• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Effcient Numerical Solution of Nonlinear Hunter–Saxton Equation

    2018-01-24 06:22:52KouroshParandandMehdiDelkhoshDepartmentofComputerSciencesShahidBeheshtiUniversityTehranIran
    Communications in Theoretical Physics 2017年5期

    Kourosh Parandand Mehdi DelkhoshDepartment of Computer Sciences,Shahid Beheshti University,G.C.,Tehran,Iran

    2Department of Cognitive Modelling,Institute for Cognitive and Brain Sciences,Shahid Beheshti University,G.C.,Tehran,Iran

    Nomenclature

    u(x,t) unknown function t time position coordinate uˉ(x,t) the approximate solution x scaled coordinate ηFTnαbasis functionΦ(t)the vector of basis functions α the order of basis functionsηlength of the domain of function definition A unknown coeffcients vector K unknown coeffcients matrix m the number of basis functions E the maximum of the absolute error

    1 Introduction

    The nonlinear Hunter–Saxton equation is one of the partial differential equations that by some researchers is studied:

    wheretandxare time position and scaled coordinates,respectively.The structures of the problem,for the first time,are described by Hunter and Saxton in 1991 in their paper entitle “Dynamics of Director Fields”.[1]They have used this equation for studying a nonlinear instability in the direct field of a nematic liquid crystal,and have shown that smooth solutions of the asymptotic equation break down in finite time.

    The Hunter–Saxton equation also arises as the shortwave limit of the Camassa–Holm equation,[2]an integrable model the unidirectional propagation of shallow water waves over a flat bottom,[3]and the geodesic flow on the diffeomorphism group of the circle with a bi-Hamiltonian structure,[4]which is completely integrable.[5]

    or,equivalently,

    Because of the many applications of this equation has been studied by some researchers,such as Beals et al.[6]have obtained the inverse scattering solutions to this equation,Penskoi[7]has studied Lagrangian timediscretizations of the Hunter-Saxton equation by using the Moser–Veselov approach,Yin[8]has proved the local existence of strong solutions of the periodic Hunter–Saxton equation and has shown that all strong solutions except space-independent solutions blow up in finite time,Lenells[9]has considered the Hunter–Saxton equation models the geodesic flow on a spherical manifold,Xu and Shu[10]have used the development of the local discontinuous Galerkin method and a new dissipative discontinuous Galerkin method for this equation,Wei and Yin[11]have considered the periodic Hunter–Saxton equation with weak dissipation,Wei[12]has obtained global weak solution for a periodic generalized Hunter–Saxton equation,Nadja fikhah and Ahangari[13]have studied a Lie group symmetry analysis of the equation and have obtained some exact solutions,Baxter et al.[14]have obtained the separable solutions and self-similar solutions of the equation,Arbabi et al.[15]have obtained a semi-analytical solution for the equation using the Haar wavelet quasilinearization method.

    We know that,the solution of some equations is generated by fractional powers or the structure of the solution of some equations is not exactly known.For example,one of the famous equations that its solution is generated by fractional powers is Thomas-Fermi equation.[16?17]Baker[17]has proved that the solution of Thomas–Fermi equation is generated by the powers oft1/2.For these reasons,in this paper,we decided that we solve the Hunter–Saxton equation using the fractional basis,namely the bivariate generalized fractional order of the Chebyshev function(BGFCF),in order to obtain more information about the structure of the solution and obtaining acceptable results.

    The B-GFCFs are introduced as a new basis for Spectral methods and this basis can be used to develop a framework or theory in Spectral methods.In this research,the fractional basis was used for solving a partial differential equation(Hunter–Saxton equation)and it provided insight into an important issue.The B-GFCF collocation method is combined with the quasilinearization method(QLM)to calculate a more accurate and faster result.

    The organization of the paper is expressed as follows:in Sec.2,the generalized fractional order of the Chebyshev functions(GFCFs)and their properties are expressed.In Sec.3,the work method is explained.In Sec.4,the numerical examples are presented to show the effciency of the method.Finally,a conclusion is provided.

    2 Generalized Fractional Order of the Chebyshev Functions

    The Chebyshev polynomials have many properties,for example orthogonal,recursive,simple real roots,complete in the space of polynomials.For these reasons,many authors have used these functions in their works.[18?21]

    Using some transformations,some researchers extended Chebyshev polynomials to in finite or semi-in finite domains.For example,by usingx=(t?L)/(t+L),L>0 the rational Chebyshev functions on semi-in finite interval,[22?25]by usingthe rational Chebyshev functions on in finite interval,[26]and by usingx=1? 2(t/η)α,α,η>0 the generalized fractional order of the Chebyshev functions(GFCF)on the finite interval[0,η][27]are introduced.

    In the present work,the transformationx=1?2(t/η)α,α,η>0 on the Chebyshev polynomials of the first kind is used,that was introduced in Ref.[27]and can use to solve differential equations.

    The GFCFs are defined on the interval[0,η]and are denoted by

    The analytical form of of degreenαis given by[27]

    where

    The GFCFs are orthogonal with respect to the weight functionon the interval(0,η):

    whereδmnis Kronecker delta,c0=2,andcn=1 forn≥1.

