• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Effcient Numerical Solution of Nonlinear Hunter–Saxton Equation

    2018-01-24 06:22:52KouroshParandandMehdiDelkhoshDepartmentofComputerSciencesShahidBeheshtiUniversityTehranIran
    Communications in Theoretical Physics 2017年5期

    Kourosh Parandand Mehdi DelkhoshDepartment of Computer Sciences,Shahid Beheshti University,G.C.,Tehran,Iran

    2Department of Cognitive Modelling,Institute for Cognitive and Brain Sciences,Shahid Beheshti University,G.C.,Tehran,Iran

    Nomenclature

    u(x,t) unknown function t time position coordinate uˉ(x,t) the approximate solution x scaled coordinate ηFTnαbasis functionΦ(t)the vector of basis functions α the order of basis functionsηlength of the domain of function definition A unknown coeffcients vector K unknown coeffcients matrix m the number of basis functions E the maximum of the absolute error

    1 Introduction

    The nonlinear Hunter–Saxton equation is one of the partial differential equations that by some researchers is studied:

    wheretandxare time position and scaled coordinates,respectively.The structures of the problem,for the first time,are described by Hunter and Saxton in 1991 in their paper entitle “Dynamics of Director Fields”.[1]They have used this equation for studying a nonlinear instability in the direct field of a nematic liquid crystal,and have shown that smooth solutions of the asymptotic equation break down in finite time.

    The Hunter–Saxton equation also arises as the shortwave limit of the Camassa–Holm equation,[2]an integrable model the unidirectional propagation of shallow water waves over a flat bottom,[3]and the geodesic flow on the diffeomorphism group of the circle with a bi-Hamiltonian structure,[4]which is completely integrable.[5]

    or,equivalently,

    Because of the many applications of this equation has been studied by some researchers,such as Beals et al.[6]have obtained the inverse scattering solutions to this equation,Penskoi[7]has studied Lagrangian timediscretizations of the Hunter-Saxton equation by using the Moser–Veselov approach,Yin[8]has proved the local existence of strong solutions of the periodic Hunter–Saxton equation and has shown that all strong solutions except space-independent solutions blow up in finite time,Lenells[9]has considered the Hunter–Saxton equation models the geodesic flow on a spherical manifold,Xu and Shu[10]have used the development of the local discontinuous Galerkin method and a new dissipative discontinuous Galerkin method for this equation,Wei and Yin[11]have considered the periodic Hunter–Saxton equation with weak dissipation,Wei[12]has obtained global weak solution for a periodic generalized Hunter–Saxton equation,Nadja fikhah and Ahangari[13]have studied a Lie group symmetry analysis of the equation and have obtained some exact solutions,Baxter et al.[14]have obtained the separable solutions and self-similar solutions of the equation,Arbabi et al.[15]have obtained a semi-analytical solution for the equation using the Haar wavelet quasilinearization method.

    We know that,the solution of some equations is generated by fractional powers or the structure of the solution of some equations is not exactly known.For example,one of the famous equations that its solution is generated by fractional powers is Thomas-Fermi equation.[16?17]Baker[17]has proved that the solution of Thomas–Fermi equation is generated by the powers oft1/2.For these reasons,in this paper,we decided that we solve the Hunter–Saxton equation using the fractional basis,namely the bivariate generalized fractional order of the Chebyshev function(BGFCF),in order to obtain more information about the structure of the solution and obtaining acceptable results.

    The B-GFCFs are introduced as a new basis for Spectral methods and this basis can be used to develop a framework or theory in Spectral methods.In this research,the fractional basis was used for solving a partial differential equation(Hunter–Saxton equation)and it provided insight into an important issue.The B-GFCF collocation method is combined with the quasilinearization method(QLM)to calculate a more accurate and faster result.

    The organization of the paper is expressed as follows:in Sec.2,the generalized fractional order of the Chebyshev functions(GFCFs)and their properties are expressed.In Sec.3,the work method is explained.In Sec.4,the numerical examples are presented to show the effciency of the method.Finally,a conclusion is provided.

    2 Generalized Fractional Order of the Chebyshev Functions

    The Chebyshev polynomials have many properties,for example orthogonal,recursive,simple real roots,complete in the space of polynomials.For these reasons,many authors have used these functions in their works.[18?21]

    Using some transformations,some researchers extended Chebyshev polynomials to in finite or semi-in finite domains.For example,by usingx=(t?L)/(t+L),L>0 the rational Chebyshev functions on semi-in finite interval,[22?25]by usingthe rational Chebyshev functions on in finite interval,[26]and by usingx=1? 2(t/η)α,α,η>0 the generalized fractional order of the Chebyshev functions(GFCF)on the finite interval[0,η][27]are introduced.

    In the present work,the transformationx=1?2(t/η)α,α,η>0 on the Chebyshev polynomials of the first kind is used,that was introduced in Ref.[27]and can use to solve differential equations.

    The GFCFs are defined on the interval[0,η]and are denoted by

    The analytical form of of degreenαis given by[27]

    where

    The GFCFs are orthogonal with respect to the weight functionon the interval(0,η):

    whereδmnis Kronecker delta,c0=2,andcn=1 forn≥1.

