A.Mahalingam,Phys.Rev.Lett.80(1998)1425.

    [6]X.Lü,Commun.Nonlinear Sci.Numer.Simulat.19(2014)3969.

    [7]L.C.Zhao,Z.Y.Yang,and L.M.Ling,J.Phys.Soc.Jpn.83(2014)104401.

    [8]M.N.Vinoj and V.C.Kuriakose,Phys.Rev.E 62(2000)8719.

    [9]A.Mahalingam and K.Porsezian,J.Phys.A:Math.Gen.35(2002)3099.

    [10]M.J.Ablowitz,B.Prinari,and A.Trubatch,Discrete and Continuous Nonlinear Schr?dinger Systems,Cambridge University Press,Cambridge(2004).

    [11]R.Hirota,The Direct Methods in Soliton Theory,Cambridge University Press,Cambridge(2004).

    [12]X.Lü,W.X.Ma,Y.Zhou,and C.M.Khalique,Comput.Math.Appl.71(2016)1560.

    [13]X.Lü,W.X.Ma,J.Yu,F.H.Lin,and C.M.Khalique,Nonlinear Dyn.82(2015)1211.

    [14]X.Lü and W.X.Ma,Nonlinear Dyn.85(2016)1217.

    [15]X.Lü,S.T.Chen,and W.X.Ma,Nonlinear Dyn.86(2016)523.

    [16]X.Lü and L.M.Ling,Chaos 25(2015)123103.

    [17]M.J.Ablowitz and A.S.Fokas,Complex Variables:Introduction and Applications,Cambridge University Press,Cambridge(2003).

    [18]M.J.Ablowitz and P.A.Clarkson,Solitons,Nonlinear Evolution Equations and Inverse Scattering,Cambridge University Press,Cambridge(1991).

    [19]L.D.Faddeev and L.A.Takhtajan,Hamiltonian Methods in the Theory of Solitons,Springer,Berlin(1987).

    [20]J.K.Yang,Nonlinear Waves in Integrable and Nonintegrable Systems,SIAM,Philadelphia(2010).

    [21]V.S.Shchesnovich and J.K.Yang,J.Math.Phys.44(2003)4604.

    [22]D.S.Wang,Y.Q.Ma,and X.G.Li,Commun.Nonlinear Sci.Numer.Simulat.19(2014)3556.

    [23]D.S.Wang,D.J.Zhang,and J.K.Yang,J.Math.Phys.51(2010)023510.

    [24]B.L.Guo and L.M.Ling,J.Math.Phys.53(2012)073506.

    [25]X.G.Geng and J.P.Wu,Wave Motion 60(2016)62.

