• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Effcient Numerical Solution of Nonlinear Hunter–Saxton Equation

    2018-01-24 06:22:52KouroshParandandMehdiDelkhoshDepartmentofComputerSciencesShahidBeheshtiUniversityTehranIran
    Communications in Theoretical Physics 2017年5期

    Kourosh Parandand Mehdi DelkhoshDepartment of Computer Sciences,Shahid Beheshti University,G.C.,Tehran,Iran

    2Department of Cognitive Modelling,Institute for Cognitive and Brain Sciences,Shahid Beheshti University,G.C.,Tehran,Iran

    Nomenclature

    u(x,t) unknown function t time position coordinate uˉ(x,t) the approximate solution x scaled coordinate ηFTnαbasis functionΦ(t)the vector of basis functions α the order of basis functionsηlength of the domain of function definition A unknown coeffcients vector K unknown coeffcients matrix m the number of basis functions E the maximum of the absolute error

    1 Introduction

    The nonlinear Hunter–Saxton equation is one of the partial differential equations that by some researchers is studied:

    wheretandxare time position and scaled coordinates,respectively.The structures of the problem,for the first time,are described by Hunter and Saxton in 1991 in their paper entitle “Dynamics of Director Fields”.[1]They have used this equation for studying a nonlinear instability in the direct field of a nematic liquid crystal,and have shown that smooth solutions of the asymptotic equation break down in finite time.

    The Hunter–Saxton equation also arises as the shortwave limit of the Camassa–Holm equation,[2]an integrable model the unidirectional propagation of shallow water waves over a flat bottom,[3]and the geodesic flow on the diffeomorphism group of the circle with a bi-Hamiltonian structure,[4]which is completely integrable.[5]

    or,equivalently,

    Because of the many applications of this equation has been studied by some researchers,such as Beals et al.[6]have obtained the inverse scattering solutions to this equation,Penskoi[7]has studied Lagrangian timediscretizations of the Hunter-Saxton equation by using the Moser–Veselov approach,Yin[8]has proved the local existence of strong solutions of the periodic Hunter–Saxton equation and has shown that all strong solutions except space-independent solutions blow up in finite time,Lenells[9]has considered the Hunter–Saxton equation models the geodesic flow on a spherical manifold,Xu and Shu[10]have used the development of the local discontinuous Galerkin method and a new dissipative discontinuous Galerkin method for this equation,Wei and Yin[11]have considered the periodic Hunter–Saxton equation with weak dissipation,Wei[12]has obtained global weak solution for a periodic generalized Hunter–Saxton equation,Nadja fikhah and Ahangari[13]have studied a Lie group symmetry analysis of the equation and have obtained some exact solutions,Baxter et al.[14]have obtained the separable solutions and self-similar solutions of the equation,Arbabi et al.[15]have obtained a semi-analytical solution for the equation using the Haar wavelet quasilinearization method.

    We know that,the solution of some equations is generated by fractional powers or the structure of the solution of some equations is not exactly known.For example,one of the famous equations that its solution is generated by fractional powers is Thomas-Fermi equation.[16?17]Baker[17]has proved that the solution of Thomas–Fermi equation is generated by the powers oft1/2.For these reasons,in this paper,we decided that we solve the Hunter–Saxton equation using the fractional basis,namely the bivariate generalized fractional order of the Chebyshev function(BGFCF),in order to obtain more information about the structure of the solution and obtaining acceptable results.

    The B-GFCFs are introduced as a new basis for Spectral methods and this basis can be used to develop a framework or theory in Spectral methods.In this research,the fractional basis was used for solving a partial differential equation(Hunter–Saxton equation)and it provided insight into an important issue.The B-GFCF collocation method is combined with the quasilinearization method(QLM)to calculate a more accurate and faster result.

    The organization of the paper is expressed as follows:in Sec.2,the generalized fractional order of the Chebyshev functions(GFCFs)and their properties are expressed.In Sec.3,the work method is explained.In Sec.4,the numerical examples are presented to show the effciency of the method.Finally,a conclusion is provided.

    2 Generalized Fractional Order of the Chebyshev Functions

    The Chebyshev polynomials have many properties,for example orthogonal,recursive,simple real roots,complete in the space of polynomials.For these reasons,many authors have used these functions in their works.[18?21]

    Using some transformations,some researchers extended Chebyshev polynomials to in finite or semi-in finite domains.For example,by usingx=(t?L)/(t+L),L>0 the rational Chebyshev functions on semi-in finite interval,[22?25]by usingthe rational Chebyshev functions on in finite interval,[26]and by usingx=1? 2(t/η)α,α,η>0 the generalized fractional order of the Chebyshev functions(GFCF)on the finite interval[0,η][27]are introduced.

    In the present work,the transformationx=1?2(t/η)α,α,η>0 on the Chebyshev polynomials of the first kind is used,that was introduced in Ref.[27]and can use to solve differential equations.

    The GFCFs are defined on the interval[0,η]and are denoted by

    The analytical form of of degreenαis given by[27]

    where

    The GFCFs are orthogonal with respect to the weight functionon the interval(0,η):

    whereδmnis Kronecker delta,c0=2,andcn=1 forn≥1.