    Any function of continuous and differentiabley(t),t∈ [0,η]can be expanded as follows:

    and using the property of orthogonality in the GFCFs:

    But in the numerical methods,we have to use first(m+1)-terms of the GFCFs and approximatey(t):

    with

    The following theorem shows that by increasingm,the approximation solutionfm(t)is convergent tof(t)exponentially.

    Theorem1Suppose thatDkαf(t) ∈C[0,η]fork=0,1,...,m,andis the subspace generated byIffm(t)=ATΦ(t)(in Eq.(5))is the best approximation tof(t)fromthen the error bound is presented as follows

    whereMα≥ |Dmαf(t)|,t∈ [0,η].

    ProofSee Ref.[27].?

    Theorem 2The generalized fractional order of the Chebyshev functionhas preciselynreal zeros on interval(0,η)in the form

    Moreover,(d/dt)ηhas preciselyn?1 real zeros on interval(0,η)in the following points:

    ProofSee Ref.[27].?

    3 Methodology

    In this section,the quasi-linearization method is introduced and is used for solving nonlinear Hunter–Saxton equation.

    3.1 The Quasilinearization Method

    The quasi-linearization method(QLM),based on the Newton–Raphson method,[28?29]by Bellman and Kalaba have introduced.[30]This method is used for solving the nonlinear differential equations(NDEs)ofn-th order inpdimensions.In this method,the NDEs convert to a sequence of linear differential equations,and the solution of this sequence of linear differential equations is convergence to the solution of the NDEs.[31?33]Some researchers have used this method in their papers.[34?37]

    Occasionally the linear differential equation that gets from the QLM at each iteration does not solve analytically.Hence we can use the Spectral methods to approximate the solution.

    We consider nonlinear PDEs of the form

    wherenandmare the orders of differentiation forξandt,respectively,t∈ [0,T],ξ∈ [a,b],u(ξ,t)is the unknown function,ˉΨ is a nonlinear operator that contains all the partial derivatives ofu(ξ,t)toξ,andˉΓ is a linear operator of both variablesξandtthat contains all the partial derivatives ofu(ξ,t)tot.

    By using the transformationξ=[(b?a)/η]x+a,the intervalξ∈[a,b]can be converted into the intervalx∈ [0,η],thus Eq.(8)can be written as follows

    whereTandηare real positive constants,Γ =

    Before applying the QLM,the operator Ψ is split into its linear and nonlinear parts and rewrite Eq.(9)as follows:

    where the dots and primes denote the derivative with respect totandx,respectively,andLandNare the linear and nonlinear operators of Ψ,respectively.

    Now,the QLM is used for the nonlinear operatorNas follows(similar to Taylor’s series):[38]

    whererandr+1 denote previous and current iterations,respectively,and the functions?N/?u(k)are functional derivatives with respect tou(k)from theN[u,u′,...,u(n)].

    By substituting Eq.(11)into Eq.(10),and using the QLM,we have

    where

    By using the QLM,the solution of Eq.(9)determines the(r+1)-th iterative approximationur+1(x,t)as a solution of the linear partial differential equation(12)with their initial and boundary conditions.

    The QLM iteration requires an initialization or“initial guess”u0(x,t),that it is usually selected based on the initial and boundary conditions.

    3.2 The B-GFCFs Collocation Method

    It is assumed that the solution can be approximated by using the bivariate generalized fractional order of the Chebyshev functions(B-GFCFs)in the form

    wherem1is the number of collocation points in thetspace andm2is the number of collocation points in thexspace.Equation(13)can be written in the following matrix form:

    We apply the B-GFCFs collocation method to solve the linear partial differential equations at each iteration Eq.(12)with their initial and boundary conditions.

    We assume thatu(x,0)=f(x)is an initial condition for Eq.(9).For satisfying the initial condition at each iteration,we define the approximate solution as follows

    Now,to apply the collocation method,the residual function for Eq.(12)at each iteration is constructed by substitutingˉur+1forur+1:

    Now,by choice(m1+1)arbitrary points{xi},i=1,...,m1+1 in the interval[0,η],and(m2+1)arbitrary points{tj},j=1,...,m2+1 in the interval[0,T]as collocation points and substituting them in Resr(x,t),and the use of their initial and boundary conditions,a set of(m1+1)(m2+1)linear algebraic equations is generated as follows(Collocation method)

    By solving this system using a suitable method such as Newton’s method,the approximate solution of Eq.(9)according to Eqs.(13)and(15)is obtained.

    In this study,the roots of the GFCFs in the intervals of[0,T]and[0,η](Theorem 2)have been used as collocation points in thetandxspaces,respectively.Also consider that all of the computations have been done by Maple 2015.

    3.3 Solving Nonlinear Hunter–Saxton Equation

    We consider nonlinear Hunter–Saxton equation:

    with the initial and boundary conditions

    where the functionsf(x),g(x),?(t),andθ(t)are suff-ciently smooth.

