• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nonlinear Waves on Localized and Periodic Backgrounds with Time-Space Modulation?

    2018-01-24 06:23:01MeiKunLiu劉美坤ZhanYingYang楊戰(zhàn)營andWenLiYang楊文力SchoolofPhysicsNorthwestUniversityXian710069China
    Communications in Theoretical Physics 2017年5期

    Mei-Kun Liu(劉美坤),Zhan-Ying Yang(楊戰(zhàn)營),,? and Wen-Li Yang(楊文力)School of Physics,Northwest University,Xi’an 710069,China

    2Shannxi Key Laboratory for Theoretical Physics Frontiers,Xi’an 710069,China

    3Institute of Modern Physics,Northwest University,Xi’an 710069,China

    1 Introduction

    Nonlinear waves on a plane-wave background become a subject of intense research in nonlinear physics,ranging from nonlinear optics,Bose–Einstein Condensates(BECs),magnetics,plasmas,super fluid,et al.[1?9]These localized waves evolving on a nonvanishing background exactly describe the dynamical growth of perturbations on a plane-wave related to the nonlinear modulation instability.This includes Akhmediev breathers,[10]Kuznetsov–Ma breathers,[11]and the Peregrine(rational)rogue waves,[12]which are now considered the simplest models to describe the growth and decay of isolated steep wave events,i.e.,rogue waves,in nonlinear dispersive systems.[13?14]Especially,significant progress has been made on the experimental verification of these unique nonlinear structures in fiber optics,[15?17]in water tank,[18]and in plasma systems.[19]On the other hand,the utility of these waves based on their special properties in generating high-quality pulse trains,[20]high-power pulses,[21]breatherlike solitons,[22]nonlinear Talbot effects,[23]and the Peregrine comb[24]has been revealed.

    However,in practice,the simple solution on an ideal plane-wave background may be not as adequately representative of reality as commonly thought.Indeed,a plane wave is an in finite-width background that corresponds to extreme high background powers.Therefore,from the application and technical points of view,the study on nonlinear waves on a finitewidth background is of practical importance.Recently,the excitation of Peregrine rogue waves on Gaussian and Sech-shaped backgrounds has been investigated.[25?26]It has been shown that the characteristics of Peregrine rogue waves are maintained.However,the breathers,which are more general waves,have not been studied on a finitewidth background so far.On the other hand,a plane wave,upon which these solutions are built,is simply a limiting cases of the periodic waves.From a statistical perspective,these periodic oscillations appear far more common in the ocean than any idealised background with constant amplitude.In fact,in the experiment of water tank,the rogue waves are excited on a regular wave train.[27]It is also not uncommon for an optical periodic wave to appear in a fiber as a regular train of solitonic pulses.[28]Indeed,recent experiments in optical fiber demonstrated the propagation of periodic waves in a stable manner.[29]

    In this paper,we study the general nonlinear waves generation on finitewidth(localized)and periodic backgrounds.We present a general family of analytical solutions for the generalized nonlinear Schr?dinger equation with time-space modulation via the method of a combination of the Darboux transformation and similarity transformation. Nonlinear waves on different localized and periodic backgrounds depending on the corresponding nonlinearity modulations are obtained.In particular,we demonstrate the existence and property of localized modes on a double-periodic background under a special designed optical lattice potential.

    2 Model and Analytical Solutions

    We study nonlinear waves on localized and periodic backgrounds by a generalized nonlinear Schr?dinger equation(NLSE)with time-space modulation variable coeff-cients,which is given by

    whereψ(x,t)is a complex function,xrepresents the distribution direction andtrepresents the evolution direction.f(x,t)is the dispersion coeffcient andg(x,t)is the nonlinearity management parameter.V(x,t)denotes the external potential andγ(x,t)is the gain(or loss)term.In fact,model(1)is a generalized nonautonomous NLSE given in Ref.[30].The integrability of the nonautonomous NLSE have been studied in Ref.[31].The properties of solutions of two kinds of non-isospectral nonautonomous NLSE have been discussed in Ref.[32].The dynamics of standard solitons(i.e.,bright and dark structures)have been studied in Ref.[33].In particular,dynamics of rogue waves and breathers in Eq.(1)have been studied recently in Refs.[34–38].If these variable coeffcients are functions only related tot,we can present rogue wave and breathers in BECs,which are similar to the results in Refs.[35–36].Moreover,with some higher-order effects added in Eq.(1),the rogue wave management in a fiber is studied.[37]If these variable coeffcients are functions only related tox,the rogue wave management has been studied in Ref.[38].On the other hand,one should note that optical rogue waves in the generalized higher-order NLSE with time-space modulation have been studied in Ref.[39].Moreover,the standard solitons in Eq.(1)with quintic nonlinearity have been demonstrated in Ref.[40].In the following,we will present the exact general solution,which describes rogue waves and breathers on different backgrounds.

    We assume that the form of a solution of Eq.(1)as follows

    whereρ(x,t),?(x,t),X(x,t),T(t)are real variable functions.ρ(x,t)and?(x,t)are amplitude and phase of the nonlinear localized waves,respectively.Φ(X,T)is the solution of the NLSE

    where the contained parameters satisfy the constraint condition

    The subscripts denote the partial derivative respect toxort.From the partial differential equations and the con-straint conditions,we can obtain the amplitudeρ(x,t)=√the phasethe dispersion coeffcientf(x,t)=(1/2)aα?2F?2,the gain(or loss)term

    hereais a function that depends ontandT0is a real constant.Furthermore,the expression of the potential is given

    with

    Using similarity transformation,we can obtain the exact solution of Eq.(1),

    Aandωrepresent the amplitude and frequency of the background,respectively.b1anda1are arbitrary constant parameters.