    Any function of continuous and differentiabley(t),t∈ [0,η]can be expanded as follows:

    and using the property of orthogonality in the GFCFs:

    But in the numerical methods,we have to use first(m+1)-terms of the GFCFs and approximatey(t):

    with

    The following theorem shows that by increasingm,the approximation solutionfm(t)is convergent tof(t)exponentially.

    Theorem1Suppose thatDkαf(t) ∈C[0,η]fork=0,1,...,m,andis the subspace generated byIffm(t)=ATΦ(t)(in Eq.(5))is the best approximation tof(t)fromthen the error bound is presented as follows

    whereMα≥ |Dmαf(t)|,t∈ [0,η].

    ProofSee Ref.[27].?

    Theorem 2The generalized fractional order of the Chebyshev functionhas preciselynreal zeros on interval(0,η)in the form

    Moreover,(d/dt)ηhas preciselyn?1 real zeros on interval(0,η)in the following points:

    ProofSee Ref.[27].?

    3 Methodology

    In this section,the quasi-linearization method is introduced and is used for solving nonlinear Hunter–Saxton equation.

    3.1 The Quasilinearization Method

    The quasi-linearization method(QLM),based on the Newton–Raphson method,[28?29]by Bellman and Kalaba have introduced.[30]This method is used for solving the nonlinear differential equations(NDEs)ofn-th order inpdimensions.In this method,the NDEs convert to a sequence of linear differential equations,and the solution of this sequence of linear differential equations is convergence to the solution of the NDEs.[31?33]Some researchers have used this method in their papers.[34?37]

    Occasionally the linear differential equation that gets from the QLM at each iteration does not solve analytically.Hence we can use the Spectral methods to approximate the solution.

    We consider nonlinear PDEs of the form

    wherenandmare the orders of differentiation forξandt,respectively,t∈ [0,T],ξ∈ [a,b],u(ξ,t)is the unknown function,ˉΨ is a nonlinear operator that contains all the partial derivatives ofu(ξ,t)toξ,andˉΓ is a linear operator of both variablesξandtthat contains all the partial derivatives ofu(ξ,t)tot.

    By using the transformationξ=[(b?a)/η]x+a,the intervalξ∈[a,b]can be converted into the intervalx∈ [0,η],thus Eq.(8)can be written as follows

    whereTandηare real positive constants,Γ =

    Before applying the QLM,the operator Ψ is split into its linear and nonlinear parts and rewrite Eq.(9)as follows:

    where the dots and primes denote the derivative with respect totandx,respectively,andLandNare the linear and nonlinear operators of Ψ,respectively.

    Now,the QLM is used for the nonlinear operatorNas follows(similar to Taylor’s series):[38]

    whererandr+1 denote previous and current iterations,respectively,and the functions?N/?u(k)are functional derivatives with respect tou(k)from theN[u,u′,...,u(n)].

    By substituting Eq.(11)into Eq.(10),and using the QLM,we have

    where

    By using the QLM,the solution of Eq.(9)determines the(r+1)-th iterative approximationur+1(x,t)as a solution of the linear partial differential equation(12)with their initial and boundary conditions.

    The QLM iteration requires an initialization or“initial guess”u0(x,t),that it is usually selected based on the initial and boundary conditions.

    3.2 The B-GFCFs Collocation Method

    It is assumed that the solution can be approximated by using the bivariate generalized fractional order of the Chebyshev functions(B-GFCFs)in the form

    wherem1is the number of collocation points in thetspace andm2is the number of collocation points in thexspace.Equation(13)can be written in the following matrix form:

    We apply the B-GFCFs collocation method to solve the linear partial differential equations at each iteration Eq.(12)with their initial and boundary conditions.

    We assume thatu(x,0)=f(x)is an initial condition for Eq.(9).For satisfying the initial condition at each iteration,we define the approximate solution as follows

    Now,to apply the collocation method,the residual function for Eq.(12)at each iteration is constructed by substitutingˉur+1forur+1:

    Now,by choice(m1+1)arbitrary points{xi},i=1,...,m1+1 in the interval[0,η],and(m2+1)arbitrary points{tj},j=1,...,m2+1 in the interval[0,T]as collocation points and substituting them in Resr(x,t),and the use of their initial and boundary conditions,a set of(m1+1)(m2+1)linear algebraic equations is generated as follows(Collocation method)

    By solving this system using a suitable method such as Newton’s method,the approximate solution of Eq.(9)according to Eqs.(13)and(15)is obtained.

    In this study,the roots of the GFCFs in the intervals of[0,T]and[0,η](Theorem 2)have been used as collocation points in thetandxspaces,respectively.Also consider that all of the computations have been done by Maple 2015.

    3.3 Solving Nonlinear Hunter–Saxton Equation

    We consider nonlinear Hunter–Saxton equation:

    with the initial and boundary conditions

    where the functionsf(x),g(x),?(t),andθ(t)are suff-ciently smooth.

