• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nonlinear Waves on Localized and Periodic Backgrounds with Time-Space Modulation?

    2018-01-24 06:23:01MeiKunLiu劉美坤ZhanYingYang楊戰(zhàn)營andWenLiYang楊文力SchoolofPhysicsNorthwestUniversityXian710069China
    Communications in Theoretical Physics 2017年5期

    Mei-Kun Liu(劉美坤),Zhan-Ying Yang(楊戰(zhàn)營),,? and Wen-Li Yang(楊文力)School of Physics,Northwest University,Xi’an 710069,China

    2Shannxi Key Laboratory for Theoretical Physics Frontiers,Xi’an 710069,China

    3Institute of Modern Physics,Northwest University,Xi’an 710069,China

    1 Introduction

    Nonlinear waves on a plane-wave background become a subject of intense research in nonlinear physics,ranging from nonlinear optics,Bose–Einstein Condensates(BECs),magnetics,plasmas,super fluid,et al.[1?9]These localized waves evolving on a nonvanishing background exactly describe the dynamical growth of perturbations on a plane-wave related to the nonlinear modulation instability.This includes Akhmediev breathers,[10]Kuznetsov–Ma breathers,[11]and the Peregrine(rational)rogue waves,[12]which are now considered the simplest models to describe the growth and decay of isolated steep wave events,i.e.,rogue waves,in nonlinear dispersive systems.[13?14]Especially,significant progress has been made on the experimental verification of these unique nonlinear structures in fiber optics,[15?17]in water tank,[18]and in plasma systems.[19]On the other hand,the utility of these waves based on their special properties in generating high-quality pulse trains,[20]high-power pulses,[21]breatherlike solitons,[22]nonlinear Talbot effects,[23]and the Peregrine comb[24]has been revealed.

    However,in practice,the simple solution on an ideal plane-wave background may be not as adequately representative of reality as commonly thought.Indeed,a plane wave is an in finite-width background that corresponds to extreme high background powers.Therefore,from the application and technical points of view,the study on nonlinear waves on a finitewidth background is of practical importance.Recently,the excitation of Peregrine rogue waves on Gaussian and Sech-shaped backgrounds has been investigated.[25?26]It has been shown that the characteristics of Peregrine rogue waves are maintained.However,the breathers,which are more general waves,have not been studied on a finitewidth background so far.On the other hand,a plane wave,upon which these solutions are built,is simply a limiting cases of the periodic waves.From a statistical perspective,these periodic oscillations appear far more common in the ocean than any idealised background with constant amplitude.In fact,in the experiment of water tank,the rogue waves are excited on a regular wave train.[27]It is also not uncommon for an optical periodic wave to appear in a fiber as a regular train of solitonic pulses.[28]Indeed,recent experiments in optical fiber demonstrated the propagation of periodic waves in a stable manner.[29]

    In this paper,we study the general nonlinear waves generation on finitewidth(localized)and periodic backgrounds.We present a general family of analytical solutions for the generalized nonlinear Schr?dinger equation with time-space modulation via the method of a combination of the Darboux transformation and similarity transformation. Nonlinear waves on different localized and periodic backgrounds depending on the corresponding nonlinearity modulations are obtained.In particular,we demonstrate the existence and property of localized modes on a double-periodic background under a special designed optical lattice potential.

    2 Model and Analytical Solutions

    We study nonlinear waves on localized and periodic backgrounds by a generalized nonlinear Schr?dinger equation(NLSE)with time-space modulation variable coeff-cients,which is given by

    whereψ(x,t)is a complex function,xrepresents the distribution direction andtrepresents the evolution direction.f(x,t)is the dispersion coeffcient andg(x,t)is the nonlinearity management parameter.V(x,t)denotes the external potential andγ(x,t)is the gain(or loss)term.In fact,model(1)is a generalized nonautonomous NLSE given in Ref.[30].The integrability of the nonautonomous NLSE have been studied in Ref.[31].The properties of solutions of two kinds of non-isospectral nonautonomous NLSE have been discussed in Ref.[32].The dynamics of standard solitons(i.e.,bright and dark structures)have been studied in Ref.[33].In particular,dynamics of rogue waves and breathers in Eq.(1)have been studied recently in Refs.[34–38].If these variable coeffcients are functions only related tot,we can present rogue wave and breathers in BECs,which are similar to the results in Refs.[35–36].Moreover,with some higher-order effects added in Eq.(1),the rogue wave management in a fiber is studied.[37]If these variable coeffcients are functions only related tox,the rogue wave management has been studied in Ref.[38].On the other hand,one should note that optical rogue waves in the generalized higher-order NLSE with time-space modulation have been studied in Ref.[39].Moreover,the standard solitons in Eq.(1)with quintic nonlinearity have been demonstrated in Ref.[40].In the following,we will present the exact general solution,which describes rogue waves and breathers on different backgrounds.

    We assume that the form of a solution of Eq.(1)as follows

    whereρ(x,t),?(x,t),X(x,t),T(t)are real variable functions.ρ(x,t)and?(x,t)are amplitude and phase of the nonlinear localized waves,respectively.Φ(X,T)is the solution of the NLSE

    where the contained parameters satisfy the constraint condition

    The subscripts denote the partial derivative respect toxort.From the partial differential equations and the con-straint conditions,we can obtain the amplitudeρ(x,t)=√the phasethe dispersion coeffcientf(x,t)=(1/2)aα?2F?2,the gain(or loss)term

    hereais a function that depends ontandT0is a real constant.Furthermore,the expression of the potential is given

    with

    Using similarity transformation,we can obtain the exact solution of Eq.(1),

    Aandωrepresent the amplitude and frequency of the background,respectively.b1anda1are arbitrary constant parameters.

