• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      運(yùn)動(dòng)結(jié)合二甲雙胍對(duì)2型糖尿病血糖穩(wěn)態(tài)的作用及其可能機(jī)制研究進(jìn)展

      2018-01-22 11:36:10沈文清孫易漆正堂錢帥偉程蜀琳丁樹哲
      體育學(xué)刊 2018年6期
      關(guān)鍵詞:穩(wěn)態(tài)敏感性服用

      沈文清 孫易 漆正堂 錢帥偉 程蜀琳 丁樹哲

      摘 要:運(yùn)動(dòng)和二甲雙胍單一因素對(duì)2型糖尿病的血糖穩(wěn)態(tài)都起到改善作用,但運(yùn)動(dòng)結(jié)合二甲雙胍對(duì)2型糖尿病血糖穩(wěn)態(tài)的作用仍存在矛盾,既有促進(jìn)作用,也有抑制作用,相關(guān)分子機(jī)制仍需進(jìn)一步研究。通過對(duì)該領(lǐng)域研究進(jìn)展的綜述,分析運(yùn)動(dòng)結(jié)合二甲雙胍對(duì)2型糖尿病血糖穩(wěn)態(tài)的不同作用,探討并分析其原因及可能分子機(jī)制,為治療2型糖尿病新的治療靶點(diǎn)和方案的研究提供更多參考。

      關(guān) 鍵 詞:運(yùn)動(dòng)醫(yī)學(xué);二甲雙胍;運(yùn)動(dòng);2型糖尿病(T2D);血糖穩(wěn)態(tài);綜述

      中圖分類號(hào):G804.5 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1006-7116(2018)06-0137-08

      Abstract: Such a single factor as exercise or metformin plays a role in improving the blood glucose homeostasis in T2D, there is contradiction in the effects of exercise combined with metformin on blood glucose homeostasis in T2D: there is a promoting effect, yet there is a retraining effect too, related molecular mechanisms need to be further studied. By reviewing and evaluating the development of researches in this area, the authors analyzed the different effects of exercise combined with metformin on blood glucose homeostasis in T2D, explored and analyzed their causes and possible molecular mechanisms, so as to provide more reference for researches on new treatment targets and programs for treating T2D.

      Key words: sports medicine;metformin;exercise; type 2 diabetes;blood glucose homeostasis;review

      隨著2型糖尿病全球患病率逐年提高,預(yù)防和治療2型糖尿病顯得尤為重要。以二甲雙胍為首的藥物治療結(jié)合運(yùn)動(dòng)干預(yù)是當(dāng)下預(yù)防和治療2型糖尿病的有效方案,并且與精準(zhǔn)醫(yī)學(xué)緊密相關(guān)。但多數(shù)研究發(fā)現(xiàn)運(yùn)動(dòng)結(jié)合二甲雙胍對(duì)2型糖尿病血糖穩(wěn)態(tài)的作用效果不一致,既有促進(jìn)作用,也有抑制作用。為了更好認(rèn)識(shí)這一問題,本研究就運(yùn)動(dòng)結(jié)合二甲雙胍治療2型糖尿病及其機(jī)理的研究進(jìn)展進(jìn)行綜述,試圖從運(yùn)動(dòng)結(jié)合二甲雙胍對(duì)2型糖尿病血糖穩(wěn)態(tài)不同作用的角度,參考人體實(shí)驗(yàn)和動(dòng)物實(shí)驗(yàn)的綜合結(jié)果,從運(yùn)動(dòng)方式、藥物服用劑量和實(shí)驗(yàn)?zāi)P偷纫蛩胤治銎淇赡茉蚣跋嚓P(guān)分子機(jī)制,以期為治療2型糖尿病提供新的治療靶點(diǎn)和方案。