    By applying the technique described in the previous section,we have

    For satisfying the initial conditions at each iteration,the approximate solutionˉur(x,t)is defined as follows

    and according to Eq.(16),we have

    A set of(m1+1)(m2+1)linear algebraic equations is generated as follows:

    By using the initial and boundary conditions(18),for satisfying the initial conditions at the first,it is assumed that the initial guessu0(x,t)=f(x)+tg(x),and the boundary conditions are implemented in the first and last rows(i.e.i=1 andi=m1+1)in Eqs.(21).By solving the linear algebraic equations,the approximate solution of Eq.(17)according to Eqs.(13)and(19)is obtained.

    Now,we must try to select an appropriate value for the parameter ofα.To achieve this goal,we can use the maximum of the absolute error or the residual error.That is,we will solve the problem for various values ofα,and then based on the maximum of the absolute error or the residual error,an appropriate value forαis selected.

    We define the maximum of the absolute error and the maximum of the residual error as follows

    or

    whereˉu(x,t)is the approximate solution andu(x,t)is the exact solution.

    4 The Numerical Examples

    In this section,by using the present method,some examples of the Hunter–Saxton equation are solved.To show the effciency and capability of the present method,the obtained results with the corresponding analytical or numerical solutions are compared.

    4.1 Example 1

    In Eq.(18),it is assumed that:[15]

    Baxter et al.[14]have proved that the exact solution is as follows:

    By applying the technique described in the previous section,we have

    and the initial guessu0(x,t)=2x?2xt+xt2.It can be seen that they are satisfied in the initial conditions and one of the boundary conditions.

    Figure 1 shows the graph of the maximum of the absolute errors for various values ofα.We can see that an appropriate value for the parameter ofαis 1.

    Tables 1–3 show the obtained results of the present method for various values ofx,225 nodes(m1=m2=14),5th iterations,andt=0.1,t=0.01 andt=0.001 respectively,and comparing them with the obtained results by Arbabi et al.[15]using the Haar wavelet quasilinearization approach(HWQA)and the exact solution.It is seen that the obtained results of the present method are more accurate than the previous results.

    Fig.1 Graph of the maximum of the absolute errors for various values of α,for example 1.

    Table 1 Comparing the present method with the obtained results by Ref.[15],for example 1 with t=0.1.

    Table 2 Comparing the present method with the obtained results by Ref.[15],for example 1 with t=0.01.

    Table 3 Comparing the present method with the obtained results by Ref.[15],for example 1 with t=0.001.

    Fig.2 Graphs of the residual error and the absolute error,for example 1.

    Fig.3 Graphs of the residual errors and the absolute errors,for example 1 with t=0.1,t=0.01 and t=0.001.

    Figure 2 shows the graphs of residual error Res5(x,t)of Eq.(20),and the absolute error between the present method and the exact solution(24).

    Figure 3 shows the graphs of residual errors Res5(x,t)of Eq.(20),and the absolute errors between the present method and the exact solution(24)fort=0.1,t=0.01,andt=0.001.

    4.2 Example 2

    In Eq.(18),it is assumed that:[15]

    Baxter et al.[14]have proved that the exact solution is as follows:

    By applying the technique described in the previous section,we have

    and the initial guess

    It can be seen that they are satisfied in the initial conditions.

    Fig.4 Graph of the maximum of the absolute errors for various values of α,for example 2.

    Table 4 Comparing the obtained results by the present method with the exact solution,for example 2 with t=0.1.

    Figure 4 shows the graph of the maximum of the absolute errors for various values ofα.We can see that an appropriate value for the parameter ofαis 1.

    Tables 4–6 show the obtained results by the present method for various values ofx,225 nodes(m1=m2=14),5th iterations,andt=0.1,t=0.01 andt=0.001 respectively,and comparing them with the exact solution.It is seen that the obtained results by the present method are more accurate.

    Figure 5 shows the graphs of residual error Res5(x,t)of Eq.(20),and the absolute error between the present method and the exact solution(26).

    Figure 6 shows the graphs of residual errors Res5(x,t)of Eq.(20),and the absolute errors between the present method and the exact solution(26)fort=0.1,t=0.01 andt=0.001.

    Fig.5 Graphs of the residual error and the absolute error,for example 2.

    Fig.6 Graphs of the residual errors and the absolute errors,for example 2 with t=0.1,t=0.01,and t=0.001.

    Table 5 Comparing the obtained results by the present method with the exact solution,for example 2 with t=0.01.

    Table 6 Comparing the obtained results by the present method with the exact solution,for example 2 with t=0.001.

    5 Conclusion

    The fundamental goal of the paper has been to construct an approximation to the solution of nonlinear Hunter–Saxton equation.To achieve this goal,a hybrid numerical method based on the quasilinearization method and the bivariate generalized fractional order of the Chebyshev functions(B-GFCF)collocation method is applied.The obtained results of the present method are more accurate than the results that calculated by other methods for fewer collocation points and are in a good agreement with the exact solutions.So it can be concluded that the present method is very convenient for solving other nonlinear partial differential equations.

    The authors are very grateful to reviewers and editor for carefully reading the paper and for their comments and suggestions which have improved the paper.

    [1]J.K.Hunter and R.Saxton,SIAM J.Appl.Math.51(1991)1498.

    [2]R.I.Ivanov,J.Nonlinear Math.Phys.15(2008)1.