    Any function of continuous and differentiabley(t),t∈ [0,η]can be expanded as follows:

    and using the property of orthogonality in the GFCFs:

    But in the numerical methods,we have to use first(m+1)-terms of the GFCFs and approximatey(t):

    with

    The following theorem shows that by increasingm,the approximation solutionfm(t)is convergent tof(t)exponentially.

    Theorem1Suppose thatDkαf(t) ∈C[0,η]fork=0,1,...,m,andis the subspace generated byIffm(t)=ATΦ(t)(in Eq.(5))is the best approximation tof(t)fromthen the error bound is presented as follows

    whereMα≥ |Dmαf(t)|,t∈ [0,η].

    ProofSee Ref.[27].?

    Theorem 2The generalized fractional order of the Chebyshev functionhas preciselynreal zeros on interval(0,η)in the form

    Moreover,(d/dt)ηhas preciselyn?1 real zeros on interval(0,η)in the following points:

    ProofSee Ref.[27].?

    3 Methodology

    In this section,the quasi-linearization method is introduced and is used for solving nonlinear Hunter–Saxton equation.

    3.1 The Quasilinearization Method

    The quasi-linearization method(QLM),based on the Newton–Raphson method,[28?29]by Bellman and Kalaba have introduced.[30]This method is used for solving the nonlinear differential equations(NDEs)ofn-th order inpdimensions.In this method,the NDEs convert to a sequence of linear differential equations,and the solution of this sequence of linear differential equations is convergence to the solution of the NDEs.[31?33]Some researchers have used this method in their papers.[34?37]

    Occasionally the linear differential equation that gets from the QLM at each iteration does not solve analytically.Hence we can use the Spectral methods to approximate the solution.

    We consider nonlinear PDEs of the form

    wherenandmare the orders of differentiation forξandt,respectively,t∈ [0,T],ξ∈ [a,b],u(ξ,t)is the unknown function,ˉΨ is a nonlinear operator that contains all the partial derivatives ofu(ξ,t)toξ,andˉΓ is a linear operator of both variablesξandtthat contains all the partial derivatives ofu(ξ,t)tot.

    By using the transformationξ=[(b?a)/η]x+a,the intervalξ∈[a,b]can be converted into the intervalx∈ [0,η],thus Eq.(8)can be written as follows

    whereTandηare real positive constants,Γ =

    Before applying the QLM,the operator Ψ is split into its linear and nonlinear parts and rewrite Eq.(9)as follows:

    where the dots and primes denote the derivative with respect totandx,respectively,andLandNare the linear and nonlinear operators of Ψ,respectively.

    Now,the QLM is used for the nonlinear operatorNas follows(similar to Taylor’s series):[38]

    whererandr+1 denote previous and current iterations,respectively,and the functions?N/?u(k)are functional derivatives with respect tou(k)from theN[u,u′,...,u(n)].

    By substituting Eq.(11)into Eq.(10),and using the QLM,we have

    where

    By using the QLM,the solution of Eq.(9)determines the(r+1)-th iterative approximationur+1(x,t)as a solution of the linear partial differential equation(12)with their initial and boundary conditions.

    The QLM iteration requires an initialization or“initial guess”u0(x,t),that it is usually selected based on the initial and boundary conditions.

    3.2 The B-GFCFs Collocation Method

    It is assumed that the solution can be approximated by using the bivariate generalized fractional order of the Chebyshev functions(B-GFCFs)in the form

    wherem1is the number of collocation points in thetspace andm2is the number of collocation points in thexspace.Equation(13)can be written in the following matrix form:

    We apply the B-GFCFs collocation method to solve the linear partial differential equations at each iteration Eq.(12)with their initial and boundary conditions.

    We assume thatu(x,0)=f(x)is an initial condition for Eq.(9).For satisfying the initial condition at each iteration,we define the approximate solution as follows

    Now,to apply the collocation method,the residual function for Eq.(12)at each iteration is constructed by substitutingˉur+1forur+1:

    Now,by choice(m1+1)arbitrary points{xi},i=1,...,m1+1 in the interval[0,η],and(m2+1)arbitrary points{tj},j=1,...,m2+1 in the interval[0,T]as collocation points and substituting them in Resr(x,t),and the use of their initial and boundary conditions,a set of(m1+1)(m2+1)linear algebraic equations is generated as follows(Collocation method)

    By solving this system using a suitable method such as Newton’s method,the approximate solution of Eq.(9)according to Eqs.(13)and(15)is obtained.

    In this study,the roots of the GFCFs in the intervals of[0,T]and[0,η](Theorem 2)have been used as collocation points in thetandxspaces,respectively.Also consider that all of the computations have been done by Maple 2015.

    3.3 Solving Nonlinear Hunter–Saxton Equation

    We consider nonlinear Hunter–Saxton equation:

    with the initial and boundary conditions

    where the functionsf(x),g(x),?(t),andθ(t)are suff-ciently smooth.