      1 二甲雙胍治療2型糖尿病的作用機(jī)制

      二甲雙胍是自1957年首次推廣至臨床作為治療2型糖尿病的雙胍類藥物。早期研究發(fā)現(xiàn)二甲雙胍亦可作為一種飲食限制模擬物(Dietary restriction mimetic),在改善2型糖尿病血糖穩(wěn)態(tài)的同時(shí),并且通過LKB1—AMPK—SKN-1/Nrf2信號(hào)通路降低線蟲體內(nèi)氧化應(yīng)激水平,延長(zhǎng)其壽命[1]。2型糖尿病的發(fā)病機(jī)制與胰島素抵抗(insulin resistance,IR)、氧化應(yīng)激(oxidative stress)和內(nèi)質(zhì)網(wǎng)應(yīng)激(Endoplasmic Reticulum Stress,ER Stress)水平密切相關(guān),而運(yùn)動(dòng)作為一種可控的刺激劑調(diào)控其相關(guān)分子信號(hào)通路。

      1.1 胰島素抵抗

      胰島素抵抗是2型糖尿病、心血管疾病等其他代謝類疾病的預(yù)測(cè)因子,普遍存在于2型糖尿病中。胰島細(xì)胞功能障礙抑制肝臟葡萄糖輸出,促進(jìn)胰島素抵抗,而二甲雙胍通過抑制胰高血糖素的作用削弱胰島素抵抗,降低空腹血糖水平[2]。二甲雙胍通過提高肝臟和骨骼肌胰島素敏感性,抑制胰島素抵抗作用[3]。研究發(fā)現(xiàn)二甲雙胍通過激活PI3K—Akt—GLUT4信號(hào)通路,削弱T2D大鼠肝臟的胰島素抵抗[4]。并且二甲雙胍聯(lián)合其他藥物更有助于維持2型糖尿病人的血糖穩(wěn)態(tài),抑制肝臟糖異生和胰島素抵抗,同時(shí)改善血脂異常[5-7]。長(zhǎng)期二甲雙胍治療結(jié)合急性運(yùn)動(dòng)干預(yù)可增強(qiáng)胰島素抵抗病人的胰島素活性和敏感性[5-7]。長(zhǎng)期二甲雙胍治療結(jié)合12周耐力訓(xùn)練顯著提高胰島素抵抗病人的胰島素敏感性[9],同時(shí)降低胰島素抵抗對(duì)心血管功能的副作用[10],提高胰島素抵抗病人的最大攝氧量、心血管功能和生活質(zhì)量指數(shù)(HRQoL)[11]。在僅有運(yùn)動(dòng)干預(yù)的情況下,24周有氧運(yùn)動(dòng)結(jié)合抗阻訓(xùn)練顯著提高2型糖尿病女性的胰島素敏感性,降低其胰島素抵抗作用和瘦素水平[12]。人體實(shí)驗(yàn)證實(shí)長(zhǎng)期二甲雙胍治療結(jié)合不同時(shí)長(zhǎng)的運(yùn)動(dòng)干預(yù)可提高胰島素敏感性,降低胰島素抵抗,同時(shí)運(yùn)動(dòng)調(diào)控血糖變化維持其穩(wěn)態(tài)的作用比例更高,而動(dòng)物實(shí)驗(yàn)中缺乏關(guān)于二甲雙胍結(jié)合運(yùn)動(dòng)對(duì)2型糖尿病動(dòng)物的胰島素抵抗作用及其相關(guān)機(jī)制的研究。