    [3]R.Camassa and D.D.Holm,Phys.Rev.Lett.71(1993)1661.

    [4]P.Olver and P.Rosenau,Phys.Rev.E 53(1996)1900.

    [5]R.Beals,D.Sattinger,and J.Szmigielski,Appl.Anal.78(2001)255.

    [6]R.Beals,D.Sattinger,and J.Szmigielski,Appl.Anal.78(2000)255.

    [7]A.V.Penskoi,Phys.Lett.A 304(2002)157.

    [8]Z.Yin,SIAM J.Math.Anal.36(2004)272.

    [9]J.Lenells,J.Geom.Phys.57(2007)2049.

    [10]Y.Xu and C.W.Shu,J.Comput.Math.28(2010)606.

    [11]X.Wei and Z.Yin,J.Nonlinear Math.Phys.18(2011)1.

    [12]X.Wei,J.Math.Anal.Appl.391(2012)530.

    [13]M.Nadja fikhah and F.Ahangari,Commun.Theor.Phys.59(2013)335.

    [14]M.Baxter,R.A.Van Gorder,and K.Vajravelu,Commun.Theor.Phys.63(2015)675.

    [15]S.Arbabi,A.Nazari,and M.T.Darvishi,Optik-Int.J.Light Electron Optics 127(2016)5255.

    [16]K.Parand and M.Delkhosh,J.Comput.Appl.Math.317(2017)624.

    [17]E.B.Baker,Q.Appl.Math.36(1930)630.

    [18]A.H.Bhrawy and A.S.Alo fi,Appl.Math.Lett.26(2013)25.

    [19]J.A.Rad,S.Kazem,M.Shaban,K.Parand,and A.Yildirim,Math.Method.Appl.Sci.37(2014)329.

    [20]E.H.Doha,A.H.Bhrawy,and S.S.Ezz-Eldien,Comput.Math.Appl.62(2011)2364.

    [21]A.Saadatmandi and M.Dehghan,Numer.Meth.Part.D.E.26(2010)239.

    [22]K.Parand,A.Taghavi,and M.Shahini,Acta Phys.Pol.B 40(2009)1749.

    [23]K.Parand,A.R.Rezaei,and A.Taghavi,Math.Method.Appl.Sci.33(2010)2076.

    [24]K.Parand and S.Khaleqi,Eur.Phys.J.Plus 131(2016)1.

    [25]K.Parand,M.Dehghan,and A.Taghavi,Int.J.Numer.Method.H.20(2010)728.

    [26]J.P.Boyd,Chebyshev and Fourier Spectral Methods,Second Edition,Dover Publications,Mineola,New York(2000).

    [27]K.Parand and M.Delkhosh,Ricerche Mat.65(2016)307.

    [28]S.D.Conte and C.de Boor,Elementary Numerical Analysis:An Algorithmic Approach,McGraw Hill International Book Company,third sub edition,New York(1980).

    [29]A.Ralston and P.Rabinowitz,A First Course in Numerical Analysis,Dover Publications,second edition,Mineola,New York(2001).

    [30]R.E.Bellman and R.E.Kalaba,Quasilinearization and Nonlinear Boundary-Value Problems,Elsevier Publishing Company,New York(1965).

    [31]V.B.Mandelzweig and F.Tabakinb,Comput.Phys.Commun.141(2001)268.

    [32]R.Kalaba,J.Math.Mech.8(1959)519.

    [33]V.Lakshmikantham and A.S.Vatsala,Generalized Quasilinearization for Nonlinear Problems,Mathematics and its Applications,Vol.440,Kluwer Academic Publishers,Dordrecht(1998).

    [34]K.Parand,M.Ghasemi,S.Rezazadeh,A.Peiravi,A.Ghorbanpour,and A.Tavakoli Golpaygani,Appl.Comput.Math.9(2010)95.

    [35]R.Krivec and V.B.Mandelzweig,Comput.Phys.Commun.179(2008)865.

    [36]E.Z.Liverts and V.B.Mandelzweig,Ann.Phys-New York 324(2009)388.

    [37]A.Rezaei,F.Baharifard,and K.Parand,Int.J.Comp.Elect.Auto.Cont.Info.Eng.5(2011)194.

    [38]S.S.Motsa,V.M.Magagula,and P.Sibanda,Scient.World J.2014(2014)Article ID 581987.