    By applying the technique described in the previous section,we have

    For satisfying the initial conditions at each iteration,the approximate solutionˉur(x,t)is defined as follows

    and according to Eq.(16),we have

    A set of(m1+1)(m2+1)linear algebraic equations is generated as follows:

    By using the initial and boundary conditions(18),for satisfying the initial conditions at the first,it is assumed that the initial guessu0(x,t)=f(x)+tg(x),and the boundary conditions are implemented in the first and last rows(i.e.i=1 andi=m1+1)in Eqs.(21).By solving the linear algebraic equations,the approximate solution of Eq.(17)according to Eqs.(13)and(19)is obtained.

    Now,we must try to select an appropriate value for the parameter ofα.To achieve this goal,we can use the maximum of the absolute error or the residual error.That is,we will solve the problem for various values ofα,and then based on the maximum of the absolute error or the residual error,an appropriate value forαis selected.

    We define the maximum of the absolute error and the maximum of the residual error as follows

    or

    whereˉu(x,t)is the approximate solution andu(x,t)is the exact solution.

    4 The Numerical Examples

    In this section,by using the present method,some examples of the Hunter–Saxton equation are solved.To show the effciency and capability of the present method,the obtained results with the corresponding analytical or numerical solutions are compared.

    4.1 Example 1

    In Eq.(18),it is assumed that:[15]

    Baxter et al.[14]have proved that the exact solution is as follows:

    By applying the technique described in the previous section,we have

    and the initial guessu0(x,t)=2x?2xt+xt2.It can be seen that they are satisfied in the initial conditions and one of the boundary conditions.

    Figure 1 shows the graph of the maximum of the absolute errors for various values ofα.We can see that an appropriate value for the parameter ofαis 1.

    Tables 1–3 show the obtained results of the present method for various values ofx,225 nodes(m1=m2=14),5th iterations,andt=0.1,t=0.01 andt=0.001 respectively,and comparing them with the obtained results by Arbabi et al.[15]using the Haar wavelet quasilinearization approach(HWQA)and the exact solution.It is seen that the obtained results of the present method are more accurate than the previous results.

    Fig.1 Graph of the maximum of the absolute errors for various values of α,for example 1.

    Table 1 Comparing the present method with the obtained results by Ref.[15],for example 1 with t=0.1.

    Table 2 Comparing the present method with the obtained results by Ref.[15],for example 1 with t=0.01.

    Table 3 Comparing the present method with the obtained results by Ref.[15],for example 1 with t=0.001.

    Fig.2 Graphs of the residual error and the absolute error,for example 1.

    Fig.3 Graphs of the residual errors and the absolute errors,for example 1 with t=0.1,t=0.01 and t=0.001.

    Figure 2 shows the graphs of residual error Res5(x,t)of Eq.(20),and the absolute error between the present method and the exact solution(24).

    Figure 3 shows the graphs of residual errors Res5(x,t)of Eq.(20),and the absolute errors between the present method and the exact solution(24)fort=0.1,t=0.01,andt=0.001.

    4.2 Example 2

    In Eq.(18),it is assumed that:[15]

    Baxter et al.[14]have proved that the exact solution is as follows:

    By applying the technique described in the previous section,we have

    and the initial guess

    It can be seen that they are satisfied in the initial conditions.

    Fig.4 Graph of the maximum of the absolute errors for various values of α,for example 2.

    Table 4 Comparing the obtained results by the present method with the exact solution,for example 2 with t=0.1.

    Figure 4 shows the graph of the maximum of the absolute errors for various values ofα.We can see that an appropriate value for the parameter ofαis 1.

    Tables 4–6 show the obtained results by the present method for various values ofx,225 nodes(m1=m2=14),5th iterations,andt=0.1,t=0.01 andt=0.001 respectively,and comparing them with the exact solution.It is seen that the obtained results by the present method are more accurate.

    Figure 5 shows the graphs of residual error Res5(x,t)of Eq.(20),and the absolute error between the present method and the exact solution(26).

    Figure 6 shows the graphs of residual errors Res5(x,t)of Eq.(20),and the absolute errors between the present method and the exact solution(26)fort=0.1,t=0.01 andt=0.001.

    Fig.5 Graphs of the residual error and the absolute error,for example 2.

    Fig.6 Graphs of the residual errors and the absolute errors,for example 2 with t=0.1,t=0.01,and t=0.001.

    Table 5 Comparing the obtained results by the present method with the exact solution,for example 2 with t=0.01.

    Table 6 Comparing the obtained results by the present method with the exact solution,for example 2 with t=0.001.

    5 Conclusion

    The fundamental goal of the paper has been to construct an approximation to the solution of nonlinear Hunter–Saxton equation.To achieve this goal,a hybrid numerical method based on the quasilinearization method and the bivariate generalized fractional order of the Chebyshev functions(B-GFCF)collocation method is applied.The obtained results of the present method are more accurate than the results that calculated by other methods for fewer collocation points and are in a good agreement with the exact solutions.So it can be concluded that the present method is very convenient for solving other nonlinear partial differential equations.

    The authors are very grateful to reviewers and editor for carefully reading the paper and for their comments and suggestions which have improved the paper.

    [1]J.K.Hunter and R.Saxton,SIAM J.Appl.Math.51(1991)1498.