    亚洲精品456在线播放app| 99久久久亚洲精品蜜臀av| 精品久久久久久久久av| 亚洲综合色惰| 亚洲精品色激情综合| 久久久成人免费电影| 亚洲欧洲国产日韩| 免费观看a级毛片全部| 91aial.com中文字幕在线观看| 国内少妇人妻偷人精品xxx网站| 99视频精品全部免费 在线| 高清午夜精品一区二区三区 | 国产av在哪里看| 成年女人看的毛片在线观看| 国产免费男女视频| 亚洲,欧美,日韩| 人妻制服诱惑在线中文字幕| 欧美高清成人免费视频www| 国产精品野战在线观看| 丝袜喷水一区| 国产精品伦人一区二区| 亚洲人成网站在线播| 成年免费大片在线观看| 欧美色欧美亚洲另类二区| 在线免费观看不下载黄p国产| 国产片特级美女逼逼视频| 国产亚洲精品久久久com| 亚洲欧美日韩卡通动漫| 深夜精品福利| 黄片wwwwww| 亚洲精品乱码久久久久久按摩| 免费看a级黄色片| 午夜福利在线在线| 国产乱人视频| 国产一区二区三区av在线 | 国产真实乱freesex| 国产片特级美女逼逼视频| 久久午夜亚洲精品久久| 国产成人aa在线观看| av在线播放精品| 欧美在线一区亚洲| 一本久久精品| 久久午夜福利片| 我要搜黄色片| 成人特级av手机在线观看| 男女边吃奶边做爰视频| 波多野结衣高清作品| a级毛片a级免费在线| a级毛片a级免费在线| 91久久精品国产一区二区三区| 18禁在线播放成人免费| 国产成人a∨麻豆精品| 午夜福利在线观看吧| 免费搜索国产男女视频| 亚洲精品国产av成人精品| 国产精品嫩草影院av在线观看| 亚洲欧美中文字幕日韩二区| 一进一出抽搐动态| 成人鲁丝片一二三区免费| 欧美成人免费av一区二区三区| 老司机福利观看| 女人被狂操c到高潮| 国产精品一二三区在线看| 久久99热6这里只有精品| 欧美成人精品欧美一级黄| 91精品国产九色| 欧美另类亚洲清纯唯美| 亚洲av不卡在线观看| 亚洲人成网站在线播| 极品教师在线视频| 九九爱精品视频在线观看| 亚洲不卡免费看| 久久久a久久爽久久v久久| 成人午夜精彩视频在线观看| 尾随美女入室| 亚洲电影在线观看av| 亚洲精品亚洲一区二区| www.色视频.com| 听说在线观看完整版免费高清| 亚洲高清免费不卡视频| 日本一二三区视频观看| 看免费成人av毛片| 99精品在免费线老司机午夜| 中国美白少妇内射xxxbb| 人妻制服诱惑在线中文字幕| 免费观看在线日韩| 亚洲国产精品sss在线观看| 久久婷婷人人爽人人干人人爱| 少妇丰满av| 亚洲av成人av| 校园人妻丝袜中文字幕| 久久韩国三级中文字幕| 久久九九热精品免费| 99热全是精品| 久久精品国产亚洲av天美| 美女被艹到高潮喷水动态| 国产成人freesex在线| 成人特级黄色片久久久久久久| av天堂在线播放| 国产不卡一卡二| 亚州av有码| 免费大片18禁| 一边摸一边抽搐一进一小说| 乱系列少妇在线播放| 蜜桃亚洲精品一区二区三区| 中文在线观看免费www的网站| 亚洲三级黄色毛片| 特级一级黄色大片| 成年女人看的毛片在线观看| 久久人人精品亚洲av| 久久久久久久久久黄片| 亚洲欧美日韩卡通动漫| 国产精品美女特级片免费视频播放器| 精品日产1卡2卡| 国产成人午夜福利电影在线观看| 老熟妇乱子伦视频在线观看| 欧美日韩一区二区视频在线观看视频在线 | 国产精品人妻久久久久久| 中文亚洲av片在线观看爽| 黄片无遮挡物在线观看| 亚洲美女视频黄频| 精品午夜福利在线看| 青青草视频在线视频观看| 久久九九热精品免费| 美女 人体艺术 gogo| 亚洲人成网站在线播| 日韩欧美在线乱码| 精品不卡国产一区二区三区| 2021天堂中文幕一二区在线观| 亚洲熟妇中文字幕五十中出| 亚洲av一区综合| 嫩草影院入口| 欧美xxxx性猛交bbbb| 久久久久久久久久久丰满| 日日摸夜夜添夜夜添av毛片| av.