    The breather is a localized solution with temporally and/or spatially periodic structures having constant background exhibiting internal oscillations and bound states of nonlinear wave packets.[41]The unified solution(7)describes abundant different types nonlinear localized waves with different parameters,including Kuznetsov–Ma(KM)breather,Akhmediev breather(AB)and rogue wave.

    In the case ofν=0,andσ=0,the general breather becomes to KM breather,which is periodic in the evolution direction and localized in the distribution direction.The form of the KM breather can be given by

    The rogue wave can be obtained by taking the limitsandσ=0.In this case,Eq.(7)reduces to the following form

    3 Nonlinear Waves on Localized Backgrounds

    Most of the theoretical studies focus on the rogue waveand breatherssolutionson plane-wavebackgrounds.[2?5,42?46]In practice,the ideal plane-wave background are non-existent.Therefore,from the application and technical points of view,the study on nonlinear waves on localized background is of practical importance.We have nonlinear term manipulation to achieve the purpose of controlling the nonlinear wave.The nonlinearity coeffcient can be controlled by suitably managing the parametersα(t),F(?),anda(t),we are explaining it by considering the following two kinds of situations in below.

    3.1 The Evolution-Direction Localized Background

    For the evolution direction localized background,we choose the nonlinearity coeffcient as

    wherec0is an arbitrarily constant.In this case,the dispersion,gain,and potential should be chosen asf=const.γ= ?at/2a?αtx/α,V(x,t)=whereα(t)=c0sech(c0t),a(t)=α2.

    In Fig.1,we plot the rogue wave and breathers on the evolution direction localized background,here the potential is the space-quadratic potential in Fig.1(e).Whent→0,the amplitude of background gradually increases in the evolution direction.As show in Fig.1(a),rogue wave becomes more and more localized in the evolution direction.At this time,the AB and the general breather have stretching occurs in distribution direction,which show in Figs.1(b)and 1(c).Unlike the AB and the general breather,the KM breather is localized in bothtandx,the periodically of the KM breather in the evolution direction completely destroyed(see the wave in Fig.1(d)).Interestingly,as increasing thec0,the background get more localized in the evolution direction and the amplitude of the nonlinear waves are increased.

    Fig.1 (Color online)Density plot of RW and breathers|ψ|on the evolution direction localized background.(a)Rogue wave with c0=1,A=1/2,ω=0.(b)The Kuznetsov–Ma breather with c0=3/2,b1=2,A=1,ω=0. (c)The Akhmediev breather with c0=1,A=3/2,b1=1/2,ω=0.(d)The general breather with c0=1,b1=3/2,A=1/2,ω=0,a1=1/2.(e)The potential with c0=1.Other parameter is T0=0.

    3.2 The Distribution-Direction Localized Background

    For the distribution direction localized background,we choose the nonlinear coeffcient

    where?=αx,and

    withμ∈ (?1,1),ω0∈R.Remarkably,depending on the different choices ofμ,there are two cases to consider as follows:

    (i)Whenμ=0,the nonlinearity coeffcient

    In this case,the dispersion,gain,and potential should be selected as

    Fig.2 (Color online)Density plot of rogue wave and breathers|ψ|on distribution direction localized background.(a)Evolution of rogue wave solution.(b)The Kuznetsov–Ma breather with b1=3/2.(c)The Akhmediev breather with b1=1/2.(d)The general breather with b1=3/2,a1=1/2.(e)Plot of the potential given with b=6.Others are A=1,ω=0,b=6,T0=0.

    Figures 2(a),2(b),2(c),and 2(d)demonstrate the intensity profiles of rogue wave,KM breather,AB and the general breather on the distribution direction localized background,respectively.The potential is like a potential barrier,which shows in Fig.2(e).Figure 2(a)shows the evolution of the rogue wave,which is localized in both two spatial directions on distribution direction localized background.It has been demonstrated that the characteristics of rogue wave(a high amplitude and double localization)are maintained on distribution direction localized background.Figure 2(b)shows that KM breather is periodic intand localized inxon distribution direction localized background.It should note that the characteristics of the KM breather on the distribution direction localized background is similar to the one on the plan wave background.Figures 2(c)and 2(d)show the amplitude of AB and general breather decrease with the amplitude of background decreasing,which fully disappears atx→±∞.

    (ii)Ifμ/=0,the nonlinearity coeffcient

    The external potential is a complex function of trigonometric function and exponential function.The dispersion management and the gain(or loss)term parameterand

    Fig.3 (Color online)Density plot of RW and breathers|ψ|.(a)Rogue wave with μ =1/2,ω0=3/2,b=4,A=1,ω =0.(b)The Kuznetsov–Ma breather withμ =1/2,ω0=1,b=6,A=1,b1=3/2,ω =0.(c)The Akhmediev breather withμ =0.3,ω0=1,b=6,A=1,b1=1/2,ω=0.(d)The general breather solution forμ =0.3,ω0=1,b=6,A=1,b1=1/2,ω =0,a1=1/2.(e)Plot of the potential with b=6,μ=0.5,ω0=1.Other parameter is T0=0.

    In the case of Fig.3(e),this potential periodically varies in time and localized in space with attractive and expulsive characteristics.[47]As depicted in Fig.3(a),the rogue wave is localized in both time and space,which is located at(x,t)=(0,0).Figure 3(b)shows that the KM breather has many peaks of varying magnitudes in the evolution direction.In particularly,the contours of each envelope is changed.As show in Figs.3(c)and 3(d),the AB and the general breather are spatially periodic and localized in time.It is clear that the peaks of AB and the general breather have a big stretching in space,which is different with the KM breather.It should be note that the general breather can be seen as an AB with a velocity.Furthermore,whenx→0,the peaks of AB and the general breather increase gradually with the amplitude of background increasing.