    [2]R.I.Ivanov,J.Nonlinear Math.Phys.15(2008)1.

    [3]R.Camassa and D.D.Holm,Phys.Rev.Lett.71(1993)1661.

    [4]P.Olver and P.Rosenau,Phys.Rev.E 53(1996)1900.

    [5]R.Beals,D.Sattinger,and J.Szmigielski,Appl.Anal.78(2001)255.

    [6]R.Beals,D.Sattinger,and J.Szmigielski,Appl.Anal.78(2000)255.

    [7]A.V.Penskoi,Phys.Lett.A 304(2002)157.

    [8]Z.Yin,SIAM J.Math.Anal.36(2004)272.

    [9]J.Lenells,J.Geom.Phys.57(2007)2049.

    [10]Y.Xu and C.W.Shu,J.Comput.Math.28(2010)606.

    [11]X.Wei and Z.Yin,J.Nonlinear Math.Phys.18(2011)1.

    [12]X.Wei,J.Math.Anal.Appl.391(2012)530.

    [13]M.Nadja fikhah and F.Ahangari,Commun.Theor.Phys.59(2013)335.

    [14]M.Baxter,R.A.Van Gorder,and K.Vajravelu,Commun.Theor.Phys.63(2015)675.

    [15]S.Arbabi,A.Nazari,and M.T.Darvishi,Optik-Int.J.Light Electron Optics 127(2016)5255.

    [16]K.Parand and M.Delkhosh,J.Comput.Appl.Math.317(2017)624.

    [17]E.B.Baker,Q.Appl.Math.36(1930)630.

    [18]A.H.Bhrawy and A.S.Alo fi,Appl.Math.Lett.26(2013)25.

    [19]J.A.Rad,S.Kazem,M.Shaban,K.Parand,and A.Yildirim,Math.Method.Appl.Sci.37(2014)329.

    [20]E.H.Doha,A.H.Bhrawy,and S.S.Ezz-Eldien,Comput.Math.Appl.62(2011)2364.

    [21]A.Saadatmandi and M.Dehghan,Numer.Meth.Part.D.E.26(2010)239.

    [22]K.Parand,A.Taghavi,and M.Shahini,Acta Phys.Pol.B 40(2009)1749.

    [23]K.Parand,A.R.Rezaei,and A.Taghavi,Math.Method.Appl.Sci.33(2010)2076.

    [24]K.Parand and S.Khaleqi,Eur.Phys.J.Plus 131(2016)1.

    [25]K.Parand,M.Dehghan,and A.Taghavi,Int.J.Numer.Method.H.20(2010)728.

    [26]J.P.Boyd,Chebyshev and Fourier Spectral Methods,Second Edition,Dover Publications,Mineola,New York(2000).

    [27]K.Parand and M.Delkhosh,Ricerche Mat.65(2016)307.

    [28]S.D.Conte and C.de Boor,Elementary Numerical Analysis:An Algorithmic Approach,McGraw Hill International Book Company,third sub edition,New York(1980).

    [29]A.Ralston and P.Rabinowitz,A First Course in Numerical Analysis,Dover Publications,second edition,Mineola,New York(2001).

    [30]R.E.Bellman and R.E.Kalaba,Quasilinearization and Nonlinear Boundary-Value Problems,Elsevier Publishing Company,New York(1965).

    [31]V.B.Mandelzweig and F.Tabakinb,Comput.Phys.Commun.141(2001)268.

    [32]R.Kalaba,J.Math.Mech.8(1959)519.

    [33]V.Lakshmikantham and A.S.Vatsala,Generalized Quasilinearization for Nonlinear Problems,Mathematics and its Applications,Vol.440,Kluwer Academic Publishers,Dordrecht(1998).

    [34]K.Parand,M.Ghasemi,S.Rezazadeh,A.Peiravi,A.Ghorbanpour,and A.Tavakoli Golpaygani,Appl.Comput.Math.9(2010)95.

    [35]R.Krivec and V.B.Mandelzweig,Comput.Phys.Commun.179(2008)865.

    [36]E.Z.Liverts and V.B.Mandelzweig,Ann.Phys-New York 324(2009)388.

    [37]A.Rezaei,F.Baharifard,and K.Parand,Int.J.Comp.Elect.Auto.Cont.Info.Eng.5(2011)194.

    [38]S.S.Motsa,V.M.Magagula,and P.Sibanda,Scient.World J.2014(2014)Article ID 581987.