    By applying the technique described in the previous section,we have

    For satisfying the initial conditions at each iteration,the approximate solutionˉur(x,t)is defined as follows

    and according to Eq.(16),we have

    A set of(m1+1)(m2+1)linear algebraic equations is generated as follows:

    By using the initial and boundary conditions(18),for satisfying the initial conditions at the first,it is assumed that the initial guessu0(x,t)=f(x)+tg(x),and the boundary conditions are implemented in the first and last rows(i.e.i=1 andi=m1+1)in Eqs.(21).By solving the linear algebraic equations,the approximate solution of Eq.(17)according to Eqs.(13)and(19)is obtained.

    Now,we must try to select an appropriate value for the parameter ofα.To achieve this goal,we can use the maximum of the absolute error or the residual error.That is,we will solve the problem for various values ofα,and then based on the maximum of the absolute error or the residual error,an appropriate value forαis selected.

    We define the maximum of the absolute error and the maximum of the residual error as follows

    or

    whereˉu(x,t)is the approximate solution andu(x,t)is the exact solution.

    4 The Numerical Examples

    In this section,by using the present method,some examples of the Hunter–Saxton equation are solved.To show the effciency and capability of the present method,the obtained results with the corresponding analytical or numerical solutions are compared.

    4.1 Example 1

    In Eq.(18),it is assumed that:[15]

    Baxter et al.[14]have proved that the exact solution is as follows:

    By applying the technique described in the previous section,we have

    and the initial guessu0(x,t)=2x?2xt+xt2.It can be seen that they are satisfied in the initial conditions and one of the boundary conditions.

    Figure 1 shows the graph of the maximum of the absolute errors for various values ofα.We can see that an appropriate value for the parameter ofαis 1.

    Tables 1–3 show the obtained results of the present method for various values ofx,225 nodes(m1=m2=14),5th iterations,andt=0.1,t=0.01 andt=0.001 respectively,and comparing them with the obtained results by Arbabi et al.[15]using the Haar wavelet quasilinearization approach(HWQA)and the exact solution.It is seen that the obtained results of the present method are more accurate than the previous results.

    Fig.1 Graph of the maximum of the absolute errors for various values of α,for example 1.

    Table 1 Comparing the present method with the obtained results by Ref.[15],for example 1 with t=0.1.

    Table 2 Comparing the present method with the obtained results by Ref.[15],for example 1 with t=0.01.

    Table 3 Comparing the present method with the obtained results by Ref.[15],for example 1 with t=0.001.

    Fig.2 Graphs of the residual error and the absolute error,for example 1.

    Fig.3 Graphs of the residual errors and the absolute errors,for example 1 with t=0.1,t=0.01 and t=0.001.

    Figure 2 shows the graphs of residual error Res5(x,t)of Eq.(20),and the absolute error between the present method and the exact solution(24).

    Figure 3 shows the graphs of residual errors Res5(x,t)of Eq.(20),and the absolute errors between the present method and the exact solution(24)fort=0.1,t=0.01,andt=0.001.

    4.2 Example 2

    In Eq.(18),it is assumed that:[15]

    Baxter et al.[14]have proved that the exact solution is as follows:

    By applying the technique described in the previous section,we have

    and the initial guess

    It can be seen that they are satisfied in the initial conditions.

    Fig.4 Graph of the maximum of the absolute errors for various values of α,for example 2.

    Table 4 Comparing the obtained results by the present method with the exact solution,for example 2 with t=0.1.

    Figure 4 shows the graph of the maximum of the absolute errors for various values ofα.We can see that an appropriate value for the parameter ofαis 1.

    Tables 4–6 show the obtained results by the present method for various values ofx,225 nodes(m1=m2=14),5th iterations,andt=0.1,t=0.01 andt=0.001 respectively,and comparing them with the exact solution.It is seen that the obtained results by the present method are more accurate.

    Figure 5 shows the graphs of residual error Res5(x,t)of Eq.(20),and the absolute error between the present method and the exact solution(26).

    Figure 6 shows the graphs of residual errors Res5(x,t)of Eq.(20),and the absolute errors between the present method and the exact solution(26)fort=0.1,t=0.01 andt=0.001.

    Fig.5 Graphs of the residual error and the absolute error,for example 2.

    Fig.6 Graphs of the residual errors and the absolute errors,for example 2 with t=0.1,t=0.01,and t=0.001.

    Table 5 Comparing the obtained results by the present method with the exact solution,for example 2 with t=0.01.

    Table 6 Comparing the obtained results by the present method with the exact solution,for example 2 with t=0.001.

    5 Conclusion

    The fundamental goal of the paper has been to construct an approximation to the solution of nonlinear Hunter–Saxton equation.To achieve this goal,a hybrid numerical method based on the quasilinearization method and the bivariate generalized fractional order of the Chebyshev functions(B-GFCF)collocation method is applied.The obtained results of the present method are more accurate than the results that calculated by other methods for fewer collocation points and are in a good agreement with the exact solutions.So it can be concluded that the present method is very convenient for solving other nonlinear partial differential equations.

    The authors are very grateful to reviewers and editor for carefully reading the paper and for their comments and suggestions which have improved the paper.

    [1]J.K.Hunter and R.Saxton,SIAM J.Appl.Math.51(1991)1498.

    [2]R.I.Ivanov,J.Nonlinear Math.Phys.15(2008)1.