    4 Nonlinear Waves on Periodic Backgrounds

    As we mentioned above,periodic oscillations appear far more common in the nonlinear physical system from a statistical perspective.In this section,we will systematically study the general nonlinear waves on single-and double-periodic backgrounds(i.e.,the optical lattice background).The latter is an important platform for the trapping and manipulation of BECs.[48?49]

    4.1 The Single-Periodic Background(g=1)

    We consider that the case of the nonlinearity coeffcient is constant.We chooseα=1,F=1 and

    witha0∈ (?1,1)andω1∈R.In this case,the dispersion,gain(or loss)term and potential should be elected asf=a/2,γ= ?at/2a,andV=0.Ifa0=0,the coeffcients of Eq.(1)are all constants.Equation(1)then reduces to the standard NLS equation,which leads to the standard rogue waves and breathers solutions to Eq.(3).Equation(1)in the above two cases is important both in nonlinear optics and BECs.[36]

    In Fig.4,we plot the rogue wave and breathers on single periodic background in the case ofg=1.As can be seen from Fig.4(a),the structure of rogue wave has two valleys placed on both sides of the peak on single periodic background.In Fig.4(b),because of the ratio between the amplitude of the background and the amplitude of nonlinear waves are constant,the KM breather has many peaks of varying magnitudes in the evolution direction.In Fig.4(c),the AB on the single periodic background is similar to the one on the plan wave background.Figure 4(d)illustrates the behavior of the general breather on the single periodic background.In this situation,the structure of the general breather is basically ruined.

    4.2 The Single-Periodic Background(g/=1)

    Fig.5 (Color online)Density plot of solutions|ψ|.(a)Rogue wave with A=0.7,ω =0.(b)The Kuznetsov–Ma breather with b1=2,A=1,ω =0.(c)The Akhmediev breather b1=0.7,A=1,ω =0.(d)The general breather with A=1,b1=1/2,?=0,μ=1/2.(e)The potential withμ=1/2,ω0=1.Others areμ=1/2,ω0=1,T0=0.

    For the singly-periodic background,we choose the nonlinearity coeffcient as

    whereFandaas constant,andαis the trigonometric form mentioned in Eq.(13). The dispersion and gain(or loss)term should be chosen asf=1/2α2andγ= ?αtx/α.The potential is form of time trigonometric function.

    In Fig.5,we plot the dynamics of rogue wave and breathers wave on single periodic background in the case ofg/=1.Figure 5(e)shows that the potential changes from attractive to expulsive behavior periodically.[47]As depicted in Fig.5(a),the structure of rogue wave is different from Fig.4(a).The peak of the rogue wave has a big stretching in evolution direction but the valley has not changed.As show in Fig.3(b),the KM breather is identical to the caseg=1.The AB seem like a periodic rogue wave in distribution direction in Fig.5(c).Figure 5(d)shows that the structure of the general breather is basically ruined.

    4.3 The Double-Periodic Background

    For the double-periodic background,we choose the nonlinearity coeffcient as

    whereF=1/(v+v0cosω2?),α=1 anda(t)to be the function of the trigonometric form as noted in Eq.(16)withv0∈ (?v,v),ω2∈R.vis real constant.With this,we can find the dispersionf=a/2F2and gain(or loss)termγ= ?at/2a.The lattice potential is the trigonometric function of time.However,there are few studies on the transportation of rogue wave and breathers in the lattice potential.Base on this research,we will show how rogue wave and breathers propagate on the doubleperiodic background.

    In Figs.6(a)–6(d)show the dynamics of the rogue wave and breathers on double periodic background.In Fig.6(a),the single structure of rogue wave is similar to Fig.4(a),but the rogue wave in Fig.6(a)is periodic in distribution direction.Interestingly,the characteristics of KM breather in one period in Fig.6(b)is similar to the KM breather in Fig.4.The KM breather periodically appeared both in the evolution direction and the distribution direction.The peak of AB is not equal in a lattice in Fig.6(c).As shown in Fig.6(d),The general breather can be seen as a tilted AB in a lattice.

    Fig.6 (Color online)Evolution of the rogue wave and breathers|ψ|on optical lattice background.(a)Rogue wave with v=3,a0=A=1/2,ω =0,T0= ?4.(b)The Kuznetsov–Ma breather with v=3,a0=1/2,A=1,b1=3/2,ω =0,T0= ?4.(c)The Akhmediev breather with v=1,a0=b1=1/2,A=1,ω=0,T0=0.(d)The general breather solution T0=?14,v=1,a0=a1=1/2,A=0.8,b1=0.3,ω=0.(e)The potential with v=1,a0=0.8.Others are v0= ω1= ω2=1/2.

    5 Conclusions

    We have obtained one family of analytical nonlinear localized wave solution for the generalized NLSE with timespace modulation via the method of a combination of the Darboux transformation and similarity transformation.By choosing special forms of the nonlinearityg(x,t),a simple procedure has been established to obtain localized wave solutions on different backgrounds.The solutions exist under certain conditions and impose constraints on the coeffcients depicting dispersion,nonlinearity,gain(or loss),and external potential.We have demonstrated rogue wave and breathers on different localized and periodic backgrounds depending on the corresponding nonlinearity modulations.In particular,the existence and property of localized modes on a double-periodic background under a special designed optical lattice potential were revealed.These results could be of great interest in realizing rogue waves and breathers on different backgrounds in physical systems such as nonlinear optics and Bose–Einstein condensates.

    [1]D.J.Kedziora,A.Ankiewicz,and N.Akhmediev,Phys.Rev.E 88(2013)013207.