    国产激情偷乱视频一区二区| 中国美女看黄片| 在线a可以看的网站| 大型黄色视频在线免费观看| 不卡一级毛片| 乱码一卡2卡4卡精品| 亚州av有码| 久久精品国产亚洲av天美| 欧美成人性av电影在线观看| 亚洲最大成人手机在线| 久久久久久久久久久丰满 | 亚洲av一区综合| 免费看a级黄色片| 99精品在免费线老司机午夜| 99热6这里只有精品| 欧美zozozo另类| 国产精品免费一区二区三区在线| 天天一区二区日本电影三级| 日本一二三区视频观看| 久久精品国产亚洲av香蕉五月| 麻豆久久精品国产亚洲av| 精品久久久噜噜| bbb黄色大片| 嫩草影院精品99| 久久久成人免费电影| 亚洲中文字幕日韩| 老熟妇乱子伦视频在线观看| netflix在线观看网站| 观看美女的网站| 99视频精品全部免费 在线| 天堂av国产一区二区熟女人妻| 久9热在线精品视频| 亚洲国产欧美人成| 亚洲成人久久性| 特级一级黄色大片| 黄色配什么色好看| 日韩国内少妇激情av| 成人亚洲精品av一区二区| 18禁裸乳无遮挡免费网站照片| 久久精品夜夜夜夜夜久久蜜豆| 国产精品久久久久久亚洲av鲁大| 国产真实伦视频高清在线观看 | 亚洲国产色片| 国产91精品成人一区二区三区| 欧美日韩综合久久久久久 | 免费av不卡在线播放| 国产精品亚洲美女久久久| 老熟妇仑乱视频hdxx| 色吧在线观看| 舔av片在线| 国产精品一区二区三区四区久久| 中文亚洲av片在线观看爽| 91麻豆av在线| 亚洲成人久久爱视频| 国产人妻一区二区三区在| 91在线精品国自产拍蜜月| 亚洲av成人av| 中文字幕av成人在线电影| 国产精品一区二区免费欧美| 国产人妻一区二区三区在| 午夜激情欧美在线| 欧美绝顶高潮抽搐喷水| 国产精品久久久久久精品电影| 国产精品女同一区二区软件 | 免费观看人在逋| 日韩欧美一区二区三区在线观看| 亚洲av中文av极速乱 | 国产成人福利小说| 他把我摸到了高潮在线观看| 日本黄色视频三级网站网址| 亚洲av成人精品一区久久| 成人综合一区亚洲| 99精品在免费线老司机午夜| 99久久精品一区二区三区| 亚洲成人免费电影在线观看| 老熟妇仑乱视频hdxx| av在线亚洲专区| 国产精品一区www在线观看 | 麻豆av噜噜一区二区三区| 好男人在线观看高清免费视频| 在线看三级毛片| 99riav亚洲国产免费| 九九热线精品视视频播放| 国产午夜福利久久久久久| av福利片在线观看| 人人妻人人澡欧美一区二区| 欧美日韩乱码在线| 乱码一卡2卡4卡精品| 国产高清不卡午夜福利| 日本与韩国留学比较| 欧美激情久久久久久爽电影| 一本精品99久久精品77| a在线观看视频网站| 91久久精品国产一区二区成人| 欧美成人一区二区免费高清观看| 亚洲天堂国产精品一区在线| 悠悠久久av| 欧美日本亚洲视频在线播放| 国产精品久久久久久亚洲av鲁大| 欧美绝顶高潮抽搐喷水| 啦啦啦观看免费观看视频高清| 99久国产av精品| 国产精品一区www在线观看 | 色哟哟哟哟哟哟| 久久久久免费精品人妻一区二区| 国产在线精品亚洲第一网站| 亚洲精品456在线播放app | 不卡一级毛片| 欧美日本亚洲视频在线播放| 欧美成人性av电影在线观看| 少妇人妻精品综合一区二区 | 在现免费观看毛片| 欧美日韩乱码在线| 偷拍熟女少妇极品色| av在线天堂中文字幕| 欧美成人一区二区免费高清观看| 美女高潮的动态| 亚洲图色成人| 国产精品亚洲一级av第二区| 村上凉子中文字幕在线| 亚洲精品成人久久久久久| 无遮挡黄片免费观看| 国产精品综合久久久久久久免费| 人妻制服诱惑在线中文字幕| 日韩,欧美,国产一区二区三区 | www.色视频.com| 久久久久国产精品人妻aⅴ院| 不卡视频在线观看欧美| 国语自产精品视频在线第100页| 91av网一区二区| a级毛片a级免费在线| 桃色一区二区三区在线观看| 亚洲色图av天堂| 久久精品国产自在天天线| 国产精品一区二区三区四区久久| 婷婷亚洲欧美| 小蜜桃在线观看免费完整版高清| 男插女下体视频免费在线播放| 简卡轻食公司| 99热精品在线国产| 大型黄色视频在线免费观看| 国产国拍精品亚洲av在线观看| 在现免费观看毛片| 国产精品一区二区免费欧美| 夜夜看夜夜爽夜夜摸| 久久中文看片网| 久久天躁狠狠躁夜夜2o2o| 久久精品国产亚洲av天美| 三级男女做爰猛烈吃奶摸视频| 丰满的人妻完整版| 一个人观看的视频www高清免费观看| 