    欧美一区二区精品小视频在线| 国产午夜精品久久久久久一区二区三区 | 在线免费观看的www视频| 十八禁网站免费在线| 亚洲高清免费不卡视频| 国产精品一二三区在线看| 乱码一卡2卡4卡精品| 搞女人的毛片| 精品久久久久久久久亚洲| 亚洲无线在线观看| 少妇熟女欧美另类| 在线国产一区二区在线| 久久热精品热| 深夜精品福利| 99久久精品国产国产毛片| 亚洲精品乱码久久久v下载方式| 国产精品99久久久久久久久| 人人妻,人人澡人人爽秒播| 久久人人爽人人爽人人片va| 国产精品一区www在线观看| 国产高清三级在线| 日本黄大片高清| 国产精品久久久久久精品电影| 狠狠狠狠99中文字幕| 少妇人妻精品综合一区二区 | 日韩在线高清观看一区二区三区| 日日啪夜夜撸| 超碰av人人做人人爽久久| 精品人妻熟女av久视频| 中文字幕av在线有码专区| 成人av一区二区三区在线看| 久久久久久国产a免费观看| 日本欧美国产在线视频| 国产探花在线观看一区二区| 日韩欧美 国产精品| 亚洲精品色激情综合| 欧美xxxx黑人xx丫x性爽| 国产91av在线免费观看| 国产高清不卡午夜福利| 免费不卡的大黄色大毛片视频在线观看 | 国内久久婷婷六月综合欲色啪| 97超碰精品成人国产| 寂寞人妻少妇视频99o| 美女黄网站色视频| 嫩草影院入口| 级片在线观看| 久久精品91蜜桃| 日韩大尺度精品在线看网址| 97超碰精品成人国产| 男女啪啪激烈高潮av片| 麻豆国产97在线/欧美| 1024手机看黄色片| 国产精品电影一区二区三区| 婷婷精品国产亚洲av在线| 97在线视频观看| 成人av在线播放网站| 亚洲欧美精品综合久久99| 伦精品一区二区三区| 蜜臀久久99精品久久宅男| 一级毛片电影观看 | 欧美性猛交黑人性爽| 国产人妻一区二区三区在| 青春草视频在线免费观看| 国内精品美女久久久久久| 日韩欧美三级三区| 简卡轻食公司| 国产精品不卡视频一区二区| 美女大奶头视频| 校园人妻丝袜中文字幕| 精品午夜福利视频在线观看一区| 成年版毛片免费区| 免费av毛片视频| 国产精品久久视频播放| 国产大屁股一区二区在线视频| 小说图片视频综合网站| 菩萨蛮人人尽说江南好唐韦庄 | 深夜a级毛片| av在线天堂中文字幕| 桃色一区二区三区在线观看| 日本熟妇午夜| 一区福利在线观看| 精品乱码久久久久久99久播| 久久精品国产清高在天天线| 亚洲人成网站高清观看| 亚洲第一电影网av| 老师上课跳d突然被开到最大视频| 欧洲精品卡2卡3卡4卡5卡区| 国产单亲对白刺激| 天堂网av新在线| 亚洲av中文字字幕乱码综合| 国产亚洲精品av在线| 免费看光身美女| 伦理电影大哥的女人| 在线观看66精品国产| 成年女人看的毛片在线观看| 亚洲欧美日韩无卡精品| 长腿黑丝高跟| 男女视频在线观看网站免费| 欧美xxxx性猛交bbbb| 久久人妻av系列| 老司机影院成人| 欧美性猛交╳xxx乱大交人| 校园人妻丝袜中文字幕| 99riav亚洲国产免费| 国产淫片久久久久久久久| 亚洲av不卡在线观看| av专区在线播放| 国产黄片美女视频| 亚洲成人精品中文字幕电影| 国产高清视频在线观看网站| 日日摸夜夜添夜夜爱| 能在线免费观看的黄片| 亚洲国产精品久久男人天堂| 日韩欧美在线乱码| 夜夜看夜夜爽夜夜摸| 亚洲成人精品中文字幕电影| 露出奶头的视频| 99久久精品国产国产毛片| 精品99又大又爽又粗少妇毛片| 麻豆一二三区av精品| 午夜福利18| 日本爱情动作片www.在线观看 | 亚洲精品一区av在线观看| 免费观看人在逋| 国产91av在线免费观看| 日韩欧美 国产精品| 乱人视频在线观看| 国内久久婷婷六月综合欲色啪| 日本-黄色视频高清免费观看| АⅤ资源中文在线天堂| 99热全是精品| 国产高清不卡午夜福利| 激情 狠狠 欧美| 久久草成人影院| 欧美不卡视频在线免费观看| 亚洲熟妇中文字幕五十中出| 久久精品国产99精品国产亚洲性色| 久久久久国产网址| 亚洲熟妇中文字幕五十中出| 亚洲精品456在线播放app| 亚洲色图av天堂| 国产精品,欧美在线| 精品一区二区三区视频在线| 亚洲,欧美,日韩| 男女下面进入的视频免费午夜| 在线观看午夜福利视频| 日日摸夜夜添夜夜添小说| 免费看a级黄色片| av在线播放精品| 国产av一区在线观看免费| 亚洲第一区二区三区不卡| 亚洲精品国产成人久久av| 亚洲欧美精品综合久久99| 熟女电影av网| 美女xxoo啪啪120秒动态图| 