    [2]B.L.Guo,L.Ling,and Q.P.Liu,Phys.Rev.E 85(2012)026607.

    [3]L.C.Zhao,G.G,Xin,and Z.Y.Yang,Phys.Rev.E 90(2014)022918.

    [4]L.C.Zhao,C.Liu,and Z.Y.Yang,Commun.Nonlinear Sci.20(2015)9.

    [5]C.Liu,Z.Y.Yang,L.C.Zhao,et al.,Ann.Phys.362(2015)130.

    [6]S.Loomba,R.Gupta,K.K.De,et al.,Opt.Fiber Technol.21(2015)20.

    [7]N.Akhmediev,J.M.Soto-Crespob,N.Devinea,and N.P.Hoffmann,Phys.D 294(2015)37.

    [8]G.Mu,Z.Qin,et al.,SIAM J.Appl.Math.75(2015)1.

    [9]Z.Y.Yan,Commun.Theor.Phys.54(2010)947.

    [10]N.N.Akhmediev and V.I.Korneev,Theor.Math.Phys.69(1986)1089.

    [11]E.Kuznetsov,A.Akademiia,Nauk SSSR Doklady.236(1977)575;Y.C.Ma,Studies in Applied Mathematics 60(1979)43.

    [12]D.H.Peregrine,Appl.Math.25(1983)16.

    [13]S.A.Chin,O.A.Ashour,S.N.Nikoli,et al.,Nonlinear Sci.1611(2016)02753.

    [14]L.C.Zhao and L.Ling,J.Opt.Soc.Am.B 33(2016)850.

    [15]D.R.Solli,C.Ropers,P.Koonath,and B.Jalali,Nature 450(2007)1054.

    [16]B.Kibler,J.Fatome,C.Finot,G.Millot,F.Dias,G.Genty,N.Akhmediev,and J.M.Dudley,Nat.Phys.6(2010)790.

    [17]J.M.Dudley,G.Genty,and B.J.Eggleton,Opt.Exp.16(2008)3644.

    [18]A.Chabchoub,N.P.Hoffmann,and N.Akhmediev,Phys.Rev.Lett.106(2011)204502.

    [19]H.Bailung,S.K.Sharma,and Y.Nakamura,Phys.Rev.Lett.107(2011)255005.

    [20]J.Fatome,B.Kibler,and C.Finot,Opt.Lett.38(2013)1663.

    [21]Y.V.Bludov,V.V.Konotop,and N.Akhmediev,Opt.Lett.34(2009)3015.

    [22]G.Yang,L.Li,S.Jia,et al.,Rom.Rep.Phys.65(2013)391;G.Yang,L.Li,S.Jia,et al.,Rom.Rep.Phys.65(2013)902;G.Yang,Y.Wang,Z.Qin,et al.,Phys.Rev.E 90(2014)062909.

    [23]Y.Zhang,M.R.Belic,H.Zheng,et al.,Phys.Rev.E 89(2014)03290;Y.Zhang,M.R.Belic,M.S.Petrovic,et al.,Phys.Rev.E 91(2015)032916.

    [24]C.G.L.Tiofack,S.Coulibaly,M.Taki,et al.,Phys.Rev.A 92(2015)043837.

    [25]C.Liu,Z.Y.Yang,L.C.Zhao,et al.,Opt.Lett.39(2014)1057.

    [26]L.Duan,Z.Y.Yang,C.Liu,et al.,Chin.Phys.Lett.33(2016)010501.

    [27]A.Chabchoub,N.Hoffmann,M.Onorato,et al.,Phys.Rev.X 2(2012)011015.

    [28]D.J.Kedziora,A.Ankiewicz,and N.Akhmediev,Eur.Phys.J.Spec.Top.223(2014)43.

    [29]J.L.Shultz,G.J.Salamo,Phys.Rev.Lett.78(1997)855.

    [30]V.N.Serkin,A.Hasegawa,and T.L.Belyaeva,Phys.Rev.Lett.98(2007)074102.

    [31]J.S.He and Y.S.Li,Stud.Appl.Math.126(2011)1.

    [32]J.S.He,M.Ji,and Y.S.Li,Chin.Phys.Lett.24(2007)2157.

    [33]Z.Y.Yang,L.C.Zhao,T.Zhang,et al.,Phys.Rev.E 83(2011)066602;J.Opt.Soc.Am.B 28(2011)236;Opt.Commun.283(2010)3768;L.C.Zhao,Z.Y.Yang,et al.,Phys.Lett.A 375(2011)1839;Z.Y.Yang,L.C.Zhao,T.Zhang,et al.,Phys.Rev.A 81(2010)043826;C.Liu,Z.Y.Yang,W.L.Yang,and R.H.Yue,Commun.Theor.Phys.59(2013)311;C.Liu,Z.Y.Yang,M.Zhang,et al.,Commun.Theor.Phys.59(2013)703.

    [34]Y.Y.Wang,J.S.He,and Y.S.Li,Commun.Theor.Phys.56(2011)995;S.W.Xu,J.S.He,and L.H.Wang,Europhys.Lett.97(2012)30007;Y.S.Tao,J.S.He,and K.Porsezian,Chin.Phys.B 22(2013)074210.

    [35]J.S.He,E.G.Charalampidis,P.G.Kevrekidis,and D.J.Frantzeskakis,Phys.Lett.A 378(2014)577.

    [36]K.Manikandan,P.Muruganandam,M.Senthilvelan,and M.Lakshmanan,Phys.Rev.E 90(2014)062905.

    [37]J.S.HE,Y.S.Tao,K.Porsezian,and A.S.Focas,J.Nonlinear Math.Phys.20(2013)407.

    [38]W.P.Zhong,L.Chen,M.Beli,et al.,Phys.Rev.E 90(2014)043201.