女人被狂操c到高潮| 色综合婷婷激情| 婷婷精品国产亚洲av| 免费看a级黄色片| 久久精品久久久久久噜噜老黄 | 亚洲av中文av极速乱 | 99热这里只有是精品在线观看| 国产aⅴ精品一区二区三区波| 在线播放无遮挡| 欧美三级亚洲精品| 国产精品无大码| 变态另类丝袜制服| 中国美女看黄片| 狂野欧美白嫩少妇大欣赏| 成人二区视频| 国产探花在线观看一区二区| 麻豆成人av在线观看| 成人av一区二区三区在线看| 最好的美女福利视频网| 亚洲精品粉嫩美女一区| 在线国产一区二区在线| 国产伦精品一区二区三区四那| 精品福利观看| 久久国产乱子免费精品| 欧美黑人欧美精品刺激| 欧美一区二区亚洲| 成人无遮挡网站| 一进一出抽搐动态| av黄色大香蕉| 特级一级黄色大片| 两个人的视频大全免费| 日韩欧美一区二区三区在线观看| 亚洲精品国产成人久久av| 嫁个100分男人电影在线观看| 97热精品久久久久久| 俺也久久电影网| 男插女下体视频免费在线播放| 日韩 亚洲 欧美在线| 99热这里只有是精品在线观看| 特大巨黑吊av在线直播| 国产毛片a区久久久久| 深夜精品福利| 校园春色视频在线观看| 亚洲专区中文字幕在线| 国产成人影院久久av| 日韩欧美在线乱码| 日本 av在线| 在现免费观看毛片| 窝窝影院91人妻| 日韩欧美 国产精品| 999久久久精品免费观看国产| 91在线观看av| 在线播放无遮挡| 在线观看66精品国产| 老熟妇仑乱视频hdxx| 亚洲熟妇中文字幕五十中出| 内地一区二区视频在线| 国产精品久久久久久亚洲av鲁大| 一个人观看的视频www高清免费观看| 亚洲人成网站在线播| 免费在线观看日本一区| 精品日产1卡2卡| 简卡轻食公司| 干丝袜人妻中文字幕| av黄色大香蕉| 全区人妻精品视频| 狠狠狠狠99中文字幕| 国产探花在线观看一区二区| 国产精品福利在线免费观看| 我要搜黄色片| 日本欧美国产在线视频| 久久久久九九精品影院| 一个人观看的视频www高清免费观看| 亚洲一区高清亚洲精品| 成人精品一区二区免费| 国产高清不卡午夜福利| 黄色女人牲交| 国产精品爽爽va在线观看网站| 亚洲国产色片| 大又大粗又爽又黄少妇毛片口| www日本黄色视频网| 午夜精品久久久久久毛片777| 欧美精品啪啪一区二区三区| av在线天堂中文字幕| 亚洲人成网站高清观看| 一a级毛片在线观看| 国产真实乱freesex| 国产乱人伦免费视频| 琪琪午夜伦伦电影理论片6080| 日本一二三区视频观看| 亚洲国产日韩欧美精品在线观看| 99在线人妻在线中文字幕| 亚洲精品乱码久久久v下载方式| 亚洲精品亚洲一区二区| 最近在线观看免费完整版| 国产精品一区二区三区四区免费观看 | 免费av不卡在线播放| 成年女人永久免费观看视频| 国产av一区在线观看免费| 2021天堂中文幕一二区在线观| 一本久久中文字幕| 亚洲在线观看片| 亚洲人成网站在线播放欧美日韩| 日韩欧美精品v在线| 深夜a级毛片| 五月玫瑰六月丁香| 一级毛片久久久久久久久女| x7x7x7水蜜桃| 可以在线观看毛片的网站| 欧美最新免费一区二区三区| 88av欧美| 人妻久久中文字幕网| 男女啪啪激烈高潮av片| 久9热在线精品视频| 亚洲精品一卡2卡三卡4卡5卡| 美女xxoo啪啪120秒动态图| 尤物成人国产欧美一区二区三区| 999久久久精品免费观看国产| 欧美bdsm另类| 婷婷色综合大香蕉| 日韩欧美精品v在线| 黄色女人牲交| 亚洲狠狠婷婷综合久久图片| 欧美成人a在线观看| 啦啦啦观看免费观看视频高清| 久久亚洲精品不卡| 91精品国产九色| 日韩人妻高清精品专区| 日本免费a在线| 亚洲图色成人| 97人妻精品一区二区三区麻豆| 亚洲国产精品成人综合色| 精品久久久久久久久久免费视频| 免费电影在线观看免费观看| 黄色丝袜av网址大全| 国产精品无大码| 国产成人av教育| 亚洲中文字幕日韩| 国产精品久久久久久av不卡| 欧美不卡视频在线免费观看| 少妇的逼好多水| 美女高潮的动态| 国产午夜精品论理片| 小说图片视频综合网站| 午夜福利在线观看免费完整高清在 | 神马国产精品三级电影在线观看| 欧美黑人欧美精品刺激| 中文字幕人妻熟人妻熟丝袜美| eeuss影院久久| 桃色一区二区三区在线观看| av中文乱码字幕在线| 人妻少妇偷人精品九色| 色哟哟哟哟哟哟| 国产成人影院久久av| 老熟妇乱子伦视频在线观看| 欧美激情在线99| 欧美+日韩+精品| 