    The breather is a localized solution with temporally and/or spatially periodic structures having constant background exhibiting internal oscillations and bound states of nonlinear wave packets.[41]The unified solution(7)describes abundant different types nonlinear localized waves with different parameters,including Kuznetsov–Ma(KM)breather,Akhmediev breather(AB)and rogue wave.

    In the case ofν=0,andσ=0,the general breather becomes to KM breather,which is periodic in the evolution direction and localized in the distribution direction.The form of the KM breather can be given by

    The rogue wave can be obtained by taking the limitsandσ=0.In this case,Eq.(7)reduces to the following form

    3 Nonlinear Waves on Localized Backgrounds

    Most of the theoretical studies focus on the rogue waveand breatherssolutionson plane-wavebackgrounds.[2?5,42?46]In practice,the ideal plane-wave background are non-existent.Therefore,from the application and technical points of view,the study on nonlinear waves on localized background is of practical importance.We have nonlinear term manipulation to achieve the purpose of controlling the nonlinear wave.The nonlinearity coeffcient can be controlled by suitably managing the parametersα(t),F(?),anda(t),we are explaining it by considering the following two kinds of situations in below.

    3.1 The Evolution-Direction Localized Background

    For the evolution direction localized background,we choose the nonlinearity coeffcient as

    wherec0is an arbitrarily constant.In this case,the dispersion,gain,and potential should be chosen asf=const.γ= ?at/2a?αtx/α,V(x,t)=whereα(t)=c0sech(c0t),a(t)=α2.

    In Fig.1,we plot the rogue wave and breathers on the evolution direction localized background,here the potential is the space-quadratic potential in Fig.1(e).Whent→0,the amplitude of background gradually increases in the evolution direction.As show in Fig.1(a),rogue wave becomes more and more localized in the evolution direction.At this time,the AB and the general breather have stretching occurs in distribution direction,which show in Figs.1(b)and 1(c).Unlike the AB and the general breather,the KM breather is localized in bothtandx,the periodically of the KM breather in the evolution direction completely destroyed(see the wave in Fig.1(d)).Interestingly,as increasing thec0,the background get more localized in the evolution direction and the amplitude of the nonlinear waves are increased.

    Fig.1 (Color online)Density plot of RW and breathers|ψ|on the evolution direction localized background.(a)Rogue wave with c0=1,A=1/2,ω=0.(b)The Kuznetsov–Ma breather with c0=3/2,b1=2,A=1,ω=0. (c)The Akhmediev breather with c0=1,A=3/2,b1=1/2,ω=0.(d)The general breather with c0=1,b1=3/2,A=1/2,ω=0,a1=1/2.(e)The potential with c0=1.Other parameter is T0=0.

    3.2 The Distribution-Direction Localized Background

    For the distribution direction localized background,we choose the nonlinear coeffcient

    where?=αx,and

    withμ∈ (?1,1),ω0∈R.Remarkably,depending on the different choices ofμ,there are two cases to consider as follows:

    (i)Whenμ=0,the nonlinearity coeffcient

    In this case,the dispersion,gain,and potential should be selected as

    Fig.2 (Color online)Density plot of rogue wave and breathers|ψ|on distribution direction localized background.(a)Evolution of rogue wave solution.(b)The Kuznetsov–Ma breather with b1=3/2.(c)The Akhmediev breather with b1=1/2.(d)The general breather with b1=3/2,a1=1/2.(e)Plot of the potential given with b=6.Others are A=1,ω=0,b=6,T0=0.

    Figures 2(a),2(b),2(c),and 2(d)demonstrate the intensity profiles of rogue wave,KM breather,AB and the general breather on the distribution direction localized background,respectively.The potential is like a potential barrier,which shows in Fig.2(e).Figure 2(a)shows the evolution of the rogue wave,which is localized in both two spatial directions on distribution direction localized background.It has been demonstrated that the characteristics of rogue wave(a high amplitude and double localization)are maintained on distribution direction localized background.Figure 2(b)shows that KM breather is periodic intand localized inxon distribution direction localized background.It should note that the characteristics of the KM breather on the distribution direction localized background is similar to the one on the plan wave background.Figures 2(c)and 2(d)show the amplitude of AB and general breather decrease with the amplitude of background decreasing,which fully disappears atx→±∞.

    (ii)Ifμ/=0,the nonlinearity coeffcient

    The external potential is a complex function of trigonometric function and exponential function.The dispersion management and the gain(or loss)term parameterand

    Fig.3 (Color online)Density plot of RW and breathers|ψ|.(a)Rogue wave with μ =1/2,ω0=3/2,b=4,A=1,ω =0.(b)The Kuznetsov–Ma breather withμ =1/2,ω0=1,b=6,A=1,b1=3/2,ω =0.(c)The Akhmediev breather withμ =0.3,ω0=1,b=6,A=1,b1=1/2,ω=0.(d)The general breather solution forμ =0.3,ω0=1,b=6,A=1,b1=1/2,ω =0,a1=1/2.(e)Plot of the potential with b=6,μ=0.5,ω0=1.Other parameter is T0=0.

    In the case of Fig.3(e),this potential periodically varies in time and localized in space with attractive and expulsive characteristics.[47]As depicted in Fig.3(a),the rogue wave is localized in both time and space,which is located at(x,t)=(0,0).Figure 3(b)shows that the KM breather has many peaks of varying magnitudes in the evolution direction.In particularly,the contours of each envelope is changed.As show in Figs.3(c)and 3(d),the AB and the general breather are spatially periodic and localized in time.It is clear that the peaks of AB and the general breather have a big stretching in space,which is different with the KM breather.It should be note that the general breather can be seen as an AB with a velocity.Furthermore,whenx→0,the peaks of AB and the general breather increase gradually with the amplitude of background increasing.