      1.2 氧化應(yīng)激

      糖尿病誘發(fā)氧化應(yīng)激反應(yīng)[13],糖尿病狀態(tài)下的氧化應(yīng)激對(duì)人體是有害的[14]。氧化應(yīng)激的激活和ROS(氧自由基)的釋放也會(huì)促進(jìn)糖尿病的形成,與氧化應(yīng)激相關(guān)的治療靶點(diǎn)有mTOR、SIRT1和WISP1(Wnt1誘導(dǎo)的信號(hào)通路蛋白1)通路[15]。2型糖尿病小鼠體內(nèi)p38δ基因敲除激活PKD(蛋白激酶D),誘發(fā)胰島β細(xì)胞功能障礙,同時(shí)抑制胰島素抵抗,促進(jìn)胰島素分泌,提高糖尿病小鼠對(duì)氧化應(yīng)激的敏感性。血糖急劇升高或長(zhǎng)期處于高血糖狀態(tài)[16]和長(zhǎng)期低度慢性炎癥都會(huì)導(dǎo)致2型糖尿病人體內(nèi)ROS增加。缺血性修飾白蛋白(IMA,ischemia-modified albumin)是2型糖尿病人體內(nèi)與氧化應(yīng)激相關(guān)的血清標(biāo)志物,研究發(fā)現(xiàn)3個(gè)月的有氧運(yùn)動(dòng)降低IMA表達(dá)和整體氧化應(yīng)激水平,提高血清抗氧化能力[17]。二甲雙胍抑制胰島β細(xì)胞中氧化應(yīng)激誘導(dǎo)的CD36表達(dá),從而降低血糖[18]。二甲雙胍抑制巨噬細(xì)胞中線粒體復(fù)合物Ⅰ(NADH,泛醌氧化還原酶)和IL-1β的活性,降低ROS生成,延緩氧化應(yīng)激的副作用[19]。二甲雙胍模擬C肽、5-AMP對(duì)AMPK的激活作用,抑制ROS調(diào)控的內(nèi)皮細(xì)胞凋亡、線粒體膜電位異常和線粒體裂變,從而抑制糖尿病及其并發(fā)癥[16]。研究發(fā)現(xiàn)中等強(qiáng)度訓(xùn)練結(jié)合槲皮素不僅可以降低2型糖尿病血糖,亦可抑制高血糖引發(fā)的氧化應(yīng)激反應(yīng)和ROS的增加[20]。運(yùn)動(dòng)結(jié)合二甲雙胍是否也是通過mTOR、SIRT1和AMPK信號(hào)通路抑制2型糖尿病的氧化應(yīng)激作用,值得今后進(jìn)一步研究。

      1.3 內(nèi)質(zhì)網(wǎng)應(yīng)激

      胰島素等蛋白質(zhì)在內(nèi)質(zhì)網(wǎng)上合成、折疊、轉(zhuǎn)運(yùn)和分泌,當(dāng)細(xì)胞內(nèi)外出現(xiàn)一定強(qiáng)度的應(yīng)激時(shí),錯(cuò)誤折疊或非折疊蛋白質(zhì)會(huì)在內(nèi)質(zhì)網(wǎng)腔積聚,內(nèi)質(zhì)網(wǎng)蛋白質(zhì)折疊的負(fù)荷超出它的折疊能力,誘發(fā)內(nèi)質(zhì)網(wǎng)應(yīng)激(Endoplasmic reticulum stress,Ers)[21]。糖尿病發(fā)展進(jìn)程離不開ERs,不僅因?yàn)閷?dǎo)致胰島素抵抗,而且加速胰島β細(xì)胞衰竭[22]。二甲雙胍抑制ERs和氧化應(yīng)激水平,同時(shí)增加活化糖尿病小鼠AMPK/PPARδ信號(hào)通路的NO生物利用率[23]。二甲雙胍治療降低胰島素抵抗大鼠內(nèi)臟脂肪組織chemerin表達(dá)和緩解ERs[24]。反之內(nèi)質(zhì)網(wǎng)應(yīng)激可能導(dǎo)致胰島β細(xì)胞凋亡,二甲雙胍通過抑制JNK、IRS-1、C/EBPβ(CCAAT增強(qiáng)子結(jié)合蛋白β)[22]和CHOP(CCAAT增強(qiáng)子結(jié)合同源蛋白)蛋白表達(dá)[25],一定程度上削弱ERs[26]。二甲雙胍削弱ERs誘導(dǎo)的線粒體功能障礙,促進(jìn)AMPK磷酸化,提高氧化磷酸化水平,抑制mPTP(mitochondrial permeablity transition pore)開放[25]。二甲雙胍通過減少線粒體超氧化物和增加谷胱甘肽水平,抑制細(xì)胞自噬和ERs治療2型糖尿病[27]。研究證實(shí)二甲雙胍調(diào)控AMPK—PI3K—c-Jun NH2信號(hào)通路,抑制ERs誘導(dǎo)的胰島β細(xì)胞凋亡,為2型糖尿病治療提供新靶點(diǎn)[28]。