在线天堂| 亚洲精品日韩av片在线观看| 九色成人免费人妻av| av卡一久久| 1024手机看黄色片| 国内久久婷婷六月综合欲色啪| 国产激情偷乱视频一区二区| 久久鲁丝午夜福利片| 国产女主播在线喷水免费视频网站 | 男女边吃奶边做爰视频| 亚洲aⅴ乱码一区二区在线播放| 久久久国产成人免费| 久久草成人影院| 中文在线观看免费www的网站| 免费看光身美女| 国内少妇人妻偷人精品xxx网站| 日日撸夜夜添| 日本爱情动作片www.在线观看| 99久国产av精品国产电影| 晚上一个人看的免费电影| 啦啦啦韩国在线观看视频| 久久久欧美国产精品| 国产亚洲精品久久久久久毛片| 99国产极品粉嫩在线观看| 黑人高潮一二区| 青青草视频在线视频观看| 亚洲欧美中文字幕日韩二区| 国产av一区在线观看免费| 97超碰精品成人国产| 欧美精品一区二区大全| 久久精品国产自在天天线| 91麻豆精品激情在线观看国产| 精品免费久久久久久久清纯| 午夜激情欧美在线| 国产精品国产三级国产av玫瑰| 麻豆乱淫一区二区| 久久人妻av系列| 亚洲国产精品成人综合色| 日韩av在线大香蕉| 天天一区二区日本电影三级| 亚洲av男天堂| 亚洲人成网站在线播| 欧美性感艳星| 爱豆传媒免费全集在线观看| 成人毛片60女人毛片免费| 成人av在线播放网站| 黄色配什么色好看| 蜜桃久久精品国产亚洲av| 久99久视频精品免费| 国产精品爽爽va在线观看网站| 男女视频在线观看网站免费| 十八禁国产超污无遮挡网站| 神马国产精品三级电影在线观看| 男女视频在线观看网站免费| 久久久欧美国产精品| 深夜a级毛片| 久久韩国三级中文字幕| 99久久精品一区二区三区| 天天躁夜夜躁狠狠久久av| 舔av片在线| 女人被狂操c到高潮| 一个人观看的视频www高清免费观看| 直男gayav资源| 亚洲一区二区三区色噜噜| 国产一区二区三区在线臀色熟女| 99久久人妻综合| 人体艺术视频欧美日本| 长腿黑丝高跟| 成人亚洲精品av一区二区| 插逼视频在线观看| 久久久精品欧美日韩精品| 亚洲av不卡在线观看| 国产熟女欧美一区二区| 免费大片18禁| 亚洲在线观看片| 久久这里有精品视频免费| 97热精品久久久久久| 国产精品久久电影中文字幕| 99久国产av精品国产电影| 嫩草影院新地址| 国产精品日韩av在线免费观看| www.色视频.com| 久久国产乱子免费精品| 哪个播放器可以免费观看大片| 深夜精品福利| 中国国产av一级| 国国产精品蜜臀av免费| 免费电影在线观看免费观看| 男人舔女人下体高潮全视频| 久久中文看片网| 青春草亚洲视频在线观看| 两个人视频免费观看高清| 精品一区二区三区视频在线| 在线免费十八禁| 欧美色视频一区免费| 非洲黑人性xxxx精品又粗又长| 一本久久精品| 天天躁日日操中文字幕| 国产亚洲av嫩草精品影院| 国产麻豆成人av免费视频| 欧美3d第一页| 国产免费男女视频| 亚洲内射少妇av| 成年av动漫网址| 一区二区三区高清视频在线| 91在线精品国自产拍蜜月| 丝袜喷水一区| 国产不卡一卡二| 久久久国产成人免费| 亚洲欧美日韩东京热| 久久久久久久久久黄片| 