    [3]R.Camassa and D.D.Holm,Phys.Rev.Lett.71(1993)1661.

    [4]P.Olver and P.Rosenau,Phys.Rev.E 53(1996)1900.

    [5]R.Beals,D.Sattinger,and J.Szmigielski,Appl.Anal.78(2001)255.

    [6]R.Beals,D.Sattinger,and J.Szmigielski,Appl.Anal.78(2000)255.

    [7]A.V.Penskoi,Phys.Lett.A 304(2002)157.

    [8]Z.Yin,SIAM J.Math.Anal.36(2004)272.

    [9]J.Lenells,J.Geom.Phys.57(2007)2049.

    [10]Y.Xu and C.W.Shu,J.Comput.Math.28(2010)606.

    [11]X.Wei and Z.Yin,J.Nonlinear Math.Phys.18(2011)1.

    [12]X.Wei,J.Math.Anal.Appl.391(2012)530.

    [13]M.Nadja fikhah and F.Ahangari,Commun.Theor.Phys.59(2013)335.

    [14]M.Baxter,R.A.Van Gorder,and K.Vajravelu,Commun.Theor.Phys.63(2015)675.

    [15]S.Arbabi,A.Nazari,and M.T.Darvishi,Optik-Int.J.Light Electron Optics 127(2016)5255.

    [16]K.Parand and M.Delkhosh,J.Comput.Appl.Math.317(2017)624.

    [17]E.B.Baker,Q.Appl.Math.36(1930)630.

    [18]A.H.Bhrawy and A.S.Alo fi,Appl.Math.Lett.26(2013)25.

    [19]J.A.Rad,S.Kazem,M.Shaban,K.Parand,and A.Yildirim,Math.Method.Appl.Sci.37(2014)329.

    [20]E.H.Doha,A.H.Bhrawy,and S.S.Ezz-Eldien,Comput.Math.Appl.62(2011)2364.

    [21]A.Saadatmandi and M.Dehghan,Numer.Meth.Part.D.E.26(2010)239.

    [22]K.Parand,A.Taghavi,and M.Shahini,Acta Phys.Pol.B 40(2009)1749.

    [23]K.Parand,A.R.Rezaei,and A.Taghavi,Math.Method.Appl.Sci.33(2010)2076.

    [24]K.Parand and S.Khaleqi,Eur.Phys.J.Plus 131(2016)1.

    [25]K.Parand,M.Dehghan,and A.Taghavi,Int.J.Numer.Method.H.20(2010)728.

    [26]J.P.Boyd,Chebyshev and Fourier Spectral Methods,Second Edition,Dover Publications,Mineola,New York(2000).

    [27]K.Parand and M.Delkhosh,Ricerche Mat.65(2016)307.

    [28]S.D.Conte and C.de Boor,Elementary Numerical Analysis:An Algorithmic Approach,McGraw Hill International Book Company,third sub edition,New York(1980).

    [29]A.Ralston and P.Rabinowitz,A First Course in Numerical Analysis,Dover Publications,second edition,Mineola,New York(2001).

    [30]R.E.Bellman and R.E.Kalaba,Quasilinearization and Nonlinear Boundary-Value Problems,Elsevier Publishing Company,New York(1965).

    [31]V.B.Mandelzweig and F.Tabakinb,Comput.Phys.Commun.141(2001)268.

    [32]R.Kalaba,J.Math.Mech.8(1959)519.

    [33]V.Lakshmikantham and A.S.Vatsala,Generalized Quasilinearization for Nonlinear Problems,Mathematics and its Applications,Vol.440,Kluwer Academic Publishers,Dordrecht(1998).

    [34]K.Parand,M.Ghasemi,S.Rezazadeh,A.Peiravi,A.Ghorbanpour,and A.Tavakoli Golpaygani,Appl.Comput.Math.9(2010)95.

    [35]R.Krivec and V.B.Mandelzweig,Comput.Phys.Commun.179(2008)865.

    [36]E.Z.Liverts and V.B.Mandelzweig,Ann.Phys-New York 324(2009)388.

    [37]A.Rezaei,F.Baharifard,and K.Parand,Int.J.Comp.Elect.Auto.Cont.Info.Eng.5(2011)194.

    [38]S.S.Motsa,V.M.Magagula,and P.Sibanda,Scient.World J.2014(2014)Article ID 581987.