    [39]Z.Yan and C.Dai,J.Opt.15(2013)064012.

    [40]J.R.He and H.M.Li,Phys.Rev.E 83(2011)066607.

    [41]D.Mandelik,H.S.Eisenberg,Y.Silberberg,R.Morandotti,and J.S.Aitchison,Phys.Rev.Lett.90(2003)253902.

    [42]C.Liu,Z.Y.Yang,L.C.Zhao,et al.,Phys.Rev.E 94(2016)042221.

    [43]C.Q.Dai and W.H.Huang,Appl.Math.Lett.32(2014)35.

    [44]L.Wang,M.Li,F.H.Qi,et al.,Eur.Phys.J.D 69(2015)1;L.Wang,X.Li,F.H.Qi,et al.,Ann.Phys.359(2015)97.

    [45]C.Liu,Z.Y.Yang,L.C.Zhao,et al.,Phys.Rev.E 91(2015)022904;C.Liu,Z.Y.Yang,L.C.Zhao,et al.,Phys.Rev.A 89(2014)055803.

    [46]R.Guo,H.H.Zhao,and Y.Wang,Nonlinear Dyn.83(2016)2475;R.Guo,Y.F.Liu,H.Q.Hao,et al.,Nonlinear Dynamics 80(2015)1221.

    [47]W.B.Cardoso,A.T.Avelar,and D.Bazeia,Phys.Lett.A 374(2010)2640.

    [48]I.Bloch,Nat.Phys.1(2005)23.

    [49]A.D.Cronin,J.Schmiedmayer,and D.E.Pritchard,Rev.Mod.Phys.81(2009)1051.