91精品国产九色| 日本黄大片高清| 搡女人真爽免费视频火全软件| 国国产精品蜜臀av免费| 少妇裸体淫交视频免费看高清| 国产av不卡久久| 最近视频中文字幕2019在线8| 亚洲综合色惰| 成人国产麻豆网| 亚洲熟妇中文字幕五十中出| 在线观看美女被高潮喷水网站| 天天躁日日操中文字幕| 能在线免费观看的黄片| 18+在线观看网站| 亚洲成人中文字幕在线播放| 久久精品国产亚洲网站| 亚洲欧美精品自产自拍| 天天躁日日操中文字幕| 亚洲欧美日韩东京热| 亚洲欧洲日产国产| 久久人妻av系列| 18禁黄网站禁片免费观看直播| 午夜爱爱视频在线播放| 99久国产av精品| 看十八女毛片水多多多| 精品久久久噜噜| 久久久久久久久中文| 大香蕉久久网| 午夜福利高清视频| 又粗又爽又猛毛片免费看| 精品人妻视频免费看| 最新中文字幕久久久久| 亚洲欧洲国产日韩| 听说在线观看完整版免费高清| 99riav亚洲国产免费| 极品教师在线视频| 免费看光身美女| 国产乱人视频| 一区福利在线观看| 久久久久久国产a免费观看| 一边亲一边摸免费视频| 听说在线观看完整版免费高清| 久久精品综合一区二区三区| 欧美激情在线99| 青春草国产在线视频 | 国产成人精品一,二区 | 日韩欧美一区二区三区在线观看| 两个人视频免费观看高清| 午夜激情欧美在线| 青春草视频在线免费观看| 内射极品少妇av片p| 色5月婷婷丁香| 九草在线视频观看| 国产亚洲精品久久久久久毛片| 男的添女的下面高潮视频| 草草在线视频免费看| 成年女人永久免费观看视频| 亚洲av一区综合| 日韩高清综合在线| 可以在线观看的亚洲视频| 久久精品国产鲁丝片午夜精品| 国内精品久久久久精免费| 国产精品一区二区在线观看99 | 搞女人的毛片| 亚洲中文字幕一区二区三区有码在线看| 国产不卡一卡二| 国产精品精品国产色婷婷| 精品欧美国产一区二区三| 亚洲在线自拍视频| 久久精品人妻少妇| 亚洲美女视频黄频| 色哟哟·www| 国产精品久久久久久av不卡| 亚洲av免费高清在线观看| 国内久久婷婷六月综合欲色啪| 岛国毛片在线播放| av国产免费在线观看| 日本免费a在线| 99久久人妻综合| 人人妻人人澡欧美一区二区| 六月丁香七月| 国产成人午夜福利电影在线观看| 五月玫瑰六月丁香| 亚洲人成网站在线播| 波多野结衣高清无吗| 好男人视频免费观看在线| 人人妻人人看人人澡| 久久婷婷人人爽人人干人人爱| 亚洲精品久久国产高清桃花| 亚洲丝袜综合中文字幕| av免费观看日本| 一区二区三区四区激情视频 | 国产激情偷乱视频一区二区| 男女下面进入的视频免费午夜| 日本撒尿小便嘘嘘汇集6| 伦理电影大哥的女人| 亚洲18禁久久av| 夜夜夜夜夜久久久久| 美女脱内裤让男人舔精品视频 | 干丝袜人妻中文字幕| 国内精品美女久久久久久| 欧美日韩乱码在线| 99热精品在线国产| 99久久精品热视频| 久久99热6这里只有精品| 我的老师免费观看完整版| а√天堂www在线а√下载| 亚洲av中文字字幕乱码综合| 亚洲熟妇中文字幕五十中出| 色尼玛亚洲综合影院| 亚洲激情五月婷婷啪啪| 精品欧美国产一区二区三| .