    这个男人来自地球电影免费观看 | 我的亚洲天堂| 亚洲美女黄色视频免费看| 色网站视频免费| 亚洲中文av在线| 另类亚洲欧美激情| 亚洲,欧美精品.| 欧美激情 高清一区二区三区| 尾随美女入室| 人妻一区二区av| 老司机影院毛片| 一个人免费看片子| 久久毛片免费看一区二区三区| 国产欧美亚洲国产| 老司机影院毛片| 纵有疾风起免费观看全集完整版| 永久网站在线| 天堂中文最新版在线下载| 免费少妇av软件| 一级爰片在线观看| 日韩制服丝袜自拍偷拍| 国产在线一区二区三区精| 纯流量卡能插随身wifi吗| 纯流量卡能插随身wifi吗| 亚洲国产欧美日韩在线播放| 欧美 日韩 精品 国产| 国产亚洲一区二区精品| 亚洲美女搞黄在线观看| 在线亚洲精品国产二区图片欧美| 999久久久国产精品视频| 精品国产超薄肉色丝袜足j| 另类精品久久| 男人舔女人的私密视频| 成人二区视频| 建设人人有责人人尽责人人享有的| 久久精品夜色国产| 在现免费观看毛片| 韩国av在线不卡| a 毛片基地| 国产高清国产精品国产三级| 中文乱码字字幕精品一区二区三区| 人人妻人人添人人爽欧美一区卜| 欧美bdsm另类| 晚上一个人看的免费电影| 高清不卡的av网站| 18禁裸乳无遮挡动漫免费视频| 亚洲av中文av极速乱| 中文字幕人妻丝袜制服| 性高湖久久久久久久久免费观看| 考比视频在线观看| 欧美变态另类bdsm刘玥| 国产爽快片一区二区三区| 下体分泌物呈黄色| av在线播放精品| 卡戴珊不雅视频在线播放| 国产一区二区 视频在线| 99精国产麻豆久久婷婷| 久久狼人影院| 国产成人a∨麻豆精品| 成人18禁高潮啪啪吃奶动态图| 丝袜在线中文字幕| 9191精品国产免费久久| av天堂久久9| 欧美日韩一级在线毛片| 日本免费在线观看一区| 成年动漫av网址| 少妇 在线观看| 亚洲国产最新在线播放| 欧美国产精品一级二级三级| 日韩中字成人| 日韩欧美一区视频在线观看| 久久久久久久大尺度免费视频| 97人妻天天添夜夜摸| 在线免费观看不下载黄p国产| 九九爱精品视频在线观看| 黑人巨大精品欧美一区二区蜜桃| 2021少妇久久久久久久久久久| 七月丁香在线播放| 美女高潮到喷水免费观看| 国产成人午夜福利电影在线观看| tube8黄色片| 免费黄频网站在线观看国产| 九九爱精品视频在线观看| 女人被躁到高潮嗷嗷叫费观| 国产精品一二三区在线看| 欧美人与性动交α欧美软件| 男女边吃奶边做爰视频| 国产女主播在线喷水免费视频网站| 精品视频人人做人人爽| 亚洲av在线观看美女高潮| 青春草国产在线视频| 久久久久久久久免费视频了| 爱豆传媒免费全集在线观看| 少妇人妻 视频| 在线观看免费日韩欧美大片| 亚洲欧美一区二区三区黑人 | 亚洲国产毛片av蜜桃av| 777久久人妻少妇嫩草av网站| 亚洲综合精品二区| 国产精品人妻久久久影院| 欧美精品一区二区免费开放| 人人妻人人爽人人添夜夜欢视频| av女优亚洲男人天堂| 精品久久久精品久久久| 最近中文字幕高清免费大全6| 精品久久蜜臀av无| 国产免费现黄频在线看| 久久精品熟女亚洲av麻豆精品| 国产精品麻豆人妻色哟哟久久| 久久久久久免费高清国产稀缺| 午夜激情av网站| 中文乱码字字幕精品一区二区三区| 两个人看的免费小视频| 大话2 男鬼变身卡| 精品国产超薄肉色丝袜足j| 国产 精品1| 美女脱内裤让男人舔精品视频| 婷婷色综合www| 天堂俺去俺来也www色官网| 国产成人av激情在线播放| 国产精品一区二区在线不卡| 午夜激情av网站| 国产熟女午夜一区二区三区| 狠狠精品人妻久久久久久综合| 精品少妇内射三级| 国产极品粉嫩免费观看在线| 黄色配什么色好看| 中文字幕制服av| 啦啦啦视频在线资源免费观看| 永久免费av网站大全| 国产成人一区二区在线| 你懂的网址亚洲精品在线观看| 精品人妻一区二区三区麻豆| 久久国内精品自在自线图片| 高清av免费在线| 一区二区三区精品91| 成人手机av| 国产一区二区三区综合在线观看| 亚洲av综合色区一区| 亚洲三区欧美一区| 国产精品久久久久久精品电影小说| 精品国产乱码久久久久久男人| 国产免费又黄又爽又色| 亚洲国产成人一精品久久久| 亚洲欧美精品综合一区二区三区 | 成年美女黄网站色视频大全免费| 亚洲国产日韩一区二区| 成人二区视频| 成年av动漫网址| 国产欧美日韩一区二区三区在线| 欧美国产精品va在线观看不卡| 国产免费一区二区三区四区乱码| 亚洲成人手机| 