    4 Nonlinear Waves on Periodic Backgrounds

    As we mentioned above,periodic oscillations appear far more common in the nonlinear physical system from a statistical perspective.In this section,we will systematically study the general nonlinear waves on single-and double-periodic backgrounds(i.e.,the optical lattice background).The latter is an important platform for the trapping and manipulation of BECs.[48?49]

    4.1 The Single-Periodic Background(g=1)

    We consider that the case of the nonlinearity coeffcient is constant.We chooseα=1,F=1 and

    witha0∈ (?1,1)andω1∈R.In this case,the dispersion,gain(or loss)term and potential should be elected asf=a/2,γ= ?at/2a,andV=0.Ifa0=0,the coeffcients of Eq.(1)are all constants.Equation(1)then reduces to the standard NLS equation,which leads to the standard rogue waves and breathers solutions to Eq.(3).Equation(1)in the above two cases is important both in nonlinear optics and BECs.[36]

    In Fig.4,we plot the rogue wave and breathers on single periodic background in the case ofg=1.As can be seen from Fig.4(a),the structure of rogue wave has two valleys placed on both sides of the peak on single periodic background.In Fig.4(b),because of the ratio between the amplitude of the background and the amplitude of nonlinear waves are constant,the KM breather has many peaks of varying magnitudes in the evolution direction.In Fig.4(c),the AB on the single periodic background is similar to the one on the plan wave background.Figure 4(d)illustrates the behavior of the general breather on the single periodic background.In this situation,the structure of the general breather is basically ruined.

    4.2 The Single-Periodic Background(g/=1)

    Fig.5 (Color online)Density plot of solutions|ψ|.(a)Rogue wave with A=0.7,ω =0.(b)The Kuznetsov–Ma breather with b1=2,A=1,ω =0.(c)The Akhmediev breather b1=0.7,A=1,ω =0.(d)The general breather with A=1,b1=1/2,?=0,μ=1/2.(e)The potential withμ=1/2,ω0=1.Others areμ=1/2,ω0=1,T0=0.

    For the singly-periodic background,we choose the nonlinearity coeffcient as

    whereFandaas constant,andαis the trigonometric form mentioned in Eq.(13). The dispersion and gain(or loss)term should be chosen asf=1/2α2andγ= ?αtx/α.The potential is form of time trigonometric function.

    In Fig.5,we plot the dynamics of rogue wave and breathers wave on single periodic background in the case ofg/=1.Figure 5(e)shows that the potential changes from attractive to expulsive behavior periodically.[47]As depicted in Fig.5(a),the structure of rogue wave is different from Fig.4(a).The peak of the rogue wave has a big stretching in evolution direction but the valley has not changed.As show in Fig.3(b),the KM breather is identical to the caseg=1.The AB seem like a periodic rogue wave in distribution direction in Fig.5(c).Figure 5(d)shows that the structure of the general breather is basically ruined.

    4.3 The Double-Periodic Background

    For the double-periodic background,we choose the nonlinearity coeffcient as

    whereF=1/(v+v0cosω2?),α=1 anda(t)to be the function of the trigonometric form as noted in Eq.(16)withv0∈ (?v,v),ω2∈R.vis real constant.With this,we can find the dispersionf=a/2F2and gain(or loss)termγ= ?at/2a.The lattice potential is the trigonometric function of time.However,there are few studies on the transportation of rogue wave and breathers in the lattice potential.Base on this research,we will show how rogue wave and breathers propagate on the doubleperiodic background.

    In Figs.6(a)–6(d)show the dynamics of the rogue wave and breathers on double periodic background.In Fig.6(a),the single structure of rogue wave is similar to Fig.4(a),but the rogue wave in Fig.6(a)is periodic in distribution direction.Interestingly,the characteristics of KM breather in one period in Fig.6(b)is similar to the KM breather in Fig.4.The KM breather periodically appeared both in the evolution direction and the distribution direction.The peak of AB is not equal in a lattice in Fig.6(c).As shown in Fig.6(d),The general breather can be seen as a tilted AB in a lattice.

    Fig.6 (Color online)Evolution of the rogue wave and breathers|ψ|on optical lattice background.(a)Rogue wave with v=3,a0=A=1/2,ω =0,T0= ?4.(b)The Kuznetsov–Ma breather with v=3,a0=1/2,A=1,b1=3/2,ω =0,T0= ?4.(c)The Akhmediev breather with v=1,a0=b1=1/2,A=1,ω=0,T0=0.(d)The general breather solution T0=?14,v=1,a0=a1=1/2,A=0.8,b1=0.3,ω=0.(e)The potential with v=1,a0=0.8.Others are v0= ω1= ω2=1/2.

    5 Conclusions

    We have obtained one family of analytical nonlinear localized wave solution for the generalized NLSE with timespace modulation via the method of a combination of the Darboux transformation and similarity transformation.By choosing special forms of the nonlinearityg(x,t),a simple procedure has been established to obtain localized wave solutions on different backgrounds.The solutions exist under certain conditions and impose constraints on the coeffcients depicting dispersion,nonlinearity,gain(or loss),and external potential.We have demonstrated rogue wave and breathers on different localized and periodic backgrounds depending on the corresponding nonlinearity modulations.In particular,the existence and property of localized modes on a double-periodic background under a special designed optical lattice potential were revealed.These results could be of great interest in realizing rogue waves and breathers on different backgrounds in physical systems such as nonlinear optics and Bose–Einstein condensates.

    [1]D.J.Kedziora,A.Ankiewicz,and N.Akhmediev,Phys.Rev.E 88(2013)013207.

    [2]B.L.Guo,L.Ling,and Q.P.Liu,Phys.Rev.E 85(2012)026607.