淫秽高清视频在线观看| 亚洲av中文字字幕乱码综合| 精品久久国产蜜桃| 成人一区二区视频在线观看| 变态另类丝袜制服| 欧美潮喷喷水| 男女做爰动态图高潮gif福利片| 久久久色成人| 国产又黄又爽又无遮挡在线| 老熟妇乱子伦视频在线观看| eeuss影院久久| 亚洲五月天丁香| 亚洲精品乱码久久久v下载方式| 亚洲国产精品合色在线| 成人国产麻豆网| 日本a在线网址| 久久精品国产鲁丝片午夜精品 | 日韩av在线大香蕉| 在线播放无遮挡| 国产精品日韩av在线免费观看| 久久人妻av系列| 此物有八面人人有两片| 欧美日韩中文字幕国产精品一区二区三区| 最近最新免费中文字幕在线| 欧美3d第一页| 欧美日韩亚洲国产一区二区在线观看| 欧美绝顶高潮抽搐喷水| 久久精品久久久久久噜噜老黄 | aaaaa片日本免费| 22中文网久久字幕| 美女 人体艺术 gogo| 中国美白少妇内射xxxbb| 中文字幕av成人在线电影| 一a级毛片在线观看| 亚州av有码| 久久天躁狠狠躁夜夜2o2o| 国产在线精品亚洲第一网站| 日韩欧美国产一区二区入口| 日韩强制内射视频| 精品99又大又爽又粗少妇毛片 | 日韩欧美在线二视频| 亚洲精品日韩av片在线观看| 男人狂女人下面高潮的视频| 日本五十路高清| 久久午夜福利片| 国产精品野战在线观看| 99国产极品粉嫩在线观看| 久久久久久国产a免费观看| 真人一进一出gif抽搐免费| 99热这里只有精品一区| 国产精品久久久久久久电影| 深夜精品福利| 久久久国产成人免费| 国产精品亚洲美女久久久| 淫秽高清视频在线观看| 欧美日韩国产亚洲二区| 成人午夜高清在线视频| 国产aⅴ精品一区二区三区波| 午夜免费成人在线视频| 国产精品久久视频播放| 午夜视频国产福利| 亚洲自拍偷在线| 俄罗斯特黄特色一大片| 观看美女的网站| 两个人视频免费观看高清| 天堂影院成人在线观看| 嫩草影视91久久| 日韩欧美免费精品| 久久精品国产鲁丝片午夜精品 | 国产麻豆成人av免费视频| 国产高清视频在线播放一区| 欧美黑人欧美精品刺激| 国产精品电影一区二区三区| 日韩强制内射视频| 特级一级黄色大片| 久久亚洲真实| 国产视频一区二区在线看| 99国产精品一区二区蜜桃av| 中文字幕高清在线视频| 亚洲精品色激情综合| 日本撒尿小便嘘嘘汇集6| 色5月婷婷丁香| 99久久久亚洲精品蜜臀av| 亚洲18禁久久av| 好男人在线观看高清免费视频| 亚洲欧美日韩东京热| 床上黄色一级片| 很黄的视频免费| 国产亚洲精品综合一区在线观看| 男女做爰动态图高潮gif福利片| 三级毛片av免费| 午夜福利在线观看免费完整高清在 | av在线观看视频网站免费| 麻豆av噜噜一区二区三区| av天堂在线播放| 一本一本综合久久| 欧美日韩瑟瑟在线播放| 草草在线视频免费看| 日韩欧美免费精品| 简卡轻食公司| 天堂av国产一区二区熟女人妻| 在线观看一区二区三区| 一本久久中文字幕| 中文字幕av在线有码专区| 国产91精品成人一区二区三区| 91精品国产九色| 最新中文字幕久久久久| 真实男女啪啪啪动态图| 国产一区二区亚洲精品在线观看| 91狼人影院| 岛国在线免费视频观看| 搞女人的毛片| 国产精品日韩av在线免费观看| 别揉我奶头 嗯啊视频| 欧美不卡视频在线免费观看| 国产伦精品一区二区三区视频9| 噜噜噜噜噜久久久久久91| 久久九九热精品免费| 国产精品不卡视频一区二区| 国产视频一区二区在线看| 国产私拍福利视频在线观看| 久久久久久久久久久丰满 | 搡女人真爽免费视频火全软件 | 欧美日本亚洲视频在线播放| 亚洲狠狠婷婷综合久久图片| 又黄又爽又刺激的免费视频.| 色噜噜av男人的天堂激情| 午夜爱爱视频在线播放| 国内精品久久久久精免费| eeuss影院久久| 久久99热6这里只有精品| av在线观看视频网站免费| 日本一二三区视频观看| 亚洲,欧美,日韩| 国产不卡一卡二| 亚洲最大成人av| 成人鲁丝片一二三区免费| 精品不卡国产一区二区三区| 狠狠狠狠99中文字幕| 乱码一卡2卡4卡精品| 欧美bdsm另类| 两人在一起打扑克的视频| 18禁黄网站禁片免费观看直播| 亚洲不卡免费看| 欧美黑人欧美精品刺激| 成人毛片a级毛片在线播放| 欧美+亚洲+日韩+国产| 亚洲av免费高清在线观看| .