99热全是精品| 黄色 视频免费看| 天天影视国产精品| videosex国产| 久久久国产精品麻豆| 一区二区三区精品91| 男的添女的下面高潮视频| 国产av码专区亚洲av| 女人久久www免费人成看片| 伦精品一区二区三区| 国产精品av久久久久免费| 久久久亚洲精品成人影院| 黄片无遮挡物在线观看| 成人国产麻豆网| 国产成人精品无人区| 男女边摸边吃奶| 视频在线观看一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 久久久久精品久久久久真实原创| 免费av中文字幕在线| 国产精品女同一区二区软件| 国产一区二区在线观看av| 两个人看的免费小视频| 中文字幕最新亚洲高清| 色网站视频免费| 亚洲精品aⅴ在线观看| 亚洲激情五月婷婷啪啪| 26uuu在线亚洲综合色| 日日撸夜夜添| 国产亚洲午夜精品一区二区久久| 久久久久久久精品精品| 久久青草综合色| xxxhd国产人妻xxx| 校园人妻丝袜中文字幕| 我的亚洲天堂| 久久精品国产自在天天线| 久久99精品国语久久久| 各种免费的搞黄视频| 日日撸夜夜添| 久久这里只有精品19| 欧美人与性动交α欧美精品济南到 | 免费女性裸体啪啪无遮挡网站| 人体艺术视频欧美日本| 久久精品国产亚洲av涩爱| 日本黄色日本黄色录像| 91午夜精品亚洲一区二区三区| 欧美bdsm另类| 亚洲av福利一区| 欧美精品av麻豆av| 岛国毛片在线播放| 亚洲国产毛片av蜜桃av| 中文字幕精品免费在线观看视频| 中国国产av一级| 99热国产这里只有精品6| av有码第一页| 精品视频人人做人人爽| 国产成人精品一,二区| a级毛片黄视频| 少妇的丰满在线观看| 亚洲伊人久久精品综合| 丝袜人妻中文字幕| 亚洲一码二码三码区别大吗| 午夜福利,免费看| 亚洲av电影在线进入| 欧美最新免费一区二区三区| 国产白丝娇喘喷水9色精品| 国产福利在线免费观看视频| 深夜精品福利| 成人亚洲欧美一区二区av| 免费女性裸体啪啪无遮挡网站| 成人亚洲精品一区在线观看| 久久久a久久爽久久v久久| 亚洲国产精品成人久久小说| av不卡在线播放| 在线观看免费高清a一片| 成人国语在线视频| 日日爽夜夜爽网站| 青春草亚洲视频在线观看| 制服人妻中文乱码| 看免费av毛片| 如日韩欧美国产精品一区二区三区| 精品国产乱码久久久久久小说| 亚洲人成电影观看| 大话2 男鬼变身卡| 亚洲精品自拍成人| 免费在线观看黄色视频的| 最近最新中文字幕免费大全7| 街头女战士在线观看网站| 人人妻人人澡人人看| 91aial.com中文字幕在线观看| 性少妇av在线| 女人精品久久久久毛片| 中文精品一卡2卡3卡4更新| 少妇人妻久久综合中文| 777米奇影视久久| 可以免费在线观看a视频的电影网站 | 国产一区二区 视频在线| 国产精品国产三级专区第一集| 交换朋友夫妻互换小说| 免费女性裸体啪啪无遮挡网站| 亚洲精品自拍成人| 日韩在线高清观看一区二区三区| 日韩人妻精品一区2区三区| 午夜福利在线观看免费完整高清在| 少妇的逼水好多| 自线自在国产av| 女人高潮潮喷娇喘18禁视频| 久久精品久久久久久久性| 卡戴珊不雅视频在线播放| 中文字幕av电影在线播放| 欧美日韩视频高清一区二区三区二| 我的亚洲天堂| 亚洲婷婷狠狠爱综合网| 国产黄色视频一区二区在线观看| 久久国内精品自在自线图片| 黄色视频在线播放观看不卡| 婷婷色av中文字幕| 不卡av一区二区三区| 亚洲国产精品成人久久小说| 老汉色∧v一级毛片| 亚洲国产成人一精品久久久| 久久精品国产a三级三级三级| 亚洲精品一区蜜桃| 午夜日韩欧美国产| 日本欧美国产在线视频| 97精品久久久久久久久久精品| 一级a爱视频在线免费观看| 超碰97精品在线观看| 午夜影院在线不卡| 亚洲视频免费观看视频| 看十八女毛片水多多多| 一区二区三区精品91| 中文字幕人妻熟女乱码| 精品久久蜜臀av无| 国产视频首页在线观看| av一本久久久久| 99国产综合亚洲精品| 欧美 亚洲 国产 日韩一| 久久午夜福利片| 免费在线观看黄色视频的| 欧美日韩成人在线一区二区| 夫妻性生交免费视频一级片| 99热网站在线观看| 国产亚洲欧美精品永久| 激情五月婷婷亚洲| 国产福利在线免费观看视频| av电影中文网址| 国产精品国产av在线观看| 久久久久久人妻| 国产爽快片一区二区三区| 亚洲第一av免费看| 国产精品国产av在线观看| 欧美精品人与动牲交sv欧美| 