    成年av动漫网址| 久久热精品热| 精品久久久久久成人av| av国产免费在线观看| av黄色大香蕉| 欧美xxxx性猛交bbbb| 美女内射精品一级片tv| 精品久久国产蜜桃| 高清毛片免费看| 日韩欧美精品免费久久| 亚洲自拍偷在线| 亚洲在久久综合| 美女被艹到高潮喷水动态| videos熟女内射| 久久国内精品自在自线图片| 日日摸夜夜添夜夜爱| 亚洲自拍偷在线| 国产精品一区二区在线观看99 | 18禁在线无遮挡免费观看视频| 久久99蜜桃精品久久| 成人午夜精彩视频在线观看| 亚洲国产精品国产精品| 国产v大片淫在线免费观看| 国产精品无大码| 插阴视频在线观看视频| 一级毛片 在线播放| 免费看a级黄色片| 国产男女超爽视频在线观看| 国产高清三级在线| 午夜激情欧美在线| 老司机影院成人| 欧美zozozo另类| 亚洲av免费在线观看| 国产精品不卡视频一区二区| 久久精品久久久久久久性| 日日干狠狠操夜夜爽| 亚洲欧美成人综合另类久久久| 日韩欧美一区视频在线观看 | 婷婷色麻豆天堂久久| 男女那种视频在线观看| 午夜亚洲福利在线播放| 26uuu在线亚洲综合色| 成人一区二区视频在线观看| 两个人视频免费观看高清| 国产亚洲91精品色在线| 草草在线视频免费看| 精品少妇黑人巨大在线播放| 一级黄片播放器| 天堂√8在线中文| 亚洲怡红院男人天堂| 国产精品无大码| 日韩,欧美,国产一区二区三区| 特大巨黑吊av在线直播| 亚洲国产色片| 日本免费a在线| 久久久久久久久久黄片| 在线免费观看的www视频| 婷婷六月久久综合丁香| 七月丁香在线播放| 婷婷色麻豆天堂久久| 久久久久久久久久久免费av| 久久久欧美国产精品| 免费黄色在线免费观看| 欧美成人一区二区免费高清观看| videossex国产| 欧美激情在线99| 天天躁夜夜躁狠狠久久av| 看黄色毛片网站| 国产精品熟女久久久久浪| 高清av免费在线| 国产一区二区在线观看日韩| 精品一区二区三区人妻视频| 十八禁网站网址无遮挡 | 麻豆乱淫一区二区| 国产精品久久久久久精品电影小说 | 国产高清不卡午夜福利| 欧美变态另类bdsm刘玥| 成人亚洲精品av一区二区| 一本一本综合久久| 国产精品爽爽va在线观看网站| 淫秽高清视频在线观看| 亚洲av电影在线观看一区二区三区 | 夜夜爽夜夜爽视频| 亚洲成人一二三区av| 国产精品国产三级国产专区5o| 欧美成人精品欧美一级黄| 久久久久久久国产电影| 在现免费观看毛片| av国产免费在线观看| 日韩av不卡免费在线播放| 亚洲国产高清在线一区二区三| 少妇熟女aⅴ在线视频| 五月天丁香电影| 亚洲欧美日韩卡通动漫| 欧美日韩在线观看h| 免费av不卡在线播放| 日韩,欧美,国产一区二区三区| 成人午夜精彩视频在线观看| 成人美女网站在线观看视频| 老女人水多毛片| 亚洲精品乱码久久久v下载方式| 三级毛片av免费| 91久久精品国产一区二区成人| 久久这里只有精品中国| 蜜臀久久99精品久久宅男| 在线a可以看的网站| 伊人久久精品亚洲午夜| 秋霞伦理黄片| av在线老鸭窝| 亚洲av电影不卡..在线观看| 午夜激情福利司机影院| 一本一本综合久久| 午夜福利在线观看吧| 国产一区二区亚洲精品在线观看| av免费在线看不卡| 久久久久精品久久久久真实原创| 亚洲精品视频女| 欧美区成人在线视频| 女人久久www免费人成看片| 国产男人的电影天堂91| 国产精品一区二区三区四区免费观看| 色网站视频免费| 美女脱内裤让男人舔精品视频| 国产伦精品一区二区三区四那| 国产色爽女视频免费观看| 成人美女网站在线观看视频| 亚洲性久久影院| 高清午夜精品一区二区三区| 日日啪夜夜撸| 热99在线观看视频| 日本午夜av视频| 国产成人精品久久久久久| 精品国产露脸久久av麻豆 | 国产午夜福利久久久久久| h日本视频在线播放| 亚洲欧美一区二区三区黑人 | 蜜桃亚洲精品一区二区三区| 高清毛片免费看| 蜜桃久久精品国产亚洲av| 久99久视频精品免费| 日韩一区二区三区影片| 精品久久久久久久久久久久久| 日韩一区二区视频免费看| 精品一区二区三卡| 99热这里只有精品一区| 亚洲精品影视一区二区三区av| 两个人视频免费观看高清| 免费观看无遮挡的男女| 美女cb高潮喷水在线观看| 久久99热6这里只有精品| 别揉我奶头 嗯啊视频| 亚洲精品乱码久久久久久按摩| 精品不卡国产一区二区三区| 亚洲精品aⅴ在线观看| 久久99精品国语久久久| 免费播放大片免费观看视频在线观看| 亚洲国产精品sss在线观看| 亚洲成人av在线免费| 亚洲经典国产精华液单| 成年版毛片免费区| 国产成人freesex在线| 尾随美女入室| 日韩成人伦理影院| a级一级毛片免费在线观看| 亚洲丝袜综合中文字幕| 又黄又爽又刺激的免费视频.| 国产综合懂色| 伦精品一区二区三区| 亚洲欧美精品自产自拍| 亚洲精华国产精华液的使用体验| 亚洲人成网站在线观看播放| 午夜福利成人在线免费观看| 中文字幕免费在线视频6| 欧美一级a爱片免费观看看| 亚洲欧美成人精品一区二区| 天堂影院成人在线观看| 久久精品国产鲁丝片午夜精品| 国产综合懂色| av在线亚洲专区| 精品熟女少妇av免费看| 精品人妻视频免费看| 中文精品一卡2卡3卡4更新| 亚洲内射少妇av| 一级片'在线观看视频| 床上黄色一级片| 少妇猛男粗大的猛烈进出视频 | 麻豆国产97在线/欧美| 亚洲av免费在线观看| 欧美另类一区| 中文天堂在线官网| 在线免费观看的www视频| 嫩草影院新地址| 久久久久精品性色| 99热这里只有精品一区| 国产伦精品一区二区三区四那| 最近中文字幕2019免费版| 神马国产精品三级电影在线观看| 亚洲av男天堂| 视频中文字幕在线观看| 亚洲综合精品二区| 色视频www国产| 尤物成人国产欧美一区二区三区| 小蜜桃在线观看免费完整版高清| .