国产精品久久| 国产亚洲91精品色在线| 男人狂女人下面高潮的视频| 午夜福利在线观看免费完整高清在 | 99在线人妻在线中文字幕| 高清毛片免费看| 国产av在哪里看| 97热精品久久久久久| 人妻制服诱惑在线中文字幕| 九九久久精品国产亚洲av麻豆| 人妻系列 视频| 不卡一级毛片| 精品久久久久久久久av| 成熟少妇高潮喷水视频| ponron亚洲| 国产黄色小视频在线观看| 99热这里只有精品一区| 免费av不卡在线播放| 国产一区亚洲一区在线观看| 国产黄色视频一区二区在线观看 | 亚洲久久久久久中文字幕| 天堂中文最新版在线下载 | 精品午夜福利在线看| 久久久久性生活片| 两个人的视频大全免费| 夜夜爽天天搞| 在线国产一区二区在线| 99久久久亚洲精品蜜臀av| 天天躁日日操中文字幕| 小蜜桃在线观看免费完整版高清| 久久精品国产自在天天线| 国产精品久久视频播放| 欧美极品一区二区三区四区| 欧美精品一区二区大全| 亚洲av熟女| 中文字幕av在线有码专区| 国产精品av视频在线免费观看| 美女 人体艺术 gogo| 亚洲精品乱码久久久久久按摩| 在现免费观看毛片| 三级男女做爰猛烈吃奶摸视频| 久久综合国产亚洲精品| 日日干狠狠操夜夜爽| 精品久久久久久久久久久久久| 欧美日韩在线观看h| 欧美xxxx黑人xx丫x性爽| 成人午夜精彩视频在线观看| 日本与韩国留学比较| 日韩高清综合在线| 国产午夜精品论理片| 99热只有精品国产| 国产一级毛片在线| 国产精品1区2区在线观看.| 色综合站精品国产| 久久精品国产亚洲av天美| 男女啪啪激烈高潮av片| 两个人视频免费观看高清| 久久久久久久久中文| 噜噜噜噜噜久久久久久91| 美女被艹到高潮喷水动态| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 十八禁国产超污无遮挡网站| 国产一区二区激情短视频| 在线播放无遮挡| 18禁在线播放成人免费| 国产精品.久久久| 亚洲婷婷狠狠爱综合网| av在线蜜桃| 熟女人妻精品中文字幕| 国产亚洲5aaaaa淫片| 嘟嘟电影网在线观看| 男女做爰动态图高潮gif福利片| 久久精品国产鲁丝片午夜精品| 爱豆传媒免费全集在线观看| 午夜免费男女啪啪视频观看| 国产黄色小视频在线观看| 网址你懂的国产日韩在线| 中国美女看黄片| 亚洲电影在线观看av| 乱系列少妇在线播放| 神马国产精品三级电影在线观看| 亚洲av不卡在线观看| 日韩欧美一区二区三区在线观看| 免费观看精品视频网站| 中文字幕熟女人妻在线| 亚洲性久久影院| av在线天堂中文字幕| 岛国毛片在线播放| 给我免费播放毛片高清在线观看| 日韩一本色道免费dvd| 国产精品一二三区在线看| 免费观看a级毛片全部| 国产乱人偷精品视频| 波多野结衣高清作品| 亚洲av一区综合| 国产精品乱码一区二三区的特点| 一个人观看的视频www高清免费观看| 欧美日韩一区二区视频在线观看视频在线 | 人妻久久中文字幕网| 婷婷六月久久综合丁香| 日本一本二区三区精品| 男女边吃奶边做爰视频| 亚洲,欧美,日韩| 亚洲高清免费不卡视频| 亚洲色图av天堂| 级片在线观看| 日本五十路高清| 一本一本综合久久| 国产老妇女一区| 美女内射精品一级片tv| 欧美日本视频| 成人特级av手机在线观看| 欧美极品一区二区三区四区| 搡女人真爽免费视频火全软件| 久久久久久久亚洲中文字幕| 黄色视频,在线免费观看| 日韩,欧美,国产一区二区三区 | 少妇熟女欧美另类| 国产不卡一卡二| 亚洲av成人精品一区久久| 长腿黑丝高跟| 不卡视频在线观看欧美| 99久久精品国产国产毛片| 国产精品久久久久久亚洲av鲁大| 男人狂女人下面高潮的视频| 国产精品国产三级国产av玫瑰| 国产午夜精品一二区理论片| 免费搜索国产男女视频| 91久久精品电影网| 欧美成人免费av一区二区三区| 日韩欧美三级三区| 