• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nonlinear Waves on Localized and Periodic Backgrounds with Time-Space Modulation?

    2018-01-24 06:23:01MeiKunLiu劉美坤ZhanYingYang楊戰(zhàn)營andWenLiYang楊文力SchoolofPhysicsNorthwestUniversityXian710069China
    Communications in Theoretical Physics 2017年5期

    Mei-Kun Liu(劉美坤),Zhan-Ying Yang(楊戰(zhàn)營),,? and Wen-Li Yang(楊文力)School of Physics,Northwest University,Xi’an 710069,China

    2Shannxi Key Laboratory for Theoretical Physics Frontiers,Xi’an 710069,China

    3Institute of Modern Physics,Northwest University,Xi’an 710069,China

    1 Introduction

    Nonlinear waves on a plane-wave background become a subject of intense research in nonlinear physics,ranging from nonlinear optics,Bose–Einstein Condensates(BECs),magnetics,plasmas,super fluid,et al.[1?9]These localized waves evolving on a nonvanishing background exactly describe the dynamical growth of perturbations on a plane-wave related to the nonlinear modulation instability.This includes Akhmediev breathers,[10]Kuznetsov–Ma breathers,[11]and the Peregrine(rational)rogue waves,[12]which are now considered the simplest models to describe the growth and decay of isolated steep wave events,i.e.,rogue waves,in nonlinear dispersive systems.[13?14]Especially,significant progress has been made on the experimental verification of these unique nonlinear structures in fiber optics,[15?17]in water tank,[18]and in plasma systems.[19]On the other hand,the utility of these waves based on their special properties in generating high-quality pulse trains,[20]high-power pulses,[21]breatherlike solitons,[22]nonlinear Talbot effects,[23]and the Peregrine comb[24]has been revealed.

    However,in practice,the simple solution on an ideal plane-wave background may be not as adequately representative of reality as commonly thought.Indeed,a plane wave is an in finite-width background that corresponds to extreme high background powers.Therefore,from the application and technical points of view,the study on nonlinear waves on a finitewidth background is of practical importance.Recently,the excitation of Peregrine rogue waves on Gaussian and Sech-shaped backgrounds has been investigated.[25?26]It has been shown that the characteristics of Peregrine rogue waves are maintained.However,the breathers,which are more general waves,have not been studied on a finitewidth background so far.On the other hand,a plane wave,upon which these solutions are built,is simply a limiting cases of the periodic waves.From a statistical perspective,these periodic oscillations appear far more common in the ocean than any idealised background with constant amplitude.In fact,in the experiment of water tank,the rogue waves are excited on a regular wave train.[27]It is also not uncommon for an optical periodic wave to appear in a fiber as a regular train of solitonic pulses.[28]Indeed,recent experiments in optical fiber demonstrated the propagation of periodic waves in a stable manner.[29]

    In this paper,we study the general nonlinear waves generation on finitewidth(localized)and periodic backgrounds.We present a general family of analytical solutions for the generalized nonlinear Schr?dinger equation with time-space modulation via the method of a combination of the Darboux transformation and similarity transformation. Nonlinear waves on different localized and periodic backgrounds depending on the corresponding nonlinearity modulations are obtained.In particular,we demonstrate the existence and property of localized modes on a double-periodic background under a special designed optical lattice potential.

    2 Model and Analytical Solutions

    We study nonlinear waves on localized and periodic backgrounds by a generalized nonlinear Schr?dinger equation(NLSE)with time-space modulation variable coeff-cients,which is given by

    whereψ(x,t)is a complex function,xrepresents the distribution direction andtrepresents the evolution direction.f(x,t)is the dispersion coeffcient andg(x,t)is the nonlinearity management parameter.V(x,t)denotes the external potential andγ(x,t)is the gain(or loss)term.In fact,model(1)is a generalized nonautonomous NLSE given in Ref.[30].The integrability of the nonautonomous NLSE have been studied in Ref.[31].The properties of solutions of two kinds of non-isospectral nonautonomous NLSE have been discussed in Ref.[32].The dynamics of standard solitons(i.e.,bright and dark structures)have been studied in Ref.[33].In particular,dynamics of rogue waves and breathers in Eq.(1)have been studied recently in Refs.[34–38].If these variable coeffcients are functions only related tot,we can present rogue wave and breathers in BECs,which are similar to the results in Refs.[35–36].Moreover,with some higher-order effects added in Eq.(1),the rogue wave management in a fiber is studied.[37]If these variable coeffcients are functions only related tox,the rogue wave management has been studied in Ref.[38].On the other hand,one should note that optical rogue waves in the generalized higher-order NLSE with time-space modulation have been studied in Ref.[39].Moreover,the standard solitons in Eq.(1)with quintic nonlinearity have been demonstrated in Ref.[40].In the following,we will present the exact general solution,which describes rogue waves and breathers on different backgrounds.

    We assume that the form of a solution of Eq.(1)as follows

    whereρ(x,t),?(x,t),X(x,t),T(t)are real variable functions.ρ(x,t)and?(x,t)are amplitude and phase of the nonlinear localized waves,respectively.Φ(X,T)is the solution of the NLSE

    where the contained parameters satisfy the constraint condition

    The subscripts denote the partial derivative respect toxort.From the partial differential equations and the con-straint conditions,we can obtain the amplitudeρ(x,t)=√the phasethe dispersion coeffcientf(x,t)=(1/2)aα?2F?2,the gain(or loss)term

    hereais a function that depends ontandT0is a real constant.Furthermore,the expression of the potential is given

    with

    Using similarity transformation,we can obtain the exact solution of Eq.(1),

    Aandωrepresent the amplitude and frequency of the background,respectively.b1anda1are arbitrary constant parameters.