      1.4 二甲雙胍降糖的信號(hào)轉(zhuǎn)導(dǎo)通路

      二甲雙胍降低血糖的主要信號(hào)轉(zhuǎn)導(dǎo)通路表現(xiàn)為抑制線粒體呼吸鏈復(fù)合物(Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ)酶的活性,并且抑制肝臟糖異生,促進(jìn)肌肉和脂肪組織攝取葡萄糖,增強(qiáng)胰島素敏感性,從而起到降糖的作用。二甲雙胍通過肝細(xì)胞膜上OCT1(organic transporter 1,有機(jī)陽(yáng)離子轉(zhuǎn)運(yùn)體1)轉(zhuǎn)運(yùn)至細(xì)胞內(nèi),部分抑制線粒體呼吸鏈復(fù)合物Ⅰ和提高AMP濃度,降低ATP生成,導(dǎo)致AMP與ATP比值的上升,促進(jìn)AMPK激活[29]。同時(shí)二甲雙胍誘導(dǎo)依賴LKB1(肝臟蛋白激酶B1)的AMPK磷酸化,使AMP濃度和AMP與ATP濃度比值升高,繼而激活A(yù)MPK蛋白激酶活性[30]。小鼠肝臟Stk11基因(編碼LKB1基因)敲除抑制長(zhǎng)期服用的二甲雙胍對(duì)肝臟AMPK的激活和降低血糖的作用,證實(shí)二甲雙胍發(fā)揮降糖作用依賴肝臟LKB1—AMPK信號(hào)通路。同時(shí)二甲雙胍可能作用于ATM(毛細(xì)血管擴(kuò)張性共濟(jì)失調(diào)癥突變蛋白)基因表達(dá),促進(jìn)ATM—LKB1信號(hào)通路的激活,伴隨LKB1和AMPK磷酸化,起到降低血糖的作用[31]。有趣的是,其他研究發(fā)現(xiàn)二甲雙胍抑制肝臟糖異生不依賴LKB1—AMPK信號(hào)通路,與PGC-1α蛋白過表達(dá)有關(guān)。因?yàn)镻GC-1α增加小鼠肝細(xì)胞p-AMPKα和AMPKα的蛋白表達(dá)。同理在人體和大鼠肝細(xì)胞中皆發(fā)現(xiàn)二甲雙胍增加AMPKα1和AMPKα2蛋白表達(dá)[32]。二甲雙胍同時(shí)促進(jìn)血漿GLP-1(胰高血糖素樣肽-1)表達(dá)和依賴PPARα的腸促胰島素受體(islet incretin receptor)基因表達(dá),加快葡萄糖的轉(zhuǎn)運(yùn)和清除[33]。此外,mGPD基因全敲除小鼠,削弱二甲雙胍對(duì)其肝臟糖異生的抑制作用,表現(xiàn)為細(xì)胞質(zhì)和線粒體氧化還原狀態(tài)的下降、內(nèi)源性葡萄糖生成(endogenous glucose production,EGP)的增加和血糖未顯著改善[34]。二甲雙胍抑制肝臟糖異生通過cAMP—PKA、AMPK—GLP-1R—PKA[35]信號(hào)通路,誘導(dǎo)轉(zhuǎn)錄因子CREB Ser133位點(diǎn)磷酸化和TORC2去磷酸化,進(jìn)而促使CREB—CBP—TORC2復(fù)合物的形成。運(yùn)動(dòng)結(jié)合二甲雙胍可降低2型糖尿病前期病人的血清胰島素水平[36]。二甲雙胍促進(jìn)2型糖尿病人進(jìn)行急性中等強(qiáng)度運(yùn)動(dòng)時(shí)的血糖穩(wěn)態(tài)[37]。進(jìn)一步引發(fā)對(duì)未來研究的思考,二甲雙胍和運(yùn)動(dòng)的結(jié)合是否一定促進(jìn)血糖穩(wěn)態(tài)的發(fā)生,二者之間是否存在交互作用。