    [3]L.C.Zhao,G.G,Xin,and Z.Y.Yang,Phys.Rev.E 90(2014)022918.

    [4]L.C.Zhao,C.Liu,and Z.Y.Yang,Commun.Nonlinear Sci.20(2015)9.

    [5]C.Liu,Z.Y.Yang,L.C.Zhao,et al.,Ann.Phys.362(2015)130.

    [6]S.Loomba,R.Gupta,K.K.De,et al.,Opt.Fiber Technol.21(2015)20.

    [7]N.Akhmediev,J.M.Soto-Crespob,N.Devinea,and N.P.Hoffmann,Phys.D 294(2015)37.

    [8]G.Mu,Z.Qin,et al.,SIAM J.Appl.Math.75(2015)1.

    [9]Z.Y.Yan,Commun.Theor.Phys.54(2010)947.

    [10]N.N.Akhmediev and V.I.Korneev,Theor.Math.Phys.69(1986)1089.

    [11]E.Kuznetsov,A.Akademiia,Nauk SSSR Doklady.236(1977)575;Y.C.Ma,Studies in Applied Mathematics 60(1979)43.

    [12]D.H.Peregrine,Appl.Math.25(1983)16.

    [13]S.A.Chin,O.A.Ashour,S.N.Nikoli,et al.,Nonlinear Sci.1611(2016)02753.

    [14]L.C.Zhao and L.Ling,J.Opt.Soc.Am.B 33(2016)850.

    [15]D.R.Solli,C.Ropers,P.Koonath,and B.Jalali,Nature 450(2007)1054.

    [16]B.Kibler,J.Fatome,C.Finot,G.Millot,F.Dias,G.Genty,N.Akhmediev,and J.M.Dudley,Nat.Phys.6(2010)790.

    [17]J.M.Dudley,G.Genty,and B.J.Eggleton,Opt.Exp.16(2008)3644.

    [18]A.Chabchoub,N.P.Hoffmann,and N.Akhmediev,Phys.Rev.Lett.106(2011)204502.

    [19]H.Bailung,S.K.Sharma,and Y.Nakamura,Phys.Rev.Lett.107(2011)255005.

    [20]J.Fatome,B.Kibler,and C.Finot,Opt.Lett.38(2013)1663.

    [21]Y.V.Bludov,V.V.Konotop,and N.Akhmediev,Opt.Lett.34(2009)3015.

    [22]G.Yang,L.Li,S.Jia,et al.,Rom.Rep.Phys.65(2013)391;G.Yang,L.Li,S.Jia,et al.,Rom.Rep.Phys.65(2013)902;G.Yang,Y.Wang,Z.Qin,et al.,Phys.Rev.E 90(2014)062909.

    [23]Y.Zhang,M.R.Belic,H.Zheng,et al.,Phys.Rev.E 89(2014)03290;Y.Zhang,M.R.Belic,M.S.Petrovic,et al.,Phys.Rev.E 91(2015)032916.

    [24]C.G.L.Tiofack,S.Coulibaly,M.Taki,et al.,Phys.Rev.A 92(2015)043837.

    [25]C.Liu,Z.Y.Yang,L.C.Zhao,et al.,Opt.Lett.39(2014)1057.

    [26]L.Duan,Z.Y.Yang,C.Liu,et al.,Chin.Phys.Lett.33(2016)010501.

    [27]A.Chabchoub,N.Hoffmann,M.Onorato,et al.,Phys.Rev.X 2(2012)011015.

    [28]D.J.Kedziora,A.Ankiewicz,and N.Akhmediev,Eur.Phys.J.Spec.Top.223(2014)43.

    [29]J.L.Shultz,G.J.Salamo,Phys.Rev.Lett.78(1997)855.

    [30]V.N.Serkin,A.Hasegawa,and T.L.Belyaeva,Phys.Rev.Lett.98(2007)074102.

    [31]J.S.He and Y.S.Li,Stud.Appl.Math.126(2011)1.

    [32]J.S.He,M.Ji,and Y.S.Li,Chin.Phys.Lett.24(2007)2157.

    [33]Z.Y.Yang,L.C.Zhao,T.Zhang,et al.,Phys.Rev.E 83(2011)066602;J.Opt.Soc.Am.B 28(2011)236;Opt.Commun.283(2010)3768;L.C.Zhao,Z.Y.Yang,et al.,Phys.Lett.A 375(2011)1839;Z.Y.Yang,L.C.Zhao,T.Zhang,et al.,Phys.Rev.A 81(2010)043826;C.Liu,Z.Y.Yang,W.L.Yang,and R.H.Yue,Commun.Theor.Phys.59(2013)311;C.Liu,Z.Y.Yang,M.Zhang,et al.,Commun.Theor.Phys.59(2013)703.

    [34]Y.Y.Wang,J.S.He,and Y.S.Li,Commun.Theor.Phys.56(2011)995;S.W.Xu,J.S.He,and L.H.Wang,Europhys.Lett.97(2012)30007;Y.S.Tao,J.S.He,and K.Porsezian,Chin.Phys.B 22(2013)074210.

    [35]J.S.He,E.G.Charalampidis,P.G.Kevrekidis,and D.J.Frantzeskakis,Phys.Lett.A 378(2014)577.

    [36]K.Manikandan,P.Muruganandam,M.Senthilvelan,and M.Lakshmanan,Phys.Rev.E 90(2014)062905.

    [37]J.S.HE,Y.S.Tao,K.Porsezian,and A.S.Focas,J.Nonlinear Math.Phys.20(2013)407.

    [38]W.P.Zhong,L.Chen,M.Beli,et al.,Phys.Rev.E 90(2014)043201.