亚洲av不卡在线观看| 你懂的网址亚洲精品在线观看 | 国产精品一及| 热99re8久久精品国产| 欧美绝顶高潮抽搐喷水| 亚洲精品色激情综合| 精品无人区乱码1区二区| 日韩精品中文字幕看吧| 国产精品人妻久久久影院| 最近2019中文字幕mv第一页| h日本视频在线播放| 国产亚洲91精品色在线| 欧美成人免费av一区二区三区| 欧美日韩一区二区视频在线观看视频在线 | 久久久久国内视频| 欧洲精品卡2卡3卡4卡5卡区| 一级黄色大片毛片| 国产一区二区亚洲精品在线观看| 久久草成人影院| 亚洲电影在线观看av| 一级毛片电影观看 | 久久午夜福利片| 精品国内亚洲2022精品成人| 久久精品国产自在天天线| 99久国产av精品国产电影| 99精品在免费线老司机午夜| 午夜福利高清视频| 99久久九九国产精品国产免费| 一卡2卡三卡四卡精品乱码亚洲| 丝袜喷水一区| 大香蕉久久网| 2021天堂中文幕一二区在线观| 国产一区二区亚洲精品在线观看| 可以在线观看的亚洲视频| 国产色婷婷99| 久久精品人妻少妇| 99在线人妻在线中文字幕| 一区二区三区免费毛片| 午夜爱爱视频在线播放| 国产综合懂色| 尾随美女入室| 国产成人精品久久久久久| 色综合亚洲欧美另类图片| 一区二区三区免费毛片| 国产av一区在线观看免费| 国产老妇女一区| 一进一出好大好爽视频| 亚洲高清免费不卡视频| 色尼玛亚洲综合影院| 大香蕉久久网| 亚洲欧美成人综合另类久久久 | 亚洲天堂国产精品一区在线| 亚洲av二区三区四区| 婷婷六月久久综合丁香| 日本a在线网址| 精品久久久久久成人av| 国产精品乱码一区二三区的特点| 国产真实伦视频高清在线观看| 搡老妇女老女人老熟妇| 热99re8久久精品国产| 最近中文字幕高清免费大全6| 久久久久性生活片| 欧美人与善性xxx| 少妇丰满av| 俺也久久电影网| 中文字幕人妻熟人妻熟丝袜美| 日本成人三级电影网站| 国产不卡一卡二| av视频在线观看入口| 国产91av在线免费观看| 黄色一级大片看看| 色在线成人网| 亚洲av五月六月丁香网| 日本 av在线| 男人的好看免费观看在线视频| 亚洲一区高清亚洲精品| 欧美高清成人免费视频www| 国内少妇人妻偷人精品xxx网站| 国产精品一区二区三区四区久久| 午夜免费激情av| 国产 一区 欧美 日韩| 国产熟女欧美一区二区| 亚洲av免费在线观看| 美女cb高潮喷水在线观看| 青春草视频在线免费观看| 国产精品亚洲一级av第二区| 免费电影在线观看免费观看| 最近手机中文字幕大全| 国产色婷婷99| 亚洲激情五月婷婷啪啪| 亚洲av第一区精品v没综合| 直男gayav资源| 夜夜看夜夜爽夜夜摸| 99热只有精品国产| 精品久久久久久成人av| 亚洲成人中文字幕在线播放| 国产精品一二三区在线看| 国产极品精品免费视频能看的| 一个人免费在线观看电影| 天堂网av新在线| 午夜a级毛片| 热99re8久久精品国产| 插逼视频在线观看| 免费人成视频x8x8入口观看| 国产亚洲精品综合一区在线观看| 成年女人永久免费观看视频| 亚洲在线自拍视频| 亚洲综合色惰| 国产91av在线免费观看| 一级a爱片免费观看的视频| 精品一区二区三区视频在线| 免费观看在线日韩| 亚洲婷婷狠狠爱综合网| 两性午夜刺激爽爽歪歪视频在线观看| 久久久精品94久久精品| 99精品在免费线老司机午夜| 五月玫瑰六月丁香| 国产在视频线在精品| 亚洲自拍偷在线| 1024手机看黄色片| 亚洲中文字幕一区二区三区有码在线看| 免费人成视频x8x8入口观看| 人妻制服诱惑在线中文字幕| 欧美性感艳星| 少妇的逼水好多| 亚洲一级一片aⅴ在线观看| 如何舔出高潮| 午夜福利18| 国产黄色视频一区二区在线观看 | 亚洲av成人精品一区久久| 男人舔女人下体高潮全视频| 晚上一个人看的免费电影| 人人妻,人人澡人人爽秒播| 在现免费观看毛片| 全区人妻精品视频| 亚洲va在线va天堂va国产| 不卡视频在线观看欧美| 综合色丁香网| 国产精品99久久久久久久久| 国产一区二区三区在线臀色熟女| 午夜免费男女啪啪视频观看 | 欧美日本视频| 亚洲自偷自拍三级| 99热这里只有是精品50| 亚州av有码| 亚洲久久久久久中文字幕| 国产av在哪里看| 麻豆国产av国片精品| 亚洲人成网站在线播放欧美日韩| 欧美成人a在线观看| 亚洲性久久影院| 国产一级毛片七仙女欲春2| 久久久精品欧美日韩精品| 欧美潮喷喷水| 久久久久久伊人网av| 午夜福利成人在线免费观看| 