      2 運(yùn)動(dòng)結(jié)合二甲雙胍對(duì)2型糖尿病血糖穩(wěn)態(tài)的作用

      2.1 促進(jìn)作用

      研究發(fā)現(xiàn)長(zhǎng)期服用二甲雙胍沒有削弱運(yùn)動(dòng)自身對(duì)2型糖尿病病人血糖穩(wěn)態(tài)的積極調(diào)控作用,并且運(yùn)動(dòng)方式多樣化,包括有氧運(yùn)動(dòng)、抗阻運(yùn)動(dòng)和有氧結(jié)合抗阻運(yùn)動(dòng),發(fā)現(xiàn)二甲雙胍結(jié)合不同方式的運(yùn)動(dòng)干預(yù)都能促進(jìn)其血糖穩(wěn)態(tài)[38]。中等強(qiáng)度運(yùn)動(dòng)和高強(qiáng)度間歇運(yùn)動(dòng)結(jié)合二甲雙胍的長(zhǎng)期服用改善2型糖尿病病人的血糖穩(wěn)態(tài)和代謝綜合征相關(guān)指標(biāo)[37]。12周有氧結(jié)合抗阻運(yùn)動(dòng)外加二甲雙胍的服用可顯著改善糖尿病前期病人的胰島素敏感性和血糖水平[9]。運(yùn)動(dòng)結(jié)合二甲雙胍通過降低2型糖尿病患者的腰圍和提高HDL-c有效降低其糖耐量受損和患病風(fēng)險(xiǎn)[39]。研究發(fā)現(xiàn)長(zhǎng)期二甲雙胍治療結(jié)合急性運(yùn)動(dòng)干預(yù)不削弱二甲雙胍治療本身對(duì)2型糖尿病患者的胰島素增敏效果,說明長(zhǎng)期二甲雙胍治療結(jié)合急性運(yùn)動(dòng)干預(yù)可改善2型糖尿病人血糖穩(wěn)態(tài)和胰島素敏感性[8,37]。而作為藥物的二甲雙胍本身存在副作用,如低血糖、高乳酸血癥、可能抑制維生素的吸收,但與急性運(yùn)動(dòng)干預(yù)的結(jié)合可緩解高乳酸血癥,且血糖降低幅度較小[40]。相比于僅服用二甲雙胍,二甲雙胍結(jié)合餐后運(yùn)動(dòng)更能顯著降低T2D病人的餐后血糖峰值和AUC[41]。Ortega等[8]研究發(fā)現(xiàn)日常規(guī)律的二甲雙胍服用沒有鈍化急性高強(qiáng)度間歇運(yùn)動(dòng)干預(yù)對(duì)IR病人胰島素敏感性的促進(jìn)作用,反而增加胰島素抵抗病人的胰島素敏感性[8]、最大攝氧量和心血管功能[11]。長(zhǎng)期二甲雙胍治療結(jié)合運(yùn)動(dòng)干預(yù)可有效降低2型糖尿病病人的發(fā)病率。二甲雙胍結(jié)合長(zhǎng)期耐力運(yùn)動(dòng)可有效降低T2D病人的HbA1c含量[38]。由以上研究結(jié)果可知,無論急性運(yùn)動(dòng)干預(yù)還是長(zhǎng)期耐力運(yùn)動(dòng)結(jié)合二甲雙胍的服用都能顯著提高2型糖尿病人的血糖穩(wěn)態(tài)。

      研究證實(shí)長(zhǎng)期運(yùn)動(dòng)干預(yù)結(jié)合二甲雙胍顯著降低ZDF (Zucker diabetic fatty rats)大鼠肌肉FAT/CD36基因、蛋白表達(dá),鈍化高脂膳食誘導(dǎo)的高血糖過程。同時(shí)該運(yùn)動(dòng)模式通過激活A(yù)MPK蛋白活性增強(qiáng)T2D病人的胰島素敏感性。僅有運(yùn)動(dòng)干預(yù),10周高強(qiáng)度間歇跑臺(tái)運(yùn)動(dòng)(HIIT)亦可顯著降低db/db小鼠的血糖和HbA1c水平,促進(jìn)其肌肉p-Akt和Glut4的蛋白表達(dá),同時(shí)相比于中等強(qiáng)度持續(xù)跑臺(tái)運(yùn)動(dòng)(MICT),HIIT更能促進(jìn)db/db小鼠的血糖穩(wěn)態(tài)[42]。此外,除了抑制肝臟糖異生、降血糖和增強(qiáng)胰島素敏感的作用,二甲雙胍還具有抑制ROS生成、線粒體呼吸鏈復(fù)合物Ⅰ酶、mGPD和ATP合成酶的活性[43]。重要的作用機(jī)制包括促進(jìn)LKB1-AMPK—GLUT4信號(hào)通路,促進(jìn)肌肉LKB1、AMPKα1/α2和GLUT4的蛋白表達(dá)[44]。同時(shí)AMPK蛋白的激活促進(jìn)2型糖尿病小鼠ACC2(乙酰輔酶A羧化酶2)S212位點(diǎn)磷酸化,增強(qiáng)骨骼肌脂肪酸氧化和胰島素敏感性,從而促進(jìn)血糖穩(wěn)態(tài)[45]。所以AMPK蛋白激酶是影響二甲雙胍結(jié)合運(yùn)動(dòng)對(duì)2型糖尿病血糖穩(wěn)態(tài)調(diào)控的重要靶蛋白,具有承上啟下的作用。長(zhǎng)期耐力運(yùn)動(dòng)結(jié)合二甲雙胍的服用可顯著改善2型糖尿病人的血糖穩(wěn)態(tài)和葡萄糖轉(zhuǎn)運(yùn),增加肌肉GLUT4和肝臟GLUT2蛋白表達(dá),促進(jìn)葡萄糖代謝。