    [39]Z.Yan and C.Dai,J.Opt.15(2013)064012.

    [40]J.R.He and H.M.Li,Phys.Rev.E 83(2011)066607.

    [41]D.Mandelik,H.S.Eisenberg,Y.Silberberg,R.Morandotti,and J.S.Aitchison,Phys.Rev.Lett.90(2003)253902.

    [42]C.Liu,Z.Y.Yang,L.C.Zhao,et al.,Phys.Rev.E 94(2016)042221.

    [43]C.Q.Dai and W.H.Huang,Appl.Math.Lett.32(2014)35.

    [44]L.Wang,M.Li,F.H.Qi,et al.,Eur.Phys.J.D 69(2015)1;L.Wang,X.Li,F.H.Qi,et al.,Ann.Phys.359(2015)97.

    [45]C.Liu,Z.Y.Yang,L.C.Zhao,et al.,Phys.Rev.E 91(2015)022904;C.Liu,Z.Y.Yang,L.C.Zhao,et al.,Phys.Rev.A 89(2014)055803.

    [46]R.Guo,H.H.Zhao,and Y.Wang,Nonlinear Dyn.83(2016)2475;R.Guo,Y.F.Liu,H.Q.Hao,et al.,Nonlinear Dynamics 80(2015)1221.

    [47]W.B.Cardoso,A.T.Avelar,and D.Bazeia,Phys.Lett.A 374(2010)2640.

    [48]I.Bloch,Nat.Phys.1(2005)23.

    [49]A.D.Cronin,J.Schmiedmayer,and D.E.Pritchard,Rev.Mod.Phys.81(2009)1051.