国产精品久久| 日韩欧美免费精品| 国产成人a区在线观看| 亚洲成人精品中文字幕电影| 久9热在线精品视频| 91狼人影院| 亚洲国产欧洲综合997久久,| 男人狂女人下面高潮的视频| 波多野结衣高清无吗| 亚洲人成伊人成综合网2020| avwww免费| 女的被弄到高潮叫床怎么办 | 日本a在线网址| 国产探花在线观看一区二区| 在线观看一区二区三区| 人妻少妇偷人精品九色| 国产亚洲精品综合一区在线观看| 精品久久久久久久久av| 99热这里只有精品一区| 此物有八面人人有两片| 亚洲最大成人手机在线| 国产精品一区二区性色av| 久久精品国产亚洲网站| 久久婷婷人人爽人人干人人爱| 啦啦啦观看免费观看视频高清| 露出奶头的视频| 国产激情偷乱视频一区二区| 亚洲一级一片aⅴ在线观看| 免费看日本二区| 国内少妇人妻偷人精品xxx网站| 69人妻影院| 成人美女网站在线观看视频| 国产一区二区三区av在线 | 欧美三级亚洲精品| 亚洲黑人精品在线| 国语自产精品视频在线第100页| 我要看日韩黄色一级片| 亚洲人成网站高清观看| 村上凉子中文字幕在线| 嫁个100分男人电影在线观看| 特级一级黄色大片| 高清日韩中文字幕在线| 18禁黄网站禁片午夜丰满| 欧美绝顶高潮抽搐喷水| 一级毛片久久久久久久久女| 国产精品乱码一区二三区的特点| 欧美zozozo另类| 欧美不卡视频在线免费观看| 嫩草影院新地址| 级片在线观看| av国产免费在线观看| 在线免费观看不下载黄p国产 | 听说在线观看完整版免费高清| 欧美最黄视频在线播放免费| 国产免费av片在线观看野外av| 国内精品久久久久久久电影| 国内精品美女久久久久久| 春色校园在线视频观看| 欧美激情久久久久久爽电影| 一夜夜www| 成人永久免费在线观看视频| videossex国产| 欧美+亚洲+日韩+国产| 蜜桃久久精品国产亚洲av| 亚洲av成人av| 亚洲国产精品合色在线| 99精品久久久久人妻精品| 日日啪夜夜撸| 在线免费十八禁| 午夜福利高清视频| 欧美色视频一区免费| 成人国产综合亚洲| 内地一区二区视频在线| 亚洲乱码一区二区免费版| 三级毛片av免费| 精品一区二区三区人妻视频| 亚洲五月天丁香| 色综合色国产| 女人十人毛片免费观看3o分钟| 国产精品99久久久久久久久| 一个人免费在线观看电影| 国产探花极品一区二区| 欧美一区二区亚洲| 国产伦一二天堂av在线观看| 超碰av人人做人人爽久久| 欧美人与善性xxx| 嫩草影院精品99| 免费在线观看日本一区| 久久中文看片网| 如何舔出高潮| 久久热精品热| 国产亚洲精品久久久com| 在线a可以看的网站| 97热精品久久久久久| .国产精品久久| 成人无遮挡网站| 亚洲精品一卡2卡三卡4卡5卡| 别揉我奶头~嗯~啊~动态视频| 男人舔女人下体高潮全视频| 真人做人爱边吃奶动态| 欧美成人一区二区免费高清观看| 国产高潮美女av| 免费黄网站久久成人精品| 亚洲av美国av| 99久久精品一区二区三区| a级毛片免费高清观看在线播放| 赤兔流量卡办理| 女生性感内裤真人,穿戴方法视频| 国产精品一区二区免费欧美| 亚洲综合色惰| 久久人妻av系列| 国产精品免费一区二区三区在线| 亚洲男人的天堂狠狠| 男女做爰动态图高潮gif福利片| 亚洲久久久久久中文字幕| 午夜a级毛片| av在线老鸭窝| 波多野结衣高清作品| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲国产色片| 国产免费av片在线观看野外av| 久久久久免费精品人妻一区二区| 在现免费观看毛片| 精品国产三级普通话版| 国产精品不卡视频一区二区| 亚洲av免费高清在线观看| 久久精品久久久久久噜噜老黄 | 久久久久国产精品人妻aⅴ院| av视频在线观看入口| 黄色配什么色好看| 丝袜美腿在线中文| 亚洲经典国产精华液单| 亚洲精品久久国产高清桃花| 永久网站在线| 99热6这里只有精品| 国产 一区精品| 成人鲁丝片一二三区免费| avwww免费| 黄色欧美视频在线观看| 久久久久久久午夜电影| 小说图片视频综合网站| 老司机午夜福利在线观看视频| 国产一区二区激情短视频| 久久久久免费精品人妻一区二区| 欧美zozozo另类| 小说图片视频综合网站| 毛片女人毛片| 12—13女人毛片做爰片一| 国产成人aa在线观看| 99国产极品粉嫩在线观看| 日本黄色片子视频| 亚洲国产精品sss在线观看| 亚洲图色成人| 久久精品影院6| 国产亚洲精品综合一区在线观看| 天美传媒精品一区二区| 欧美最新免费一区二区三区| 国产精品嫩草影院av在线观看 | 亚洲欧美日韩高清专用|