      2.2 抑制作用

      二甲雙胍結(jié)合有氧運(yùn)動(dòng)不能有效改善肥胖高血糖OLETF大鼠的血糖水平和胰島素敏感性,反而單獨(dú)進(jìn)行有氧運(yùn)動(dòng)可顯著改善2型糖尿病相關(guān)指征,暗示二甲雙胍可能使運(yùn)動(dòng)誘導(dǎo)的肝臟線粒體適應(yīng)受損[46]。Baptista等[47]證實(shí)人體實(shí)驗(yàn)中不同方式的運(yùn)動(dòng)干預(yù)改善2型糖尿病老年人的心理和生理健康,長(zhǎng)期二甲雙胍治療未起到改善作用。常規(guī)劑量的二甲雙胍治療未顯著改善2型糖尿病人運(yùn)動(dòng)后的血糖、胰島素敏感性和激素水平[48]。同時(shí)發(fā)現(xiàn)高劑量的二甲雙胍治療結(jié)合急性運(yùn)動(dòng)干預(yù)亦未顯著改善T2D病人的胰島素敏感性、血糖水平和增加AMPKα2蛋白表達(dá)[49]。長(zhǎng)期二甲雙胍治療可顯著降低餐后血糖,但急性運(yùn)動(dòng)結(jié)合長(zhǎng)期二甲雙胍治療不能顯著改善2型糖尿病人的餐后血糖和胰島素敏感性[50]。并且增加運(yùn)動(dòng)量同時(shí)服用二甲雙胍反而導(dǎo)致餐后血糖的顯著升高,發(fā)現(xiàn)僅有運(yùn)動(dòng)干預(yù)不服用二甲雙胍降低餐后血糖效果更佳,提示運(yùn)動(dòng)量的改變結(jié)合二甲雙胍的服用可能擴(kuò)大了血糖變異系數(shù)(glycemic variability,MAGE)[51],增加血糖的波動(dòng)幅度。二甲雙胍抑制中等強(qiáng)度有氧運(yùn)動(dòng)對(duì)OLETF大鼠(肥胖、高血糖)血糖穩(wěn)態(tài)的促進(jìn)作用,同時(shí)使其肝臟線粒體功能適應(yīng)受損。無運(yùn)動(dòng)干預(yù),只有二甲雙胍和AICAR(AMP類似物)亦可起到積極調(diào)控血糖的作用,通過激活A(yù)MPK-、ERK-(細(xì)胞外調(diào)節(jié)蛋白激酶)和PDK1-(磷酸肌醇依賴性激酶1)依賴的非典型PKC(蛋白激酶C)蛋白表達(dá),促進(jìn)肌肉葡萄糖轉(zhuǎn)運(yùn)[52]。