    精品久久久久久成人av| 国产黄色小视频在线观看| 成人三级黄色视频| 51国产日韩欧美| 午夜亚洲福利在线播放| 午夜福利视频1000在线观看| 亚洲欧美清纯卡通| 成年免费大片在线观看| 高清在线视频一区二区三区 | 91精品伊人久久大香线蕉| 亚洲aⅴ乱码一区二区在线播放| 97热精品久久久久久| 精品免费久久久久久久清纯| 国语对白做爰xxxⅹ性视频网站| 简卡轻食公司| 高清在线视频一区二区三区 | 高清视频免费观看一区二区 | 高清午夜精品一区二区三区| 亚洲乱码一区二区免费版| 日韩中字成人| 久久精品综合一区二区三区| 一区二区三区免费毛片| 午夜激情欧美在线| videos熟女内射| 国产探花在线观看一区二区| av在线亚洲专区| 精品酒店卫生间| 深夜a级毛片| 亚洲国产精品专区欧美| 听说在线观看完整版免费高清| av女优亚洲男人天堂| 男女那种视频在线观看| 精品一区二区三区人妻视频| 日本猛色少妇xxxxx猛交久久| 禁无遮挡网站| 夜夜爽夜夜爽视频| 国内少妇人妻偷人精品xxx网站| 久久久久久伊人网av| 久久韩国三级中文字幕| 精品人妻一区二区三区麻豆| 色网站视频免费| 久久精品久久久久久噜噜老黄 | 白带黄色成豆腐渣| 国产精品一及| 国产片特级美女逼逼视频| 老女人水多毛片| 人人妻人人澡人人爽人人夜夜 | 久久精品影院6| 性色avwww在线观看| 亚洲人成网站在线播| 久久鲁丝午夜福利片| 村上凉子中文字幕在线| av在线播放精品| 亚洲精品456在线播放app| av在线亚洲专区| 日产精品乱码卡一卡2卡三| 97在线视频观看| av女优亚洲男人天堂| 免费人成在线观看视频色| 我的老师免费观看完整版| 亚洲精品乱久久久久久| 久久久国产成人免费| 久久久精品大字幕| 在线观看av片永久免费下载| 最近视频中文字幕2019在线8| 欧美xxxx性猛交bbbb| 精品国内亚洲2022精品成人| 亚洲精品亚洲一区二区| 搡老妇女老女人老熟妇| 亚洲美女搞黄在线观看| 亚洲中文字幕日韩| 久久人人爽人人爽人人片va| 中文字幕精品亚洲无线码一区| a级一级毛片免费在线观看| 成年女人看的毛片在线观看| 久久久久久久午夜电影| 国产69精品久久久久777片| 欧美日韩国产亚洲二区| 亚洲av成人精品一二三区| 丝袜美腿在线中文| 亚洲国产成人一精品久久久| 在线天堂最新版资源| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 精品国产三级普通话版| 男人的好看免费观看在线视频| 中文在线观看免费www的网站| 中文亚洲av片在线观看爽| 日韩欧美三级三区| 国产成人aa在线观看| 小蜜桃在线观看免费完整版高清| 少妇人妻一区二区三区视频| videossex国产| 精品久久久久久久久久久久久| 人体艺术视频欧美日本| 国产一区二区亚洲精品在线观看| 91精品国产九色| 国产毛片a区久久久久| 国产不卡一卡二| 亚洲国产精品成人综合色| 蜜桃久久精品国产亚洲av| 三级经典国产精品| 中文精品一卡2卡3卡4更新| 国产老妇伦熟女老妇高清| 中文字幕久久专区| 国产三级在线视频| 色播亚洲综合网| 亚洲不卡免费看| 欧美日韩综合久久久久久| 99久久中文字幕三级久久日本| 男人的好看免费观看在线视频| 亚洲三级黄色毛片| 婷婷色麻豆天堂久久 | 亚洲成色77777| 久久久久久伊人网av| 午夜精品在线福利| av在线亚洲专区| 国产一区二区在线观看日韩| 精品一区二区三区视频在线| 波多野结衣巨乳人妻| 国产精品国产三级专区第一集| 18禁在线播放成人免费| 国产乱人偷精品视频| 日本-黄色视频高清免费观看| 97超视频在线观看视频| 国产精品一区www在线观看| 国产激情偷乱视频一区二区| 蜜臀久久99精品久久宅男| 亚洲欧美中文字幕日韩二区| 美女被艹到高潮喷水动态| 亚洲精品久久久久久婷婷小说 | 成人午夜精彩视频在线观看| 3wmmmm亚洲av在线观看| 在现免费观看毛片| 国产精品99久久久久久久久| 亚洲av男天堂| 99热6这里只有精品| 不卡视频在线观看欧美| 国产精品,欧美在线| av女优亚洲男人天堂| 91精品一卡2卡3卡4卡| 日本午夜av视频| 亚洲国产最新在线播放| 中文字幕av在线有码专区| 亚洲成人精品中文字幕电影| 欧美成人一区二区免费高清观看| 亚洲人成网站在线观看播放| 久久这里只有精品中国| 日韩 亚洲 欧美在线| 特级一级黄色大片| 美女黄网站色视频| 久久精品夜色国产| 亚洲成色77777| 中文精品一卡2卡3卡4更新| 少妇熟女欧美另类| av天堂中文字幕网| 变态另类丝袜制服| 国产91av在线免费观看| 身体一侧抽搐| 日日摸夜夜添夜夜爱| 日本一本二区三区精品| 亚洲精品成人久久久久久| 午夜老司机福利剧场| 精品国内亚洲2022精品成人| 少妇丰满av| 卡戴珊不雅视频在线播放| 国产成人a区在线观看| 蜜臀久久99精品久久宅男| 日韩av在线大香蕉| 午夜免费男女啪啪视频观看| 少妇丰满av| 午夜精品在线福利| 熟妇人妻久久中文字幕3abv| 亚洲精品乱久久久久久| 女的被弄到高潮叫床怎么办| 国产高潮美女av| 视频中文字幕在线观看| 久久精品熟女亚洲av麻豆精品 | 免费不卡的大黄色大毛片视频在线观看 | av又黄又爽大尺度在线免费看 | 亚洲中文字幕一区二区三区有码在线看| 97在线视频观看| 女的被弄到高潮叫床怎么办| 日韩av不卡免费在线播放| 91在线精品国自产拍蜜月| 国产高清三级在线| 亚洲真实伦在线观看| 免费搜索国产男女视频| 国产午夜精品一二区理论片| 免费av毛片视频| 国产美女午夜福利| 国产av码专区亚洲av| 一级毛片电影观看 | 日韩av在线免费看完整版不卡| 日本爱情动作片www.在线观看| 国产色爽女视频免费观看| 国产乱人视频| 一区二区三区免费毛片| 国产免费男女视频| 精品久久国产蜜桃| 老司机福利观看| av.