国产男靠女视频免费网站| 国产淫片久久久久久久久| 全区人妻精品视频| 男插女下体视频免费在线播放| h日本视频在线播放| 亚洲七黄色美女视频| 亚洲无线观看免费| 国产精品精品国产色婷婷| 一级毛片aaaaaa免费看小| 国产私拍福利视频在线观看| 国产乱人偷精品视频| 91午夜精品亚洲一区二区三区| 国产亚洲精品久久久com| 亚洲av二区三区四区| 亚洲欧美日韩卡通动漫| 久久精品国产亚洲av涩爱 | 干丝袜人妻中文字幕| 欧美+亚洲+日韩+国产| 成人av在线播放网站| 日本黄色视频三级网站网址| 亚洲性夜色夜夜综合| 直男gayav资源| 亚洲激情五月婷婷啪啪| 最近视频中文字幕2019在线8| 国产精品一二三区在线看| 亚洲av五月六月丁香网| 国产精品久久久久久精品电影| 简卡轻食公司| 久久久久国产网址| 亚洲熟妇中文字幕五十中出| 免费看日本二区| 国产精品久久久久久久电影| a级毛片免费高清观看在线播放| 国产精品久久电影中文字幕| 不卡一级毛片| 天美传媒精品一区二区| 国产综合懂色| 日本色播在线视频| 美女cb高潮喷水在线观看| 日日摸夜夜添夜夜添av毛片| 久久婷婷人人爽人人干人人爱| 午夜激情欧美在线| 国产精品1区2区在线观看.| 露出奶头的视频| 老师上课跳d突然被开到最大视频| 亚洲自拍偷在线| 美女高潮的动态| 欧美日本亚洲视频在线播放| 麻豆精品久久久久久蜜桃| 久久久午夜欧美精品| 美女 人体艺术 gogo| ponron亚洲| 久久久国产成人免费| 国产午夜福利久久久久久| 99久久精品国产国产毛片| 成年女人看的毛片在线观看| 国产片特级美女逼逼视频| 成年女人看的毛片在线观看| 国产真实乱freesex| 国产高清视频在线播放一区| 美女 人体艺术 gogo| 久久欧美精品欧美久久欧美| 少妇熟女欧美另类| 国产一区二区三区av在线 | 亚洲,欧美,日韩| 综合色丁香网| 99久久九九国产精品国产免费| 69av精品久久久久久| 少妇熟女aⅴ在线视频| 天美传媒精品一区二区| 伊人久久精品亚洲午夜| 欧美成人a在线观看| 国产精品1区2区在线观看.| 欧美成人一区二区免费高清观看| 国产视频一区二区在线看| 男插女下体视频免费在线播放| 欧美三级亚洲精品| 国产欧美日韩一区二区精品| 在线观看av片永久免费下载| 久久99热6这里只有精品| 国产精品福利在线免费观看| 成熟少妇高潮喷水视频| 草草在线视频免费看| 亚洲精品乱码久久久v下载方式| 久久这里只有精品中国| 十八禁国产超污无遮挡网站| 国产亚洲91精品色在线| 可以在线观看毛片的网站| 国产国拍精品亚洲av在线观看| 亚洲欧美日韩高清在线视频| 国产精品三级大全| 91狼人影院| 免费大片18禁| 黄色配什么色好看| 性插视频无遮挡在线免费观看| 亚洲成人av在线免费| 欧美成人一区二区免费高清观看| 不卡一级毛片| 99热6这里只有精品| 精品人妻偷拍中文字幕| 久久精品国产亚洲网站| 国产一区二区三区av在线 | 亚洲精品一卡2卡三卡4卡5卡| 亚洲高清免费不卡视频| 亚洲中文字幕一区二区三区有码在线看| 最近在线观看免费完整版| 国产女主播在线喷水免费视频网站 | 久久精品国产鲁丝片午夜精品| 久久精品国产亚洲av香蕉五月| 亚洲天堂国产精品一区在线| 变态另类丝袜制服| 亚洲精华国产精华液的使用体验 | 又爽又黄无遮挡网站| 黄片wwwwww| 欧美高清性xxxxhd video| 久久精品国产清高在天天线| 国产欧美日韩精品一区二区| 最近视频中文字幕2019在线8| 伊人久久精品亚洲午夜| 久久久久国内视频| 国产爱豆传媒在线观看| 夜夜夜夜夜久久久久| 黄片wwwwww| 又爽又黄a免费视频| 97超视频在线观看视频| 看黄色毛片网站| av在线天堂中文字幕| 久久久久国产精品人妻aⅴ院| 大又大粗又爽又黄少妇毛片口| 日韩三级伦理在线观看| 中文字幕久久专区| 国产一区二区三区在线臀色熟女| 久久久久国产精品人妻aⅴ院| 欧美xxxx黑人xx丫x性爽| 国产成人精品久久久久久| 51国产日韩欧美| 欧美日本亚洲视频在线播放| 亚洲图色成人| 国产精品一区二区三区四区久久| 在线播放无遮挡| 国产黄色小视频在线观看| 人人妻人人澡人人爽人人夜夜 | 白带黄色成豆腐渣| 日本一二三区视频观看| 欧美又色又爽又黄视频| 亚洲久久久久久中文字幕| 日韩欧美三级三区| 国产亚洲精品综合一区在线观看| 国产精品美女特级片免费视频播放器| 成人午夜高清在线视频| 