午夜福利乱码中文字幕| 久久国产精品男人的天堂亚洲| 在线观看免费视频网站a站| 欧美日本中文国产一区发布| 丝袜人妻中文字幕| 99香蕉大伊视频| 国产激情久久老熟女| 国产精品一区二区在线不卡| 免费观看无遮挡的男女| 青春草亚洲视频在线观看| av国产久精品久网站免费入址| 日日啪夜夜爽| 国产在线视频一区二区| 日本-黄色视频高清免费观看| 成人亚洲精品一区在线观看| 免费高清在线观看视频在线观看| 久久久久久伊人网av| 26uuu在线亚洲综合色| 久久久久久久久免费视频了| 九色亚洲精品在线播放| 黑人巨大精品欧美一区二区蜜桃| 久久鲁丝午夜福利片| 亚洲精品aⅴ在线观看| 最新中文字幕久久久久| 国产一区二区三区av在线| 国产成人免费观看mmmm| 制服人妻中文乱码| xxxhd国产人妻xxx| 国产成人aa在线观看| 免费在线观看视频国产中文字幕亚洲 | 国产淫语在线视频| 久久99蜜桃精品久久| 丰满少妇做爰视频| 亚洲,欧美精品.| 一区二区av电影网| 亚洲欧美精品综合一区二区三区 | 日韩人妻精品一区2区三区| 国产亚洲欧美精品永久| 国产精品熟女久久久久浪| 99re6热这里在线精品视频| 99久久中文字幕三级久久日本| 午夜老司机福利剧场| 国产探花极品一区二区| 国产成人精品婷婷| 亚洲精品在线美女| 欧美精品一区二区大全| 99九九在线精品视频| 岛国毛片在线播放| 国产激情久久老熟女| 亚洲国产欧美日韩在线播放| 纵有疾风起免费观看全集完整版| 在现免费观看毛片| videosex国产| 91久久精品国产一区二区三区| 成年女人在线观看亚洲视频| 久久精品久久久久久噜噜老黄| 女性被躁到高潮视频| 高清视频免费观看一区二区| av网站在线播放免费| tube8黄色片| 日本色播在线视频| 97人妻天天添夜夜摸| 精品少妇黑人巨大在线播放| 日韩av免费高清视频| 亚洲美女搞黄在线观看| 丝袜人妻中文字幕| 一二三四中文在线观看免费高清| 久久鲁丝午夜福利片| 夫妻午夜视频| 亚洲av在线观看美女高潮| 国产欧美日韩综合在线一区二区| 日韩 亚洲 欧美在线| 亚洲人成77777在线视频| 国产成人免费无遮挡视频| 十八禁网站网址无遮挡| av一本久久久久| 国产亚洲av片在线观看秒播厂| 久久这里只有精品19| 久久精品夜色国产| 国产成人精品久久久久久| 国产精品一区二区在线不卡| 国产又色又爽无遮挡免| 精品国产一区二区久久| a级毛片黄视频| 亚洲av日韩在线播放| 伦理电影免费视频| 18禁动态无遮挡网站| 亚洲精品日韩在线中文字幕| 久久午夜福利片| 午夜影院在线不卡| 菩萨蛮人人尽说江南好唐韦庄| 性色avwww在线观看| 18禁国产床啪视频网站| 久久久精品94久久精品| 少妇精品久久久久久久| 亚洲欧美成人综合另类久久久| 三上悠亚av全集在线观看| 久久99一区二区三区| 在线观看美女被高潮喷水网站| 欧美激情 高清一区二区三区| 777米奇影视久久| 黑人巨大精品欧美一区二区蜜桃| 成人国产麻豆网| 亚洲,一卡二卡三卡| 欧美97在线视频| 2022亚洲国产成人精品| 国产精品国产三级专区第一集| 久久久久视频综合| av免费在线看不卡| 性色avwww在线观看| 在线天堂中文资源库| 日本猛色少妇xxxxx猛交久久| 黑人巨大精品欧美一区二区蜜桃| 久久久亚洲精品成人影院| 春色校园在线视频观看| 老司机影院毛片| 久久精品国产综合久久久| 国产av精品麻豆| 啦啦啦啦在线视频资源| 精品少妇黑人巨大在线播放| 久久久久国产一级毛片高清牌| 丝袜在线中文字幕| 成人黄色视频免费在线看| 国产精品免费视频内射| 国产精品国产三级专区第一集| 国产片特级美女逼逼视频| 国产女主播在线喷水免费视频网站| 亚洲 欧美一区二区三区| 老汉色av国产亚洲站长工具| 欧美日韩亚洲国产一区二区在线观看 | 欧美日韩一区二区视频在线观看视频在线| 中文字幕av电影在线播放| 亚洲av免费高清在线观看| 91精品三级在线观看| 午夜av观看不卡| 亚洲熟女精品中文字幕| 999精品在线视频| 性色av一级| 亚洲精品aⅴ在线观看| 国产毛片在线视频| 中文字幕人妻熟女乱码| 嫩草影院入口| 亚洲人成77777在线视频| 最近中文字幕高清免费大全6| 9色porny在线观看| 一级a爱视频在线免费观看| 女人久久www免费人成看片| 伊人亚洲综合成人网| 久久久久久久精品精品| 一区二区日韩欧美中文字幕| 亚洲欧美成人综合另类久久久| 日本欧美国产在线视频| 