久久亚洲国产成人精品v| av在线播放精品| 日本-黄色视频高清免费观看| 可以在线观看的亚洲视频| 亚洲精品成人久久久久久| 国内久久婷婷六月综合欲色啪| 国产成人福利小说| 国产毛片a区久久久久| 在现免费观看毛片| 久久国产乱子免费精品| 亚洲av成人精品一区久久| av在线天堂中文字幕| 三级男女做爰猛烈吃奶摸视频| 国产美女午夜福利| 国产精品无大码| 老女人水多毛片| 狂野欧美激情性xxxx在线观看| 日本熟妇午夜| 亚洲欧美清纯卡通| 久久人人精品亚洲av| 日本撒尿小便嘘嘘汇集6| www.色视频.com| 少妇的逼水好多| 免费看美女性在线毛片视频| 成人特级黄色片久久久久久久| 日本撒尿小便嘘嘘汇集6| eeuss影院久久| 级片在线观看| 听说在线观看完整版免费高清| h日本视频在线播放| 久久九九热精品免费| 国产三级中文精品| 国产精品一二三区在线看| av免费在线看不卡| 国产成人午夜福利电影在线观看| 欧美成人一区二区免费高清观看| 亚洲精品久久久久久婷婷小说 | 国产在线男女| 嫩草影院新地址| 夜夜看夜夜爽夜夜摸| 久久久久性生活片| 国产私拍福利视频在线观看| 国产激情偷乱视频一区二区| 性插视频无遮挡在线免费观看| 国内精品美女久久久久久| 久久草成人影院| 在线免费观看的www视频| 人人妻人人看人人澡| 欧美xxxx黑人xx丫x性爽| 欧美又色又爽又黄视频| 一本精品99久久精品77| 国产精品爽爽va在线观看网站| 在线a可以看的网站| 日本撒尿小便嘘嘘汇集6| 99久久中文字幕三级久久日本| 国产伦理片在线播放av一区 | 成年版毛片免费区| 成人av在线播放网站| 成人国产麻豆网| 午夜免费男女啪啪视频观看| 一级毛片我不卡| 神马国产精品三级电影在线观看| 精品人妻一区二区三区麻豆| or卡值多少钱| 夜夜看夜夜爽夜夜摸| 国产精品伦人一区二区| 亚洲18禁久久av| 九草在线视频观看| 成人av在线播放网站| 草草在线视频免费看| 在线播放无遮挡| 午夜老司机福利剧场| 午夜福利在线在线| 国产精品麻豆人妻色哟哟久久 | 淫秽高清视频在线观看| 人体艺术视频欧美日本| 免费在线观看成人毛片| 精品一区二区免费观看| 亚洲性久久影院| 日韩亚洲欧美综合| 久久精品夜夜夜夜夜久久蜜豆| 国产精品电影一区二区三区| 亚洲婷婷狠狠爱综合网| 国产精品福利在线免费观看| 国产又黄又爽又无遮挡在线| 久久久精品欧美日韩精品| 亚洲第一区二区三区不卡| 又爽又黄无遮挡网站| 日韩欧美三级三区| 久久久久国产网址| 国产老妇伦熟女老妇高清| 亚洲精品日韩av片在线观看| 亚洲三级黄色毛片| 99国产精品一区二区蜜桃av| 日本免费一区二区三区高清不卡| 亚洲国产精品国产精品| 午夜亚洲福利在线播放| 寂寞人妻少妇视频99o| 极品教师在线视频| 欧美一区二区国产精品久久精品| 欧美区成人在线视频| 中出人妻视频一区二区| 九色成人免费人妻av| 三级经典国产精品| 色视频www国产| 国产精品,欧美在线| 黄色配什么色好看| 少妇熟女欧美另类| 精品午夜福利在线看| 网址你懂的国产日韩在线| 日本黄色片子视频| 免费av毛片视频| 青春草视频在线免费观看| 青青草视频在线视频观看| 女同久久另类99精品国产91| 成人av在线播放网站| 少妇被粗大猛烈的视频| 国产色婷婷99| 嫩草影院精品99| 小说图片视频综合网站| 午夜激情欧美在线| 国产精品av视频在线免费观看| 国产精品野战在线观看| 观看美女的网站| 变态另类成人亚洲欧美熟女| 人妻少妇偷人精品九色|