    The breather is a localized solution with temporally and/or spatially periodic structures having constant background exhibiting internal oscillations and bound states of nonlinear wave packets.[41]The unified solution(7)describes abundant different types nonlinear localized waves with different parameters,including Kuznetsov–Ma(KM)breather,Akhmediev breather(AB)and rogue wave.

    In the case ofν=0,andσ=0,the general breather becomes to KM breather,which is periodic in the evolution direction and localized in the distribution direction.The form of the KM breather can be given by

    The rogue wave can be obtained by taking the limitsandσ=0.In this case,Eq.(7)reduces to the following form

    3 Nonlinear Waves on Localized Backgrounds

    Most of the theoretical studies focus on the rogue waveand breatherssolutionson plane-wavebackgrounds.[2?5,42?46]In practice,the ideal plane-wave background are non-existent.Therefore,from the application and technical points of view,the study on nonlinear waves on localized background is of practical importance.We have nonlinear term manipulation to achieve the purpose of controlling the nonlinear wave.The nonlinearity coeffcient can be controlled by suitably managing the parametersα(t),F(?),anda(t),we are explaining it by considering the following two kinds of situations in below.

    3.1 The Evolution-Direction Localized Background

    For the evolution direction localized background,we choose the nonlinearity coeffcient as

    wherec0is an arbitrarily constant.In this case,the dispersion,gain,and potential should be chosen asf=const.γ= ?at/2a?αtx/α,V(x,t)=whereα(t)=c0sech(c0t),a(t)=α2.

    In Fig.1,we plot the rogue wave and breathers on the evolution direction localized background,here the potential is the space-quadratic potential in Fig.1(e).Whent→0,the amplitude of background gradually increases in the evolution direction.As show in Fig.1(a),rogue wave becomes more and more localized in the evolution direction.At this time,the AB and the general breather have stretching occurs in distribution direction,which show in Figs.1(b)and 1(c).Unlike the AB and the general breather,the KM breather is localized in bothtandx,the periodically of the KM breather in the evolution direction completely destroyed(see the wave in Fig.1(d)).Interestingly,as increasing thec0,the background get more localized in the evolution direction and the amplitude of the nonlinear waves are increased.

    Fig.1 (Color online)Density plot of RW and breathers|ψ|on the evolution direction localized background.(a)Rogue wave with c0=1,A=1/2,ω=0.(b)The Kuznetsov–Ma breather with c0=3/2,b1=2,A=1,ω=0. (c)The Akhmediev breather with c0=1,A=3/2,b1=1/2,ω=0.(d)The general breather with c0=1,b1=3/2,A=1/2,ω=0,a1=1/2.(e)The potential with c0=1.Other parameter is T0=0.

    3.2 The Distribution-Direction Localized Background

    For the distribution direction localized background,we choose the nonlinear coeffcient

    where?=αx,and

    withμ∈ (?1,1),ω0∈R.Remarkably,depending on the different choices ofμ,there are two cases to consider as follows:

    (i)Whenμ=0,the nonlinearity coeffcient

    In this case,the dispersion,gain,and potential should be selected as

    Fig.2 (Color online)Density plot of rogue wave and breathers|ψ|on distribution direction localized background.(a)Evolution of rogue wave solution.(b)The Kuznetsov–Ma breather with b1=3/2.(c)The Akhmediev breather with b1=1/2.(d)The general breather with b1=3/2,a1=1/2.(e)Plot of the potential given with b=6.Others are A=1,ω=0,b=6,T0=0.

    Figures 2(a),2(b),2(c),and 2(d)demonstrate the intensity profiles of rogue wave,KM breather,AB and the general breather on the distribution direction localized background,respectively.The potential is like a potential barrier,which shows in Fig.2(e).Figure 2(a)shows the evolution of the rogue wave,which is localized in both two spatial directions on distribution direction localized background.It has been demonstrated that the characteristics of rogue wave(a high amplitude and double localization)are maintained on distribution direction localized background.Figure 2(b)shows that KM breather is periodic intand localized inxon distribution direction localized background.It should note that the characteristics of the KM breather on the distribution direction localized background is similar to the one on the plan wave background.Figures 2(c)and 2(d)show the amplitude of AB and general breather decrease with the amplitude of background decreasing,which fully disappears atx→±∞.

    (ii)Ifμ/=0,the nonlinearity coeffcient

    The external potential is a complex function of trigonometric function and exponential function.The dispersion management and the gain(or loss)term parameterand

    Fig.3 (Color online)Density plot of RW and breathers|ψ|.(a)Rogue wave with μ =1/2,ω0=3/2,b=4,A=1,ω =0.(b)The Kuznetsov–Ma breather withμ =1/2,ω0=1,b=6,A=1,b1=3/2,ω =0.(c)The Akhmediev breather withμ =0.3,ω0=1,b=6,A=1,b1=1/2,ω=0.(d)The general breather solution forμ =0.3,ω0=1,b=6,A=1,b1=1/2,ω =0,a1=1/2.(e)Plot of the potential with b=6,μ=0.5,ω0=1.Other parameter is T0=0.

    In the case of Fig.3(e),this potential periodically varies in time and localized in space with attractive and expulsive characteristics.[47]As depicted in Fig.3(a),the rogue wave is localized in both time and space,which is located at(x,t)=(0,0).Figure 3(b)shows that the KM breather has many peaks of varying magnitudes in the evolution direction.In particularly,the contours of each envelope is changed.As show in Figs.3(c)and 3(d),the AB and the general breather are spatially periodic and localized in time.It is clear that the peaks of AB and the general breather have a big stretching in space,which is different with the KM breather.It should be note that the general breather can be seen as an AB with a velocity.Furthermore,whenx→0,the peaks of AB and the general breather increase gradually with the amplitude of background increasing.