久久精品人人爽人人爽视色| 精品少妇内射三级| 国产精品不卡视频一区二区| 精品一区在线观看国产| 91成人精品电影| 国产成人免费观看mmmm| 成人二区视频| 成人毛片a级毛片在线播放| 亚洲国产精品成人久久小说| 性高湖久久久久久久久免费观看| 日日爽夜夜爽网站| 亚洲经典国产精华液单| 亚洲国产最新在线播放| 黄频高清免费视频| 婷婷色综合www| 成人免费观看视频高清| 国产极品粉嫩免费观看在线| 飞空精品影院首页| 人成视频在线观看免费观看| 麻豆精品久久久久久蜜桃| 黄色一级大片看看| 国产 一区精品| 亚洲四区av| av在线老鸭窝| 精品一区二区免费观看| 香蕉精品网在线| 欧美精品一区二区大全| 在现免费观看毛片| 人人妻人人澡人人爽人人夜夜| 99香蕉大伊视频| 精品少妇一区二区三区视频日本电影 | 国产男女超爽视频在线观看| av在线播放精品| 80岁老熟妇乱子伦牲交| freevideosex欧美| 成人影院久久| 国产又爽黄色视频| 中文字幕人妻熟女乱码| 国产一区二区 视频在线| 国产一区亚洲一区在线观看| 日韩欧美一区视频在线观看| 欧美成人午夜免费资源| 国产精品国产三级国产专区5o| 亚洲精品一区蜜桃| 在线观看免费视频网站a站| 国产在线一区二区三区精| 久久精品国产a三级三级三级| 精品一品国产午夜福利视频| 在线天堂中文资源库| 亚洲一区二区三区欧美精品| 免费在线观看黄色视频的| 国产精品 欧美亚洲| 99九九在线精品视频| 最近2019中文字幕mv第一页| 中文字幕av电影在线播放| av免费观看日本| 国产激情久久老熟女| 黑人猛操日本美女一级片| 亚洲成国产人片在线观看| 精品卡一卡二卡四卡免费| 国产日韩欧美视频二区| 免费黄网站久久成人精品| 巨乳人妻的诱惑在线观看| 交换朋友夫妻互换小说| 午夜激情久久久久久久| 黄色毛片三级朝国网站| 免费黄频网站在线观看国产| 久久久久久久久久久久大奶| 丰满乱子伦码专区| 国产无遮挡羞羞视频在线观看| 亚洲精品美女久久久久99蜜臀 | 18+在线观看网站| 亚洲国产精品一区二区三区在线| 亚洲av.av天堂| 亚洲 欧美一区二区三区| 一区二区三区激情视频| 99久久人妻综合| 久久精品熟女亚洲av麻豆精品| 久久久久久久久久久久大奶| xxx大片免费视频| 欧美日韩精品网址| 尾随美女入室| 欧美日韩视频精品一区| 亚洲精品国产色婷婷电影| 日韩免费高清中文字幕av| 九草在线视频观看| 精品少妇内射三级| 人成视频在线观看免费观看| 99久国产av精品国产电影| 国产欧美亚洲国产| 精品久久久精品久久久| 中文字幕另类日韩欧美亚洲嫩草| 精品卡一卡二卡四卡免费| 男女啪啪激烈高潮av片| 国产精品免费视频内射| 大话2 男鬼变身卡| 亚洲欧美一区二区三区国产| 亚洲激情五月婷婷啪啪| av女优亚洲男人天堂| 久久99一区二区三区| 欧美bdsm另类| 亚洲精品av麻豆狂野| 亚洲欧洲精品一区二区精品久久久 | 亚洲国产av新网站| 九草在线视频观看| 电影成人av| 汤姆久久久久久久影院中文字幕| 国产成人免费观看mmmm| 男男h啪啪无遮挡| 日韩 亚洲 欧美在线| 国产老妇伦熟女老妇高清| 秋霞伦理黄片| 最近最新中文字幕大全免费视频 | 精品少妇黑人巨大在线播放| 狠狠婷婷综合久久久久久88av| 汤姆久久久久久久影院中文字幕| 国产激情久久老熟女| 欧美日韩av久久| 精品一区二区三卡| 一区在线观看完整版| 男女国产视频网站| 日韩 亚洲 欧美在线| tube8黄色片| 国产 一区精品| 久久久久网色| 另类亚洲欧美激情| 国产极品粉嫩免费观看在线| 男女高潮啪啪啪动态图| 激情视频va一区二区三区| 欧美老熟妇乱子伦牲交| 精品一区二区三区四区五区乱码 | 看免费av毛片| 久久精品国产鲁丝片午夜精品| 亚洲第一青青草原| 亚洲国产精品一区二区三区在线| 亚洲av国产av综合av卡| 国产亚洲午夜精品一区二区久久| 久久久久国产精品人妻一区二区| 美女中出高潮动态图| 午夜日本视频在线| 久久影院123| 国产乱人偷精品视频| 十八禁网站网址无遮挡| av片东京热男人的天堂| 王馨瑶露胸无遮挡在线观看| 两个人免费观看高清视频| 视频在线观看一区二区三区| 亚洲 欧美一区二区三区| 晚上一个人看的免费电影| 丝袜美腿诱惑在线| 熟女少妇亚洲综合色aaa.| 国产成人欧美| 亚洲成人av在线免费| 中国国产av一级| 麻豆精品久久久久久蜜桃| 中文字幕另类日韩欧美亚洲嫩草| 精品午夜福利在线看|