      PGC-1α蛋白過表達(dá)抑制T2D小鼠肝臟糖異生作用,該結(jié)果與二甲雙胍抑制肝臟糖異生的效果一致,并且PGC-1α蛋白過表達(dá)相對(duì)抑制二甲雙胍的降糖作用。運(yùn)動(dòng)結(jié)合二甲雙胍對(duì)2型糖尿病血糖穩(wěn)態(tài)的改善存在抑制作用,可能因?yàn)椴煌瑥?qiáng)度的運(yùn)動(dòng)干預(yù)一定程度上抑制了二甲雙胍的藥物動(dòng)力學(xué)活性,同時(shí)也抑制了線粒體呼吸鏈復(fù)合物酶的活性及其肝臟糖異生相關(guān)蛋白的活性,運(yùn)動(dòng)本身加快肝糖原和肌糖原的分解,同時(shí)促進(jìn)能量消耗和能源物質(zhì)代謝,血糖在一段時(shí)間內(nèi)上升,與二甲雙胍的降糖作用相悖,所以相互抑制。但把握運(yùn)動(dòng)強(qiáng)度和運(yùn)動(dòng)量以及二甲雙胍的服用時(shí)間和服用劑量的有效結(jié)合,可逆轉(zhuǎn)二者疊加的相抵作用,這也是今后研究的重點(diǎn)。在運(yùn)動(dòng)可以改善2型糖尿病人血糖穩(wěn)態(tài)的前提下[10],深度探討二甲雙胍結(jié)合運(yùn)動(dòng)對(duì)2型糖尿病血糖穩(wěn)態(tài)的促進(jìn)和抑制作用,期盼發(fā)現(xiàn)起調(diào)控作用的關(guān)鍵蛋白和分子信號(hào)通路。

      3 影響運(yùn)動(dòng)結(jié)合二甲雙胍調(diào)控血糖穩(wěn)態(tài)的因素

      3.1 運(yùn)動(dòng)方式和運(yùn)動(dòng)劑量

      相比于服用二甲雙胍,生活方式的改變更有助于預(yù)防2型糖尿病的形成。大量低中強(qiáng)度的運(yùn)動(dòng)干預(yù)(太極、瑜伽)和飲食干預(yù)皆可改善T2D病人的血糖穩(wěn)態(tài)[53]。為消除每天靜坐少動(dòng)帶來的亞健康狀態(tài),30 min低強(qiáng)度走路和30 min抗阻運(yùn)動(dòng)都可改善2型糖尿病中老年人的連續(xù)高血糖現(xiàn)象[54],但是單一的模式化運(yùn)動(dòng)不能顯著改善2型糖尿病人的血糖穩(wěn)態(tài)[55]。根據(jù)STRRIDE實(shí)驗(yàn)研究發(fā)現(xiàn),在能量消耗相同的前提下,中等強(qiáng)度運(yùn)動(dòng)比高強(qiáng)度間歇運(yùn)動(dòng)更能提高T2D病人的胰島素敏感性[56]。其他研究發(fā)現(xiàn)高強(qiáng)度間歇運(yùn)動(dòng)亦可改善T2D病人的胰島素敏感性和血糖穩(wěn)態(tài)[57]。同時(shí)抗阻運(yùn)動(dòng)亦可增加2型糖尿病前期病人骨骼肌Humanin蛋白表達(dá),促進(jìn)葡萄糖代謝,改善其糖耐量受損現(xiàn)象[58]。有氧運(yùn)動(dòng)、抗阻運(yùn)動(dòng)和有氧結(jié)合抗阻運(yùn)動(dòng)都可顯著降低T2D病人的血糖、胰島素抵抗(IR)和炎癥反應(yīng),增加IRS-1(胰島素受體底物-1)蛋白表達(dá)[59]。長(zhǎng)期耐力運(yùn)動(dòng)和抗阻運(yùn)動(dòng)干預(yù)都能降低T2D病人的血糖水平,增強(qiáng)其胰島素敏感性,但其相關(guān)機(jī)制有待研究。日常的運(yùn)動(dòng)訓(xùn)練或運(yùn)動(dòng)訓(xùn)練結(jié)合二甲雙胍通過抑制白蛋白尿和血管緊張素轉(zhuǎn)換酶2脫落保護(hù)糖尿病db/db小鼠的腎功能,抑制其衰退。運(yùn)動(dòng)后不同調(diào)節(jié)基因的信號(hào)通路分析顯示參與調(diào)控2型糖尿病患者的基因有葡萄糖轉(zhuǎn)運(yùn)蛋白(GLUT4)(SLC2A4RG、FLOT1、EXOC7、RAB13、RABGAP1、CBLB)、糖酵解(HK2、PFKFB1、PFKFB3、PFKM、FBP2和LDHA)和胰島素信號(hào)通路相關(guān)基因,且這些基因表達(dá)都在運(yùn)動(dòng)后上調(diào)[60]。