    4 Nonlinear Waves on Periodic Backgrounds

    As we mentioned above,periodic oscillations appear far more common in the nonlinear physical system from a statistical perspective.In this section,we will systematically study the general nonlinear waves on single-and double-periodic backgrounds(i.e.,the optical lattice background).The latter is an important platform for the trapping and manipulation of BECs.[48?49]

    4.1 The Single-Periodic Background(g=1)

    We consider that the case of the nonlinearity coeffcient is constant.We chooseα=1,F=1 and

    witha0∈ (?1,1)andω1∈R.In this case,the dispersion,gain(or loss)term and potential should be elected asf=a/2,γ= ?at/2a,andV=0.Ifa0=0,the coeffcients of Eq.(1)are all constants.Equation(1)then reduces to the standard NLS equation,which leads to the standard rogue waves and breathers solutions to Eq.(3).Equation(1)in the above two cases is important both in nonlinear optics and BECs.[36]

    In Fig.4,we plot the rogue wave and breathers on single periodic background in the case ofg=1.As can be seen from Fig.4(a),the structure of rogue wave has two valleys placed on both sides of the peak on single periodic background.In Fig.4(b),because of the ratio between the amplitude of the background and the amplitude of nonlinear waves are constant,the KM breather has many peaks of varying magnitudes in the evolution direction.In Fig.4(c),the AB on the single periodic background is similar to the one on the plan wave background.Figure 4(d)illustrates the behavior of the general breather on the single periodic background.In this situation,the structure of the general breather is basically ruined.

    4.2 The Single-Periodic Background(g/=1)

    Fig.5 (Color online)Density plot of solutions|ψ|.(a)Rogue wave with A=0.7,ω =0.(b)The Kuznetsov–Ma breather with b1=2,A=1,ω =0.(c)The Akhmediev breather b1=0.7,A=1,ω =0.(d)The general breather with A=1,b1=1/2,?=0,μ=1/2.(e)The potential withμ=1/2,ω0=1.Others areμ=1/2,ω0=1,T0=0.

    For the singly-periodic background,we choose the nonlinearity coeffcient as

    whereFandaas constant,andαis the trigonometric form mentioned in Eq.(13). The dispersion and gain(or loss)term should be chosen asf=1/2α2andγ= ?αtx/α.The potential is form of time trigonometric function.

    In Fig.5,we plot the dynamics of rogue wave and breathers wave on single periodic background in the case ofg/=1.Figure 5(e)shows that the potential changes from attractive to expulsive behavior periodically.[47]As depicted in Fig.5(a),the structure of rogue wave is different from Fig.4(a).The peak of the rogue wave has a big stretching in evolution direction but the valley has not changed.As show in Fig.3(b),the KM breather is identical to the caseg=1.The AB seem like a periodic rogue wave in distribution direction in Fig.5(c).Figure 5(d)shows that the structure of the general breather is basically ruined.

    4.3 The Double-Periodic Background

    For the double-periodic background,we choose the nonlinearity coeffcient as

    whereF=1/(v+v0cosω2?),α=1 anda(t)to be the function of the trigonometric form as noted in Eq.(16)withv0∈ (?v,v),ω2∈R.vis real constant.With this,we can find the dispersionf=a/2F2and gain(or loss)termγ= ?at/2a.The lattice potential is the trigonometric function of time.However,there are few studies on the transportation of rogue wave and breathers in the lattice potential.Base on this research,we will show how rogue wave and breathers propagate on the doubleperiodic background.

    In Figs.6(a)–6(d)show the dynamics of the rogue wave and breathers on double periodic background.In Fig.6(a),the single structure of rogue wave is similar to Fig.4(a),but the rogue wave in Fig.6(a)is periodic in distribution direction.Interestingly,the characteristics of KM breather in one period in Fig.6(b)is similar to the KM breather in Fig.4.The KM breather periodically appeared both in the evolution direction and the distribution direction.The peak of AB is not equal in a lattice in Fig.6(c).As shown in Fig.6(d),The general breather can be seen as a tilted AB in a lattice.

    Fig.6 (Color online)Evolution of the rogue wave and breathers|ψ|on optical lattice background.(a)Rogue wave with v=3,a0=A=1/2,ω =0,T0= ?4.(b)The Kuznetsov–Ma breather with v=3,a0=1/2,A=1,b1=3/2,ω =0,T0= ?4.(c)The Akhmediev breather with v=1,a0=b1=1/2,A=1,ω=0,T0=0.(d)The general breather solution T0=?14,v=1,a0=a1=1/2,A=0.8,b1=0.3,ω=0.(e)The potential with v=1,a0=0.8.Others are v0= ω1= ω2=1/2.

    5 Conclusions

    We have obtained one family of analytical nonlinear localized wave solution for the generalized NLSE with timespace modulation via the method of a combination of the Darboux transformation and similarity transformation.By choosing special forms of the nonlinearityg(x,t),a simple procedure has been established to obtain localized wave solutions on different backgrounds.The solutions exist under certain conditions and impose constraints on the coeffcients depicting dispersion,nonlinearity,gain(or loss),and external potential.We have demonstrated rogue wave and breathers on different localized and periodic backgrounds depending on the corresponding nonlinearity modulations.In particular,the existence and property of localized modes on a double-periodic background under a special designed optical lattice potential were revealed.These results could be of great interest in realizing rogue waves and breathers on different backgrounds in physical systems such as nonlinear optics and Bose–Einstein condensates.

    [1]D.J.Kedziora,A.Ankiewicz,and N.Akhmediev,Phys.Rev.E 88(2013)013207.

    [2]B.L.Guo,L.Ling,and Q.P.Liu,Phys.Rev.E 85(2012)026607.