在线天堂| 综合色av麻豆| 国产 一区 欧美 日韩| 男人舔奶头视频| 好男人视频免费观看在线| 欧美一级a爱片免费观看看| 蜜臀久久99精品久久宅男| videossex国产| 久久这里有精品视频免费| 在线观看一区二区三区| 国产乱来视频区| av天堂中文字幕网| 亚洲av一区综合| 午夜久久久久精精品| 一区二区三区高清视频在线| 久久6这里有精品| 国产欧美日韩精品一区二区| 久久亚洲精品不卡| 一级黄片播放器| 欧美最新免费一区二区三区| 免费观看人在逋| 丝袜喷水一区| 在线观看一区二区三区| 久久精品久久久久久久性| 在线观看66精品国产| 乱人视频在线观看| 国产激情偷乱视频一区二区| 日韩三级伦理在线观看| 老司机福利观看| 日本免费一区二区三区高清不卡| 91精品伊人久久大香线蕉| 小蜜桃在线观看免费完整版高清| 国产成年人精品一区二区| 久久久国产成人精品二区| 国产免费福利视频在线观看| 嫩草影院入口| 成人高潮视频无遮挡免费网站| 国产高清视频在线观看网站| 尤物成人国产欧美一区二区三区| 国产不卡一卡二| 亚洲人与动物交配视频| 欧美日韩一区二区视频在线观看视频在线 | 99热6这里只有精品| 精品不卡国产一区二区三区| 97在线视频观看| 国产精品一区www在线观看| 大香蕉久久网| 日韩三级伦理在线观看| 最近的中文字幕免费完整| 三级经典国产精品| 日本爱情动作片www.在线观看| 大又大粗又爽又黄少妇毛片口| 少妇丰满av| 国产中年淑女户外野战色| 老司机影院毛片| 国产精品女同一区二区软件| 中文字幕久久专区| 搡女人真爽免费视频火全软件| 51国产日韩欧美| 国产av码专区亚洲av| 日本av手机在线免费观看| 可以在线观看毛片的网站| 欧美bdsm另类| 美女高潮的动态| 边亲边吃奶的免费视频| 亚洲va在线va天堂va国产| 日本熟妇午夜| 欧美性猛交╳xxx乱大交人| 国产成人a区在线观看| 少妇被粗大猛烈的视频| 韩国高清视频一区二区三区| 神马国产精品三级电影在线观看| 丰满少妇做爰视频| 国内精品一区二区在线观看| 免费大片18禁| 青春草视频在线免费观看| 99视频精品全部免费 在线| 日韩成人av中文字幕在线观看| 精品国内亚洲2022精品成人| 亚洲自偷自拍三级| 尤物成人国产欧美一区二区三区| 日本色播在线视频| 麻豆av噜噜一区二区三区| 成人毛片60女人毛片免费| 午夜福利在线观看吧| 免费看光身美女| 国产亚洲最大av| 国产一区有黄有色的免费视频 | 久久精品夜夜夜夜夜久久蜜豆| videossex国产| 大又大粗又爽又黄少妇毛片口| 天天躁夜夜躁狠狠久久av| 天美传媒精品一区二区| 老师上课跳d突然被开到最大视频| 三级国产精品欧美在线观看| 成人漫画全彩无遮挡| 如何舔出高潮| 99视频精品全部免费 在线| 九色成人免费人妻av| 精品一区二区三区视频在线| 麻豆成人av视频| 日本wwww免费看| 大香蕉97超碰在线| 久久久欧美国产精品| 久久精品夜夜夜夜夜久久蜜豆| 91久久精品国产一区二区成人| 中文字幕人妻熟人妻熟丝袜美| 亚洲中文字幕一区二区三区有码在线看| 中文精品一卡2卡3卡4更新| 少妇熟女欧美另类| 一个人看视频在线观看www免费| 九色成人免费人妻av| 老女人水多毛片| 久久精品夜夜夜夜夜久久蜜豆| 成人二区视频| 成人三级黄色视频| 麻豆精品久久久久久蜜桃| 国产爱豆传媒在线观看| 禁无遮挡网站| 亚洲第一区二区三区不卡| av卡一久久| 看免费成人av毛片| 69人妻影院| 亚洲成av人片在线播放无| 国产精品人妻久久久影院| 别揉我奶头 嗯啊视频| 五月伊人婷婷丁香| 亚洲av不卡在线观看| 久久99精品国语久久久| 少妇熟女欧美另类| 亚洲精品亚洲一区二区| 久久人人爽人人片av| 中文天堂在线官网| 人妻少妇偷人精品九色| 午夜福利网站1000一区二区三区| 在现免费观看毛片| 精品熟女少妇av免费看| 国产精品熟女久久久久浪| 亚洲成人av在线免费| 国产成人a∨麻豆精品| 国内精品一区二区在线观看| 国产精品精品国产色婷婷| a级一级毛片免费在线观看| 久久人人爽人人爽人人片va| 成人一区二区视频在线观看| 有码 亚洲区| 国产又黄又爽又无遮挡在线| 亚洲精品色激情综合| 国产亚洲av片在线观看秒播厂 | 久久这里只有精品中国| 国产乱人偷精品视频| 日本wwww免费看| 亚洲久久久久久中文字幕| 国产精品福利在线免费观看| 国产精品一二三区在线看| 久久久亚洲精品成人影院| 麻豆成人午夜福利视频| 久久久久久九九精品二区国产| 亚洲欧美清纯卡通| 身体一侧抽搐| 水蜜桃什么品种好| 又粗又爽又猛毛片免费看| 欧美色视频一区免费| 国产极品精品免费视频能看的| 亚洲国产最新在线播放| 精品熟女少妇av免费看| 国产淫片久久久久久久久| av在线蜜桃| 大香蕉97超碰在线| 中文天堂在线官网| 国产中年淑女户外野战色| 日韩精品青青久久久久久| 少妇人妻精品综合一区二区| 亚洲精品日韩在线中文字幕| 久久久久性生活片| 只有这里有精品99| 91精品国产九色| 婷婷色综合大香蕉| 九九爱精品视频在线观看| 免费播放大片免费观看视频在线观看 | 国产伦理片在线播放av一区| 超碰av人人做人人爽久久| 国产成人一区二区在线| 女人十人毛片免费观看3o分钟| 伊人久久精品亚洲午夜| 国产免费视频播放在线视频 | 精品国产三级普通话版| 天堂影院成人在线观看| 国产精品国产三级国产av玫瑰| av黄色大香蕉| 亚洲精品乱久久久久久| 国产精品电影一区二区三区| 亚洲最大成人av| 久久久久免费精品人妻一区二区| 观看美女的网站| 高清视频免费观看一区二区 | 亚洲av电影不卡..在线观看| 色综合亚洲欧美另类图片| 午夜久久久久精精品| 丰满人妻一区二区三区视频av| av黄色大香蕉| 长腿黑丝高跟| 午夜免费男女啪啪视频观看| 一个人免费在线观看电影| 国产探花极品一区二区| 亚洲精品影视一区二区三区av| 亚洲成人av在线免费| 国产精华一区二区三区| 在线观看av片永久免费下载| 美女高潮的动态| 哪个播放器可以免费观看大片| 免费看日本二区| 男女下面进入的视频免费午夜| 亚洲国产精品久久男人天堂| 国产精品国产三级国产av玫瑰| 精品久久久噜噜| 变态另类丝袜制服| 久久久久免费精品人妻一区二区| 欧美激情在线99| .