超碰av人人做人人爽久久| 99久久无色码亚洲精品果冻| 精品久久久久久久末码| 亚洲成人久久爱视频| 国产精品一区二区免费欧美| 免费av观看视频| 自拍偷自拍亚洲精品老妇| 亚洲内射少妇av| 国产淫片久久久久久久久| 精品久久久久久久久久免费视频| 国产精品国产高清国产av| 日本 av在线| 亚洲欧美日韩高清专用| 啦啦啦韩国在线观看视频| 国内少妇人妻偷人精品xxx网站| 床上黄色一级片| 99在线视频只有这里精品首页| 国产av麻豆久久久久久久| 久久欧美精品欧美久久欧美| 狂野欧美激情性xxxx在线观看| 久久精品夜色国产| 赤兔流量卡办理| 蜜臀久久99精品久久宅男| а√天堂www在线а√下载| 国产69精品久久久久777片| 亚洲丝袜综合中文字幕| 最好的美女福利视频网| av在线播放精品| 亚洲国产精品久久男人天堂| 黄色日韩在线| 久久精品国产清高在天天线| 久久午夜福利片| 国产aⅴ精品一区二区三区波| av在线蜜桃| 最近视频中文字幕2019在线8| 午夜视频国产福利| 久久久精品欧美日韩精品| 可以在线观看的亚洲视频| 精品久久久久久久人妻蜜臀av| 老熟妇仑乱视频hdxx| 最近中文字幕高清免费大全6| 九九爱精品视频在线观看| 中文亚洲av片在线观看爽| 色综合站精品国产| 亚洲欧美精品综合久久99| 欧美最新免费一区二区三区| 亚洲av美国av| 免费看av在线观看网站| 欧美区成人在线视频| 欧美性猛交黑人性爽| 久久久久精品国产欧美久久久| 国产一区二区在线观看日韩| 亚洲欧美日韩高清专用| 小说图片视频综合网站| 女生性感内裤真人,穿戴方法视频| 男人狂女人下面高潮的视频| 精品不卡国产一区二区三区| 99在线人妻在线中文字幕| 女的被弄到高潮叫床怎么办| 日本黄大片高清| 卡戴珊不雅视频在线播放| 国产色爽女视频免费观看| 亚洲av中文av极速乱| 卡戴珊不雅视频在线播放| 日日摸夜夜添夜夜添小说| 欧美日韩在线观看h| 亚洲av免费高清在线观看| 国产探花极品一区二区| 色吧在线观看| 成年女人毛片免费观看观看9| 三级国产精品欧美在线观看| 午夜亚洲福利在线播放| 黄色欧美视频在线观看| 男人舔女人下体高潮全视频| 久久人人爽人人片av| 在线天堂最新版资源| 久久久精品94久久精品| 日本一本二区三区精品| 看非洲黑人一级黄片| 国产淫片久久久久久久久| 婷婷亚洲欧美| 免费不卡的大黄色大毛片视频在线观看 | 露出奶头的视频| 晚上一个人看的免费电影| 亚洲中文字幕日韩| 一夜夜www| 免费一级毛片在线播放高清视频| 五月伊人婷婷丁香| 国产精品美女特级片免费视频播放器| 三级经典国产精品| 国产一区二区三区在线臀色熟女| 精品久久久久久成人av| 国内少妇人妻偷人精品xxx网站| 午夜福利在线观看吧| 看免费成人av毛片| 九九热线精品视视频播放| 日本一本二区三区精品| eeuss影院久久| 国产真实乱freesex| 老熟妇乱子伦视频在线观看| 国产精品日韩av在线免费观看| 久久久久精品国产欧美久久久| avwww免费| 久久精品国产99精品国产亚洲性色| 国内精品美女久久久久久| 一级毛片我不卡| 免费av不卡在线播放| 免费观看人在逋| 亚洲丝袜综合中文字幕| 久久中文看片网| 欧美高清性xxxxhd video| 日日啪夜夜撸| 亚洲人与动物交配视频| 两个人的视频大全免费| 97热精品久久久久久| 搞女人的毛片| a级毛片免费高清观看在线播放| 久久久精品大字幕| 久久99热这里只有精品18| 亚洲成a人片在线一区二区| 午夜福利在线观看免费完整高清在 | 久久精品国产鲁丝片午夜精品| 亚洲在线自拍视频| 久久久午夜欧美精品| 18禁裸乳无遮挡免费网站照片| 伦精品一区二区三区| 国产精品爽爽va在线观看网站| 波多野结衣巨乳人妻| 亚洲国产欧美人成| 青春草视频在线免费观看| 一区福利在线观看| 亚洲av电影不卡..在线观看| 日韩欧美精品v在线| 日本黄色片子视频| 一区二区三区高清视频在线| 男人的好看免费观看在线视频| 黄色日韩在线| 午夜老司机福利剧场| 国产精品一区二区三区四区免费观看 | 免费高清视频大片| 久久久久久久久久久丰满| 亚洲精品成人久久久久久| 国产视频内射| 97碰自拍视频| 亚洲国产色片| 欧美一区二区精品小视频在线| 俺也久久电影网| 亚洲电影在线观看av| 日本欧美国产在线视频| 日本黄色视频三级网站网址| videossex国产| 国产成人精品久久久久久| 午夜老司机福利剧场| 欧美区成人在线视频|