    [3]L.C.Zhao,G.G,Xin,and Z.Y.Yang,Phys.Rev.E 90(2014)022918.

    [4]L.C.Zhao,C.Liu,and Z.Y.Yang,Commun.Nonlinear Sci.20(2015)9.

    [5]C.Liu,Z.Y.Yang,L.C.Zhao,et al.,Ann.Phys.362(2015)130.

    [6]S.Loomba,R.Gupta,K.K.De,et al.,Opt.Fiber Technol.21(2015)20.

    [7]N.Akhmediev,J.M.Soto-Crespob,N.Devinea,and N.P.Hoffmann,Phys.D 294(2015)37.

    [8]G.Mu,Z.Qin,et al.,SIAM J.Appl.Math.75(2015)1.

    [9]Z.Y.Yan,Commun.Theor.Phys.54(2010)947.

    [10]N.N.Akhmediev and V.I.Korneev,Theor.Math.Phys.69(1986)1089.

    [11]E.Kuznetsov,A.Akademiia,Nauk SSSR Doklady.236(1977)575;Y.C.Ma,Studies in Applied Mathematics 60(1979)43.

    [12]D.H.Peregrine,Appl.Math.25(1983)16.

    [13]S.A.Chin,O.A.Ashour,S.N.Nikoli,et al.,Nonlinear Sci.1611(2016)02753.

    [14]L.C.Zhao and L.Ling,J.Opt.Soc.Am.B 33(2016)850.

    [15]D.R.Solli,C.Ropers,P.Koonath,and B.Jalali,Nature 450(2007)1054.

    [16]B.Kibler,J.Fatome,C.Finot,G.Millot,F.Dias,G.Genty,N.Akhmediev,and J.M.Dudley,Nat.Phys.6(2010)790.

    [17]J.M.Dudley,G.Genty,and B.J.Eggleton,Opt.Exp.16(2008)3644.

    [18]A.Chabchoub,N.P.Hoffmann,and N.Akhmediev,Phys.Rev.Lett.106(2011)204502.

    [19]H.Bailung,S.K.Sharma,and Y.Nakamura,Phys.Rev.Lett.107(2011)255005.

    [20]J.Fatome,B.Kibler,and C.Finot,Opt.Lett.38(2013)1663.

    [21]Y.V.Bludov,V.V.Konotop,and N.Akhmediev,Opt.Lett.34(2009)3015.

    [22]G.Yang,L.Li,S.Jia,et al.,Rom.Rep.Phys.65(2013)391;G.Yang,L.Li,S.Jia,et al.,Rom.Rep.Phys.65(2013)902;G.Yang,Y.Wang,Z.Qin,et al.,Phys.Rev.E 90(2014)062909.

    [23]Y.Zhang,M.R.Belic,H.Zheng,et al.,Phys.Rev.E 89(2014)03290;Y.Zhang,M.R.Belic,M.S.Petrovic,et al.,Phys.Rev.E 91(2015)032916.

    [24]C.G.L.Tiofack,S.Coulibaly,M.Taki,et al.,Phys.Rev.A 92(2015)043837.

    [25]C.Liu,Z.Y.Yang,L.C.Zhao,et al.,Opt.Lett.39(2014)1057.

    [26]L.Duan,Z.Y.Yang,C.Liu,et al.,Chin.Phys.Lett.33(2016)010501.

    [27]A.Chabchoub,N.Hoffmann,M.Onorato,et al.,Phys.Rev.X 2(2012)011015.

    [28]D.J.Kedziora,A.Ankiewicz,and N.Akhmediev,Eur.Phys.J.Spec.Top.223(2014)43.

    [29]J.L.Shultz,G.J.Salamo,Phys.Rev.Lett.78(1997)855.

    [30]V.N.Serkin,A.Hasegawa,and T.L.Belyaeva,Phys.Rev.Lett.98(2007)074102.

    [31]J.S.He and Y.S.Li,Stud.Appl.Math.126(2011)1.

    [32]J.S.He,M.Ji,and Y.S.Li,Chin.Phys.Lett.24(2007)2157.

    [33]Z.Y.Yang,L.C.Zhao,T.Zhang,et al.,Phys.Rev.E 83(2011)066602;J.Opt.Soc.Am.B 28(2011)236;Opt.Commun.283(2010)3768;L.C.Zhao,Z.Y.Yang,et al.,Phys.Lett.A 375(2011)1839;Z.Y.Yang,L.C.Zhao,T.Zhang,et al.,Phys.Rev.A 81(2010)043826;C.Liu,Z.Y.Yang,W.L.Yang,and R.H.Yue,Commun.Theor.Phys.59(2013)311;C.Liu,Z.Y.Yang,M.Zhang,et al.,Commun.Theor.Phys.59(2013)703.

    [34]Y.Y.Wang,J.S.He,and Y.S.Li,Commun.Theor.Phys.56(2011)995;S.W.Xu,J.S.He,and L.H.Wang,Europhys.Lett.97(2012)30007;Y.S.Tao,J.S.He,and K.Porsezian,Chin.Phys.B 22(2013)074210.

    [35]J.S.He,E.G.Charalampidis,P.G.Kevrekidis,and D.J.Frantzeskakis,Phys.Lett.A 378(2014)577.

    [36]K.Manikandan,P.Muruganandam,M.Senthilvelan,and M.Lakshmanan,Phys.Rev.E 90(2014)062905.

    [37]J.S.HE,Y.S.Tao,K.Porsezian,and A.S.Focas,J.Nonlinear Math.Phys.20(2013)407.

    [38]W.P.Zhong,L.Chen,M.Beli,et al.,Phys.Rev.E 90(2014)043201.