国产精品久久| 国产在视频线精品| 午夜福利高清视频| 欧美xxxx性猛交bbbb| 免费看a级黄色片| 99久国产av精品| 男人舔女人下体高潮全视频| 国产又黄又爽又无遮挡在线| 精品久久国产蜜桃| 久久久久久久久久成人| 亚洲精品影视一区二区三区av| 全区人妻精品视频| 人妻少妇偷人精品九色| 亚洲成人精品中文字幕电影| 别揉我奶头 嗯啊视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产亚洲精品久久久com| 亚洲欧美一区二区三区国产| 伦理电影大哥的女人| 一区二区三区免费毛片| 国产精品一区二区性色av| 国产亚洲精品久久久com| 亚洲成人av在线免费| 色播亚洲综合网| 国产精品人妻久久久久久| 噜噜噜噜噜久久久久久91| 美女被艹到高潮喷水动态| 亚洲国产欧洲综合997久久,| 色尼玛亚洲综合影院| 久久精品久久久久久噜噜老黄 | 日本色播在线视频| 色视频www国产| 亚洲av中文av极速乱| 欧美色视频一区免费| 亚洲国产高清在线一区二区三| 国产黄色小视频在线观看| 亚洲人成网站在线观看播放| 国产高清视频在线观看网站| 国产91av在线免费观看| 亚洲精品,欧美精品| 久久国内精品自在自线图片| 伦精品一区二区三区| 又粗又硬又长又爽又黄的视频| 精品久久久久久久久久久久久| 日韩欧美精品v在线| 18禁在线无遮挡免费观看视频| 高清视频免费观看一区二区 | 日本av手机在线免费观看| 成人欧美大片| 国产欧美另类精品又又久久亚洲欧美| 国产久久久一区二区三区| 深夜a级毛片| 中文乱码字字幕精品一区二区三区 | 国产高清三级在线| 最新中文字幕久久久久| 成人亚洲精品av一区二区| 久久久久久伊人网av| 亚洲丝袜综合中文字幕| 一夜夜www| 免费av不卡在线播放| 精品一区二区三区视频在线| 国产一区二区三区av在线| 亚洲国产精品国产精品| 国国产精品蜜臀av免费| 欧美激情久久久久久爽电影| 日本一二三区视频观看| 国产极品天堂在线| 精品99又大又爽又粗少妇毛片| 亚洲精品色激情综合| 亚洲成av人片在线播放无| 久久韩国三级中文字幕| 边亲边吃奶的免费视频| 99久国产av精品| 在线免费观看的www视频| 国产伦精品一区二区三区四那| 嫩草影院新地址| 你懂的网址亚洲精品在线观看 | 久久久久精品久久久久真实原创| 成人美女网站在线观看视频| 欧美性猛交╳xxx乱大交人| 人人妻人人澡人人爽人人夜夜 | 嘟嘟电影网在线观看| 久久99热这里只有精品18| 啦啦啦韩国在线观看视频| 免费大片18禁| 日本免费在线观看一区| 三级国产精品片| 精品久久久久久电影网 | 女人十人毛片免费观看3o分钟| 亚洲电影在线观看av| 国产精品国产三级国产专区5o | 久久这里有精品视频免费| 最近中文字幕高清免费大全6| 日本黄色视频三级网站网址| 青春草国产在线视频| 九九久久精品国产亚洲av麻豆| 国产欧美日韩精品一区二区| 欧美zozozo另类| 国产免费一级a男人的天堂| 一级av片app| 丰满人妻一区二区三区视频av| 91精品一卡2卡3卡4卡| 国产精品久久视频播放| 91久久精品电影网| 一卡2卡三卡四卡精品乱码亚洲| 亚洲熟妇中文字幕五十中出| 欧美+日韩+精品| 国产精华一区二区三区| 国产精品无大码| av在线老鸭窝| 亚洲av一区综合| 日本免费在线观看一区| 欧美3d第一页| 最近最新中文字幕免费大全7| 少妇的逼水好多| 日韩av在线大香蕉| 精品人妻偷拍中文字幕| 成人亚洲精品av一区二区| 一边亲一边摸免费视频| 亚洲欧美日韩东京热| 禁无遮挡网站| 91av网一区二区| 啦啦啦观看免费观看视频高清| 69人妻影院| 国产女主播在线喷水免费视频网站 | 欧美高清性xxxxhd video| 成年女人永久免费观看视频| 看十八女毛片水多多多| 三级毛片av免费| 精品一区二区免费观看| 亚洲国产日韩欧美精品在线观看| 一本久久精品| 日韩欧美精品v在线| 亚洲在线自拍视频| 久久精品久久精品一区二区三区| 永久免费av网站大全| 一卡2卡三卡四卡精品乱码亚洲| 色哟哟·www| 99久久九九国产精品国产免费| 亚洲欧美一区二区三区国产| 久久久成人免费电影| 小蜜桃在线观看免费完整版高清| videossex国产| av在线观看视频网站免费| 国产色爽女视频免费观看| 一个人免费在线观看电影| 人妻夜夜爽99麻豆av| 精品99又大又爽又粗少妇毛片| 久久精品综合一区二区三区| 在线a可以看的网站| 秋霞在线观看毛片| 国产私拍福利视频在线观看| 欧美+日韩+精品| 欧美色视频一区免费| 午夜a级毛片| 国产又色又爽无遮挡免| 性色avwww在线观看| 国产一区二区三区av在线| 中文字幕久久专区| 少妇猛男粗大的猛烈进出视频 | 国产免费福利视频在线观看| 午夜福利成人在线免费观看| 色综合站精品国产| 欧美最新免费一区二区三区| 午夜激情福利司机影院| 亚洲国产精品专区欧美| 欧美高清成人免费视频www| 国产精华一区二区三区| 精品久久久久久久久亚洲| 免费一级毛片在线播放高清视频| 99久久无色码亚洲精品果冻| 波多野结衣高清无吗| 日本一本二区三区精品| 69av精品久久久久久| 日韩人妻高清精品专区| 在线播放国产精品三级| 噜噜噜噜噜久久久久久91| 午夜福利在线观看免费完整高清在| 中文字幕亚洲精品专区| 国产精品爽爽va在线观看网站| 久久精品91蜜桃| 一卡2卡三卡四卡精品乱码亚洲| 国产精品爽爽va在线观看网站| 日本-黄色视频高清免费观看| 久久久久久久国产电影| 嫩草影院精品99| av.在线天堂| 精品99又大又爽又粗少妇毛片| 亚洲欧美成人综合另类久久久 | 国产不卡一卡二| av在线老鸭窝| 九九热线精品视视频播放| 成人高潮视频无遮挡免费网站| 久久韩国三级中文字幕| av在线蜜桃| 男人狂女人下面高潮的视频|