国产精品久久| 街头女战士在线观看网站| 国产一区亚洲一区在线观看| 我要看日韩黄色一级片| 欧美性感艳星| 在线 av 中文字幕| 亚洲精品中文字幕在线视频 | 国产黄色视频一区二区在线观看| 欧美高清性xxxxhd video| 99久久精品一区二区三区| 久久久欧美国产精品| 人人妻人人看人人澡| 欧美不卡视频在线免费观看| 人妻夜夜爽99麻豆av| 成人亚洲精品一区在线观看 | 国产伦精品一区二区三区视频9| 中文精品一卡2卡3卡4更新| 少妇裸体淫交视频免费看高清| 亚洲av免费高清在线观看| 如何舔出高潮| 国产日韩欧美在线精品| 欧美人与善性xxx| 国内少妇人妻偷人精品xxx网站| 五月伊人婷婷丁香| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲激情五月婷婷啪啪| 免费av毛片视频| 嫩草影院精品99| 精品一区二区三区视频在线| 久久久久久久大尺度免费视频| 国产成人a区在线观看| 日韩,欧美,国产一区二区三区| 亚洲第一区二区三区不卡| 国产真实伦视频高清在线观看| 亚洲av免费在线观看| 日日干狠狠操夜夜爽| 久久久久精品性色| 久久久久久久国产电影| 国产精品人妻久久久久久| av.在线天堂| 神马国产精品三级电影在线观看| 免费电影在线观看免费观看| 欧美zozozo另类| 麻豆乱淫一区二区| 亚洲在线观看片| 亚洲色图av天堂| 蜜臀久久99精品久久宅男| 两个人视频免费观看高清| 乱码一卡2卡4卡精品| 人妻夜夜爽99麻豆av| 有码 亚洲区| 亚洲av中文字字幕乱码综合| 麻豆久久精品国产亚洲av| av又黄又爽大尺度在线免费看| 午夜福利在线观看吧| 国产伦精品一区二区三区四那| 久久国产乱子免费精品| 久久97久久精品| 国产亚洲av片在线观看秒播厂 | 久久久久精品久久久久真实原创| 最后的刺客免费高清国语| 乱码一卡2卡4卡精品| 三级男女做爰猛烈吃奶摸视频| 亚洲av成人精品一二三区| 亚洲欧美日韩卡通动漫| 女的被弄到高潮叫床怎么办| 搞女人的毛片| 哪个播放器可以免费观看大片| 男女边吃奶边做爰视频| 亚洲va在线va天堂va国产| 亚洲精品国产av蜜桃| 老司机影院毛片| 七月丁香在线播放| 欧美成人一区二区免费高清观看| 亚洲av在线观看美女高潮| 人妻制服诱惑在线中文字幕| 亚洲国产精品sss在线观看| 国产黄色小视频在线观看| 欧美 日韩 精品 国产| 亚洲欧美一区二区三区黑人 | 久久久久久久久久久丰满| 国产一级毛片七仙女欲春2| 又粗又硬又长又爽又黄的视频| 51国产日韩欧美| 91狼人影院| www.色视频.com| 亚洲国产精品成人久久小说| 日韩国内少妇激情av| 久久久久久伊人网av| 国产精品熟女久久久久浪| 日日啪夜夜爽| 国产高清不卡午夜福利| 色综合站精品国产| 日本黄色片子视频| 国产毛片a区久久久久| 国产成人精品婷婷| 久久草成人影院| 一个人看的www免费观看视频| 国产成人91sexporn| 成年人午夜在线观看视频 | 伦精品一区二区三区| 国产三级在线视频| 日本免费a在线| 别揉我奶头 嗯啊视频| 三级经典国产精品| 日韩制服骚丝袜av| 69av精品久久久久久| 91精品国产九色| 久久久久久久久中文| 永久网站在线| 亚洲精品色激情综合| 18禁在线无遮挡免费观看视频| 欧美日韩亚洲高清精品| 啦啦啦韩国在线观看视频| 三级国产精品欧美在线观看| 99久久中文字幕三级久久日本| 久久综合国产亚洲精品| 51国产日韩欧美| 在线观看人妻少妇| 国产精品.久久久| 中文天堂在线官网| 国产成人福利小说| 三级毛片av免费| 久久久欧美国产精品| 欧美日韩在线观看h| 免费看美女性在线毛片视频| 中文字幕人妻熟人妻熟丝袜美| 男女啪啪激烈高潮av片| 搡老妇女老女人老熟妇| 亚洲美女搞黄在线观看| 大话2 男鬼变身卡| 99九九线精品视频在线观看视频| 亚洲久久久久久中文字幕| 寂寞人妻少妇视频99o| 亚洲av电影在线观看一区二区三区 | 精品国产一区二区三区久久久樱花 | 亚洲av一区综合| 蜜桃亚洲精品一区二区三区| av福利片在线观看| 七月丁香在线播放| 亚洲成人久久爱视频| 欧美激情国产日韩精品一区| 97超视频在线观看视频| 国产乱来视频区| 白带黄色成豆腐渣| 国产精品一区二区三区四区久久| 亚洲精品456在线播放app| h日本视频在线播放| 国产成人91sexporn| 2021少妇久久久久久久久久久| 99久久精品一区二区三区| 日本色播在线视频| 能在线免费看毛片的网站| 真实男女啪啪啪动态图| 熟女电影av网| 少妇裸体淫交视频免费看高清| 国产一区有黄有色的免费视频 | 久久精品久久精品一区二区三区| 特大巨黑吊av在线直播| 看十八女毛片水多多多| 又大又黄又爽视频免费| 午夜免费激情av| 欧美潮喷喷水| 中文欧美无线码| 欧美日韩视频高清一区二区三区二| 日日摸夜夜添夜夜爱| 女的被弄到高潮叫床怎么办| 一个人看视频在线观看www免费| 亚洲真实伦在线观看| 激情五月婷婷亚洲| 午夜激情福利司机影院| 午夜视频国产福利| 久久国产乱子免费精品| 69av精品久久久久久| 国产精品福利在线免费观看| 91aial.com中文字幕在线观看| 性插视频无遮挡在线免费观看| 精品一区二区三卡| 亚洲精品aⅴ在线观看| 天美传媒精品一区二区| 老师上课跳d突然被开到最大视频| 欧美三级亚洲精品| 夫妻午夜视频| 亚洲av不卡在线观看| 美女脱内裤让男人舔精品视频| 日韩强制内射视频| 欧美极品一区二区三区四区| 久久久久国产网址| 亚洲精品色激情综合| 韩国av在线不卡| 一个人看视频在线观看www免费| 看非洲黑人一级黄片| 亚洲av电影在线观看一区二区三区 | 91aial.com中文字幕在线观看| 欧美性猛交╳xxx乱大交人| 三级国产精品片| 日本熟妇午夜| 久久久久精品久久久久真实原创| 好男人视频免费观看在线| 别揉我奶头 嗯啊视频| 九九在线视频观看精品| 久久久久久久久久黄片| 插阴视频在线观看视频| 