    [39]Z.Yan and C.Dai,J.Opt.15(2013)064012.

    [40]J.R.He and H.M.Li,Phys.Rev.E 83(2011)066607.

    [41]D.Mandelik,H.S.Eisenberg,Y.Silberberg,R.Morandotti,and J.S.Aitchison,Phys.Rev.Lett.90(2003)253902.

    [42]C.Liu,Z.Y.Yang,L.C.Zhao,et al.,Phys.Rev.E 94(2016)042221.

    [43]C.Q.Dai and W.H.Huang,Appl.Math.Lett.32(2014)35.

    [44]L.Wang,M.Li,F.H.Qi,et al.,Eur.Phys.J.D 69(2015)1;L.Wang,X.Li,F.H.Qi,et al.,Ann.Phys.359(2015)97.

    [45]C.Liu,Z.Y.Yang,L.C.Zhao,et al.,Phys.Rev.E 91(2015)022904;C.Liu,Z.Y.Yang,L.C.Zhao,et al.,Phys.Rev.A 89(2014)055803.

    [46]R.Guo,H.H.Zhao,and Y.Wang,Nonlinear Dyn.83(2016)2475;R.Guo,Y.F.Liu,H.Q.Hao,et al.,Nonlinear Dynamics 80(2015)1221.

    [47]W.B.Cardoso,A.T.Avelar,and D.Bazeia,Phys.Lett.A 374(2010)2640.

    [48]I.Bloch,Nat.Phys.1(2005)23.

    [49]A.D.Cronin,J.Schmiedmayer,and D.E.Pritchard,Rev.Mod.Phys.81(2009)1051.

    欧美日韩亚洲高清精品| av天堂久久9| 久久久国产一区二区| 亚洲精品色激情综合| 美女国产视频在线观看| 亚洲av男天堂| 国产亚洲91精品色在线| 高清不卡的av网站| 丰满饥渴人妻一区二区三| 精品一品国产午夜福利视频| 丁香六月天网| 国产成人精品福利久久| 国内揄拍国产精品人妻在线| 黄色怎么调成土黄色| 亚洲欧美一区二区三区国产| 久久毛片免费看一区二区三区| 老司机影院毛片| 26uuu在线亚洲综合色| 夫妻午夜视频| 国产中年淑女户外野战色| 国产日韩欧美亚洲二区| 国产成人精品福利久久| 日韩制服骚丝袜av| 欧美日韩国产mv在线观看视频| 国产精品久久久久久精品古装| 日韩一区二区视频免费看| 国产精品久久久久久久电影| 精品久久久久久电影网| 精品国产国语对白av| 成人二区视频| 久久鲁丝午夜福利片| 免费高清在线观看视频在线观看| 日本猛色少妇xxxxx猛交久久| 国产在视频线精品| 自线自在国产av| 久久精品国产亚洲av涩爱| 午夜福利网站1000一区二区三区| 精品久久久久久久久av| 久久精品夜色国产| a级一级毛片免费在线观看| 免费观看av网站的网址| 啦啦啦在线观看免费高清www| 日韩欧美精品免费久久| 丝袜喷水一区| 免费观看av网站的网址| √禁漫天堂资源中文www| 日本欧美国产在线视频| 91成人精品电影| 国产精品一区二区在线观看99| 一区二区三区精品91| 日韩av免费高清视频| 一级毛片我不卡| 自线自在国产av| 女人久久www免费人成看片| 国产精品福利在线免费观看| 国产黄片视频在线免费观看| 亚洲av综合色区一区| 国产精品不卡视频一区二区| 亚洲美女黄色视频免费看| 国产高清国产精品国产三级| 国产精品99久久99久久久不卡 | h日本视频在线播放| 免费高清在线观看视频在线观看| 久久人人爽av亚洲精品天堂| 大香蕉97超碰在线| 亚洲第一av免费看| 一级,二级,三级黄色视频| 午夜久久久在线观看| 午夜福利影视在线免费观看| 精品一区二区三卡| 亚洲av国产av综合av卡| 最近中文字幕高清免费大全6| 亚洲av综合色区一区| 免费看光身美女| 少妇人妻一区二区三区视频| 99久久综合免费| 欧美成人午夜免费资源| 欧美三级亚洲精品| 一级毛片电影观看| 免费看日本二区| 不卡视频在线观看欧美| 菩萨蛮人人尽说江南好唐韦庄| 嫩草影院入口| 国产色婷婷99| 22中文网久久字幕| 国产亚洲最大av| 亚洲国产色片| 久久久欧美国产精品| 日产精品乱码卡一卡2卡三| 黑人猛操日本美女一级片| 国产精品一区www在线观看| 国产日韩欧美在线精品| 男女边摸边吃奶| 一边亲一边摸免费视频| 欧美xxxx性猛交bbbb| 久久这里有精品视频免费| 久久热精品热| 久久人人爽av亚洲精品天堂| 黑人巨大精品欧美一区二区蜜桃 | 亚洲精品456在线播放app| 亚洲av综合色区一区| 久久精品国产亚洲av天美| 99热这里只有是精品50| 一个人看视频在线观看www免费| 午夜福利在线观看免费完整高清在| 欧美亚洲 丝袜 人妻 在线| 久久精品久久久久久噜噜老黄| √禁漫天堂资源中文www| 亚洲色图综合在线观看| 在现免费观看毛片| 欧美丝袜亚洲另类| 久久这里有精品视频免费| 国产免费福利视频在线观看| 免费大片18禁| 内地一区二区视频在线| 免费观看av网站的网址| 成人漫画全彩无遮挡| 婷婷色av中文字幕| 久久国产精品大桥未久av | 亚洲人成网站在线观看播放| 婷婷色综合大香蕉| 高清欧美精品videossex| 黄色欧美视频在线观看| 自拍偷自拍亚洲精品老妇| 日韩成人av中文字幕在线观看| 国产精品蜜桃在线观看| 高清午夜精品一区二区三区| 91久久精品国产一区二区三区| 男人狂女人下面高潮的视频| 精品酒店卫生间| 国产一区二区在线观看av| 亚洲精品国产av成人精品| 国产色婷婷99| 婷婷色综合大香蕉| 成年人午夜在线观看视频| 久久久精品免费免费高清| 久久99精品国语久久久| 久久99热这里只频精品6学生| 日韩精品有码人妻一区| 一级毛片我不卡| 国产免费又黄又爽又色| 精华霜和精华液先用哪个| 99久久综合免费| 国产色婷婷99| 国产一区二区在线观看日韩| 国产老妇伦熟女老妇高清| 午夜视频国产福利| 国内揄拍国产精品人妻在线| 日本欧美国产在线视频| kizo精华| 亚洲怡红院男人天堂| 大香蕉97超碰在线| 日本黄色日本黄色录像| 少妇的逼好多水| 欧美丝袜亚洲另类| 大话2 男鬼变身卡| 少妇裸体淫交视频免费看高清| 蜜桃久久精品国产亚洲av| 欧美xxⅹ黑人| 天美传媒精品一区二区| 国产成人精品一,二区| 亚洲av中文av极速乱| 亚洲欧美日韩卡通动漫| 亚洲丝袜综合中文字幕| 少妇丰满av| 男人和女人高潮做爰伦理| 午夜免费男女啪啪视频观看| 一区二区av电影网| 熟女人妻精品中文字幕| 久久久久久久久久人人人人人人| 久久ye,这里只有精品| 欧美 日韩 精品 国产| 国产男女超爽视频在线观看| 免费av中文字幕在线| 91精品国产九色| 黑丝袜美女国产一区| 在线观看三级黄色| 嘟嘟电影网在线观看| 夫妻性生交免费视频一级片| 噜噜噜噜噜久久久久久91| 特大巨黑吊av在线直播| 交换朋友夫妻互换小说| 久久青草综合色| 国产日韩欧美亚洲二区| 成人黄色视频免费在线看| 亚洲综合精品二区| 在线精品无人区一区二区三| 午夜激情久久久久久久| 精品99又大又爽又粗少妇毛片| 中文字幕人妻丝袜制服| 精品少妇久久久久久888优播| 日日啪夜夜爽| 国产极品天堂在线| 中文字幕精品免费在线观看视频 | 中文字幕人妻熟人妻熟丝袜美| 美女大奶头黄色视频| 久久影院123| 亚洲精品乱码久久久v下载方式| 91久久精品电影网| 少妇裸体淫交视频免费看高清| 久久久国产欧美日韩av| 午夜av观看不卡| 欧美 亚洲 国产 日韩一| 在线播放无遮挡| 亚洲欧美成人综合另类久久久| 简卡轻食公司| 