精品久久久久久久久久久久久| 国产熟女欧美一区二区| 五月玫瑰六月丁香| 成年人午夜在线观看视频 | 免费av不卡在线播放| 亚洲欧美成人综合另类久久久| videossex国产| 国产成人精品一,二区| 身体一侧抽搐| 午夜亚洲福利在线播放| 亚洲精品456在线播放app| 网址你懂的国产日韩在线| 亚州av有码| 亚洲欧美一区二区三区国产| 亚洲精品一二三| 色综合亚洲欧美另类图片| 国产精品嫩草影院av在线观看| 免费看不卡的av| 看非洲黑人一级黄片| 日日干狠狠操夜夜爽| av黄色大香蕉| 久久精品人妻少妇| 国产高清国产精品国产三级 | 麻豆久久精品国产亚洲av| 色综合站精品国产| 成人鲁丝片一二三区免费| 大香蕉久久网| 有码 亚洲区| 欧美成人精品欧美一级黄| 国产男女超爽视频在线观看| 亚洲一级一片aⅴ在线观看| 能在线免费观看的黄片| 亚洲无线观看免费| 婷婷六月久久综合丁香| 国产片特级美女逼逼视频| 中文资源天堂在线| 最近最新中文字幕免费大全7| 亚洲成人久久爱视频| 成年版毛片免费区| 亚洲熟妇中文字幕五十中出| 国产视频内射| 少妇熟女aⅴ在线视频| 亚洲av日韩在线播放| 日日啪夜夜爽| 国产黄色免费在线视频| 男女视频在线观看网站免费| 乱码一卡2卡4卡精品| 日产精品乱码卡一卡2卡三| 午夜福利视频精品| 国产探花在线观看一区二区| 亚洲色图av天堂| 国产精品av视频在线免费观看| 亚洲欧美清纯卡通| 久久久欧美国产精品| 菩萨蛮人人尽说江南好唐韦庄| 精品一区二区三区视频在线| 精品少妇黑人巨大在线播放| 久久久久久久久久黄片| 国产乱来视频区| 欧美区成人在线视频| 亚洲精品国产成人久久av| 狠狠精品人妻久久久久久综合| 寂寞人妻少妇视频99o| 国产综合精华液| 丝袜喷水一区| 97人妻精品一区二区三区麻豆| 国产片特级美女逼逼视频| 十八禁网站网址无遮挡 | 男女边摸边吃奶| 一个人免费在线观看电影| 亚洲三级黄色毛片| 国产av在哪里看| 亚洲va在线va天堂va国产| 国产精品99久久久久久久久| 免费电影在线观看免费观看| 成人二区视频| 一区二区三区高清视频在线| 毛片一级片免费看久久久久| 中文字幕av在线有码专区| 亚洲美女视频黄频| 男人和女人高潮做爰伦理| 国产黄片美女视频| 嫩草影院精品99| 免费少妇av软件| 国产免费一级a男人的天堂| 国产亚洲最大av| 极品少妇高潮喷水抽搐| 国产精品国产三级专区第一集| 一区二区三区乱码不卡18| 中文资源天堂在线| 亚洲一级一片aⅴ在线观看| 婷婷色av中文字幕| 三级国产精品欧美在线观看| 女人十人毛片免费观看3o分钟| 日韩电影二区| 亚洲av成人精品一二三区| 免费黄色在线免费观看| 高清午夜精品一区二区三区| 一级二级三级毛片免费看| 十八禁国产超污无遮挡网站| 日韩精品有码人妻一区| a级毛色黄片| 日本-黄色视频高清免费观看| 一级毛片久久久久久久久女| 国产淫语在线视频| 日韩不卡一区二区三区视频在线| 亚洲国产精品成人久久小说| 老司机影院毛片| 夫妻性生交免费视频一级片| 九色成人免费人妻av| 在线观看人妻少妇| 3wmmmm亚洲av在线观看| 精品人妻熟女av久视频| 日本免费在线观看一区| 最近中文字幕高清免费大全6| 久久久久免费精品人妻一区二区| 久久人人爽人人爽人人片va| 日本三级黄在线观看| 亚洲伊人久久精品综合| 蜜桃亚洲精品一区二区三区| 国产午夜福利久久久久久| 亚洲欧美日韩卡通动漫| kizo精华| 亚洲精品乱久久久久久| 亚洲av电影不卡..在线观看| 亚洲精品乱码久久久久久按摩| 亚洲四区av| 亚洲色图av天堂| 免费看美女性在线毛片视频| a级一级毛片免费在线观看| 国产精品人妻久久久影院| 尤物成人国产欧美一区二区三区| 中文欧美无线码| 非洲黑人性xxxx精品又粗又长| 人妻夜夜爽99麻豆av| 99久久精品国产国产毛片| 国内精品一区二区在线观看| 哪个播放器可以免费观看大片| 久久久久性生活片| 91久久精品电影网| 一本久久精品| 网址你懂的国产日韩在线| 在线观看美女被高潮喷水网站| 天堂av国产一区二区熟女人妻| 国产一区亚洲一区在线观看| 国产在线一区二区三区精| 97人妻精品一区二区三区麻豆| 三级国产精品片| 久久久亚洲精品成人影院| 国模一区二区三区四区视频| 网址你懂的国产日韩在线| 嫩草影院新地址| 尾随美女入室| 国产高清国产精品国产三级 | 草草在线视频免费看| 国产一级毛片在线| 人人妻人人澡欧美一区二区| 久99久视频精品免费| 永久网站在线| 午夜免费激情av| .国产精品久久| 国产av国产精品国产| 国产伦在线观看视频一区| 天堂√8在线中文| 午夜精品一区二区三区免费看| 亚洲av.av天堂| videos熟女内射| 国产成人免费观看mmmm| 久久精品国产鲁丝片午夜精品| 26uuu在线亚洲综合色| 18禁裸乳无遮挡免费网站照片| 日本-黄色视频高清免费观看| av女优亚洲男人天堂| 日日啪夜夜撸| 国产精品蜜桃在线观看| 一级毛片 在线播放| 99久久精品一区二区三区| 校园人妻丝袜中文字幕| 黄色配什么色好看| 天天躁日日操中文字幕| 欧美xxⅹ黑人| 国产麻豆成人av免费视频| 22中文网久久字幕| 在线免费观看不下载黄p国产| 国产黄色免费在线视频| 最近2019中文字幕mv第一页| ponron亚洲| 青春草国产在线视频| 久久精品国产自在天天线| 欧美高清性xxxxhd video| 久久久久久久久大av| 中文字幕人妻熟人妻熟丝袜美| 一级毛片 在线播放| 欧美97在线视频| 国产av不卡久久| 日韩一区二区视频免费看| 亚洲精品国产成人久久av| 午夜免费男女啪啪视频观看| 18禁在线播放成人免费| 九草在线视频观看| 久久6这里有精品| 欧美xxⅹ黑人| 日韩一区二区三区影片| 少妇丰满av| 高清在线视频一区二区三区| 亚洲伊人久久精品综合| 联通29元200g的流量卡| av一本久久久久| 少妇熟女aⅴ在线视频|