久久久久久久久久人人人人人人| 天堂8中文在线网| 中文字幕人妻熟人妻熟丝袜美| 亚洲av中文av极速乱| 美女内射精品一级片tv| 人妻一区二区av| 菩萨蛮人人尽说江南好唐韦庄| 最近的中文字幕免费完整| 欧美激情极品国产一区二区三区 | 少妇人妻久久综合中文| 日本黄色片子视频| 天天操日日干夜夜撸| 日韩av免费高清视频| 在线亚洲精品国产二区图片欧美 | 少妇的逼好多水| 国产美女午夜福利| 夜夜爽夜夜爽视频| 又大又黄又爽视频免费| 久久6这里有精品| 九九爱精品视频在线观看| 成人毛片60女人毛片免费| 嫩草影院新地址| 久久国产精品男人的天堂亚洲 | 国产中年淑女户外野战色| 青春草视频在线免费观看| 国产成人一区二区在线| 亚洲精品,欧美精品| 能在线免费看毛片的网站| 另类亚洲欧美激情| 国产一区二区在线观看av| 99热全是精品| 在线看a的网站| 黄色毛片三级朝国网站 | 久久99热这里只频精品6学生| 亚洲三级黄色毛片| 久久久久久久久大av| 国产中年淑女户外野战色| 国产av码专区亚洲av| 国产精品女同一区二区软件| 一级毛片aaaaaa免费看小| 亚洲av成人精品一二三区| 欧美精品亚洲一区二区| 免费观看av网站的网址| 一区二区三区免费毛片| 久久久精品免费免费高清| 搡女人真爽免费视频火全软件| 黄色视频在线播放观看不卡| h日本视频在线播放| 免费av中文字幕在线| 嘟嘟电影网在线观看| 国产永久视频网站| 最近手机中文字幕大全| 久久久久久久久久成人| 男女国产视频网站| 国产淫语在线视频| 这个男人来自地球电影免费观看 | 新久久久久国产一级毛片| 只有这里有精品99| 男人爽女人下面视频在线观看| 亚洲精品一二三| 18禁裸乳无遮挡动漫免费视频| 亚洲av综合色区一区| 伊人亚洲综合成人网| 美女内射精品一级片tv| 女人久久www免费人成看片| 少妇人妻一区二区三区视频| 日韩成人av中文字幕在线观看| 涩涩av久久男人的天堂| 日本午夜av视频| 久久精品夜色国产| 22中文网久久字幕| 亚洲四区av| 成人亚洲精品一区在线观看| 精品少妇久久久久久888优播| 午夜免费观看性视频| 国产成人91sexporn| 韩国高清视频一区二区三区| 国产免费福利视频在线观看| 一本大道久久a久久精品| 大香蕉久久网| 中国国产av一级| 成人美女网站在线观看视频| 久久久久久久久大av| 特大巨黑吊av在线直播| 欧美日韩视频精品一区| 国产中年淑女户外野战色| 男女免费视频国产| 午夜福利影视在线免费观看| 成人亚洲欧美一区二区av| 国产高清有码在线观看视频| 久久av网站| 国产国拍精品亚洲av在线观看| 久久精品国产亚洲av天美| 欧美日韩视频精品一区| 婷婷色av中文字幕| 日本av免费视频播放| 少妇 在线观看| 人妻夜夜爽99麻豆av| 一区二区三区乱码不卡18| 亚洲欧美日韩东京热| 青春草亚洲视频在线观看| av专区在线播放| 亚洲精品色激情综合| 久久久久久久久久久丰满| 如日韩欧美国产精品一区二区三区 | 深夜a级毛片| 水蜜桃什么品种好| a级毛片在线看网站| 老司机亚洲免费影院| 99视频精品全部免费 在线| av在线播放精品| 免费看不卡的av| 大码成人一级视频| 又黄又爽又刺激的免费视频.| 精品一区二区免费观看| 老熟女久久久| 国产成人91sexporn| 熟妇人妻不卡中文字幕| 美女主播在线视频| a级毛色黄片| 亚洲av中文av极速乱| 欧美日韩av久久| 在线看a的网站| 最近手机中文字幕大全| 亚洲第一区二区三区不卡| 久久午夜福利片| 看免费成人av毛片| av国产精品久久久久影院| 日韩成人伦理影院| 国产日韩一区二区三区精品不卡 | 性高湖久久久久久久久免费观看| 亚洲,一卡二卡三卡| 国产毛片在线视频| 亚洲情色 制服丝袜| 欧美高清成人免费视频www| 日韩av免费高清视频| 夜夜爽夜夜爽视频| 日本猛色少妇xxxxx猛交久久| 久久国产精品男人的天堂亚洲 | 国产伦精品一区二区三区视频9| 国产欧美日韩一区二区三区在线 | 黄色毛片三级朝国网站 | 99久国产av精品国产电影| 亚洲成人av在线免费| 国产成人免费无遮挡视频| 亚洲国产日韩一区二区| 久久韩国三级中文字幕| 久久久国产精品麻豆| 久久 成人 亚洲| 免费看光身美女| 日本av手机在线免费观看| 国产伦理片在线播放av一区| 一级二级三级毛片免费看| 80岁老熟妇乱子伦牲交| 久久午夜综合久久蜜桃| 欧美激情国产日韩精品一区| 嫩草影院新地址| 久久精品国产亚洲av涩爱| 观看美女的网站| 日韩成人伦理影院| 国产黄片视频在线免费观看| 成人免费观看视频高清| 大片免费播放器 马上看| 亚洲成色77777| 99久久综合免费| .国产精品久久| 午夜福利视频精品| 波野结衣二区三区在线| 能在线免费看毛片的网站| 精品国产露脸久久av麻豆| 王馨瑶露胸无遮挡在线观看| 免费观看在线日韩| 国产老妇伦熟女老妇高清| 纵有疾风起免费观看全集完整版| 成人国产麻豆网| 免费看av在线观看网站| 日本色播在线视频| 内地一区二区视频在线| av免费在线看不卡| 国产精品麻豆人妻色哟哟久久| 桃花免费在线播放| 在线亚洲精品国产二区图片欧美 | 精品人妻偷拍中文字幕| a级毛片免费高清观看在线播放| 乱人伦中国视频| 2022亚洲国产成人精品| 亚洲欧美清纯卡通| 一个人看视频在线观看www免费| 午夜久久久在线观看| 中文在线观看免费www的网站| 国产精品成人在线| 国产免费一区二区三区四区乱码| 久久久欧美国产精品| 七月丁香在线播放| 国产无遮挡羞羞视频在线观看| 天堂中文最新版在线下载| 人人妻人人添人人爽欧美一区卜| av在线老鸭窝| 国产真实伦视频高清在线观看| 色婷婷久久久亚洲欧美| 国产精品一区二区三区四区免费观看| 九色成人免费人妻av| 九九爱精品视频在线观看| 久久免费观看电影| 一本久久精品| 国产探花极品一区二区| 少妇的逼好多水| 久久久精品免费免费高清| 狂野欧美激情性xxxx在线观看| 国产精品人妻久久久久久| 偷拍熟女少妇极品色| 日本黄色日本黄色录像| 成人无遮挡网站| 你懂的网址亚洲精品在线观看| 国产精品久久久久成人av| 午夜福利在线观看免费完整高清在| 成年人午夜在线观看视频| 一级,二级,三级黄色视频| 建设人人有责人人尽责人人享有的| 国产 一区精品| 久久久久久久大尺度免费视频| 少妇丰满av| 新久久久久国产一级毛片| 国产欧美另类精品又又久久亚洲欧美| 日本欧美视频一区| 激情五月婷婷亚洲| 又黄又爽又刺激的免费视频.| 亚洲激情五月婷婷啪啪| 大片免费播放器 马上看| 伦精品一区二区三区| 欧美国产精品一级二级三级 | 搡女人真爽免费视频火全软件| 国产精品国产三级国产专区5o| av.在线天堂| 国产精品久久久久久av不卡| 亚洲,欧美,日韩| 国产男女内射视频| 中文字幕人妻熟人妻熟丝袜美| 精华霜和精华液先用哪个| 韩国av在线不卡| 永久网站在线| 成人无遮挡网站| 国产在线免费精品| 成人漫画全彩无遮挡| 亚洲国产日韩一区二区| 亚洲精品国产av成人精品| 交换朋友夫妻互换小说| 啦啦啦啦在线视频资源| 少妇人妻久久综合中文| 精品一品国产午夜福利视频| 日韩成人av中文字幕在线观看| 成人亚洲精品一区在线观看| 亚洲精品日本国产第一区| 国产精品国产三级专区第一集| 免费观看的影片在线观看| 两个人的视频大全免费| a级毛色黄片| 久久久久精品久久久久真实原创| 老女人水多毛片| √禁漫天堂资源中文www| 欧美人与善性xxx| 日日摸夜夜添夜夜爱| 中文字幕人妻丝袜制服| 秋霞在线观看毛片| 看非洲黑人一级黄片| 精品人妻一区二区三区麻豆| 夫妻午夜视频| 免费大片黄手机在线观看| 亚洲婷婷狠狠爱综合网| 人妻夜夜爽99麻豆av| 国产精品一二三区在线看| 精品久久久久久久久亚洲| 伊人久久国产一区二区| 国国产精品蜜臀av免费| 岛国毛片在线播放| 日韩亚洲欧美综合| 欧美精品一区二区免费开放| av在线app专区| 一边亲一边摸免费视频| 久久精品国产亚洲av涩爱| 一级毛片我不卡| 22中文网久久字幕| 中文字幕制服av| 99久久中文字幕三级久久日本| 免费人成在线观看视频色| 我要看日韩黄色一级片| 欧美最新免费一区二区三区| 国产精品久久久久久精品电影小说| 欧美亚洲 丝袜 人妻 在线| 九九爱精品视频在线观看| 大片电影免费在线观看免费| 亚洲无线观看免费| 18禁在线无遮挡免费观看视频| 边亲边吃奶的免费视频| 韩国高清视频一区二区三区| 99热网站在线观看| a级一级毛片免费在线观看| 国产高清有码在线观看视频| 日本黄大片高清| 热re99久久精品国产66热6| 少妇被粗大猛烈的视频| 国产日韩欧美在线精品| 人人妻人人添人人爽欧美一区卜| 夜夜看夜夜爽夜夜摸| 麻豆精品久久久久久蜜桃| www.色视频.com| 欧美变态另类bdsm刘玥| 啦啦啦视频在线资源免费观看| 欧美日韩一区二区视频在线观看视频在线| 少妇人妻精品综合一区二区| 五月伊人婷婷丁香| 大又大粗又爽又黄少妇毛片口| 综合色丁香网| 亚洲欧美一区二区三区黑人 | 亚洲av成人精品一二三区| 免费人成在线观看视频色| 最近中文字幕高清免费大全6| 精品熟女少妇av免费看| 婷婷色av中文字幕| 亚洲国产欧美在线一区| 日韩成人伦理影院| 婷婷色综合www| 这个男人来自地球电影免费观看 | 高清午夜精品一区二区三区| 建设人人有责人人尽责人人享有的| 国产成人91sexporn| 人人妻人人看人人澡| 精品卡一卡二卡四卡免费| 亚洲精品亚洲一区二区| 国产乱人偷精品视频| √禁漫天堂资源中文www| 亚洲中文av在线| 精品一区二区三区视频在线| 欧美bdsm另类| 免费人成在线观看视频色| 免费观看无遮挡的男女| 精品人妻偷拍中文字幕| 九九爱精品视频在线观看| 免费av中文字幕在线| 亚洲中文av在线| 国产黄色视频一区二区在线观看| 日韩伦理黄色片| 大又大粗又爽又黄少妇毛片口| av国产精品久久久久影院| 日韩欧美 国产精品| 欧美成人精品欧美一级黄| 国产国拍精品亚洲av在线观看| 黄色配什么色好看| 国产美女午夜福利| 国产成人91sexporn| 中文资源天堂在线| 亚洲va在线va天堂va国产| 国产午夜精品久久久久久一区二区三区| 极品少妇高潮喷水抽搐| 9色porny在线观看| 老司机影院毛片| 青春草国产在线视频| 99热网站在线观看| 欧美人与善性xxx| 在线 av 中文字幕| 美女主播在线视频| 久久久精品免费免费高清| 久久午夜福利片| 自拍偷自拍亚洲精品老妇| 亚洲av成人精品一区久久| av在线播放精品| 日韩av不卡免费在线播放| 国产深夜福利视频在线观看| 少妇的逼水好多| 99久久综合免费| 日产精品乱码卡一卡2卡三| 一个人免费看片子| 天堂8中文在线网| 午夜福利网站1000一区二区三区| 内地一区二区视频在线| 丰满乱子伦码专区| 99精国产麻豆久久婷婷| 亚洲精品中文字幕在线视频 | 丝袜在线中文字幕| 国产欧美另类精品又又久久亚洲欧美| 国产欧美亚洲国产| 午夜激情福利司机影院| 精品国产一区二区久久| 久久亚洲国产成人精品v| 亚洲欧美清纯卡通| 3wmmmm亚洲av在线观看| 青春草视频在线免费观看| av卡一久久| 日本与韩国留学比较| 国产亚洲av片在线观看秒播厂| 久久久久人妻精品一区果冻| 老司机影院毛片| 亚洲av综合色区一区| 精品久久国产蜜桃| 夫妻性生交免费视频一级片| 超碰97精品在线观看| 国产精品三级大全| 精品国产露脸久久av麻豆| 亚洲va在线va天堂va国产| 老司机影院毛片| 丝袜脚勾引网站| 国产精品福利在线免费观看| 丝瓜视频免费看黄片| 国产欧美另类精品又又久久亚洲欧美| a级一级毛片免费在线观看| 视频中文字幕在线观看| 人人妻人人澡人人爽人人夜夜| 久久国内精品自在自线图片| 91午夜精品亚洲一区二区三区|