      3.2 服用劑量和時(shí)間

      不同的二甲雙胍服用劑量和服用時(shí)間對(duì)T2D病人血糖穩(wěn)態(tài)的調(diào)控效果存在差異,并且二甲雙胍結(jié)合其他降糖類藥物亦存在疊加或抵消的作用,若控制好二甲雙胍的服用劑量和時(shí)間,起到的疊加促進(jìn)作用可能更明顯。如二甲雙胍結(jié)合SGLT-2(鈉—葡萄糖協(xié)同轉(zhuǎn)運(yùn)蛋白2)抑制劑增強(qiáng)二甲雙胍自身的降血糖效果[61]。長(zhǎng)期高劑量的二甲雙胍(1 500~2 000 mg/d)治療可有效降低T2D病人的血糖水平,降低其胰島素抵抗[62]。而且短期二甲雙胍(850 mg/d,持續(xù)2 d,測(cè)試前1 h服用850 mg)治療亦可提高IR病人的胰島素敏感性,改善其糖耐量受損現(xiàn)象。長(zhǎng)期服用中或高劑量的二甲雙胍,可誘導(dǎo)高乳酸血癥,但不會(huì)引發(fā)酸中毒[63]。在2型糖尿病大鼠實(shí)驗(yàn)中發(fā)現(xiàn)二甲雙胍濃度越高,降糖效果不一定越好,藥物劑量為200 mg/kg,藥效在服用后5 h的藥代動(dòng)力學(xué)和降血糖效果最佳,優(yōu)于二甲雙胍400和800 mg/kg[64]。中、高強(qiáng)度的跑臺(tái)運(yùn)動(dòng)結(jié)合300 mg/kg劑量的二甲雙胍可顯著降低OLETF糖尿病大鼠的血糖、血脂(TG和NEFA)、血漿瘦素和IL-10水平,改善血糖穩(wěn)態(tài)并抑制炎癥反應(yīng)。二甲雙胍的服用劑量和服用時(shí)間一定程度上會(huì)顯著影響降糖效果,所以如何有效地控制血糖并平穩(wěn)地維持血糖更具實(shí)際意義,與運(yùn)動(dòng)干預(yù)的結(jié)合是否能克服之前的矛盾結(jié)果也具有臨床和現(xiàn)實(shí)意義。

      3.3 實(shí)驗(yàn)?zāi)P偷牟町?/p>

      運(yùn)動(dòng)結(jié)合二甲雙胍對(duì)2型糖尿病血糖穩(wěn)態(tài)的作用研究主要應(yīng)用于人體實(shí)驗(yàn),相關(guān)機(jī)制研究主要集中于動(dòng)物實(shí)驗(yàn),實(shí)驗(yàn)?zāi)P鸵话悴捎胦b/ob(瘦素缺乏)小鼠,db/db(瘦素受體缺失)小鼠、Zucker Diabetic Rat (Zucker糖尿病大鼠)、先天自發(fā)性糖尿病大鼠(GK大鼠和OLETF大鼠)和STZ(鏈脲佐菌素)誘導(dǎo)的2型糖尿病小鼠或大鼠。由于瘦素分泌的缺乏,ob/ob小鼠骨骼肌中胰島素誘導(dǎo)Rac1—Akt信號(hào)通路不發(fā)揮降糖作用[65]。急性運(yùn)動(dòng)干預(yù)后恢復(fù)階段db/db小鼠的血糖水平較正常小鼠也顯著升高,可能與瘦素受體的缺失、PEPCK(磷酸烯醇式丙酮酸羧激酶)和11βHSD1(11β-羥基類固醇脫氫酶1型蛋白)蛋白表達(dá)的增加相關(guān)[66]。8周高強(qiáng)度的游泳運(yùn)動(dòng)顯著降低ob/ob小鼠的血糖,同時(shí)增加肌肉GLUT4的蛋白表達(dá)[67]。長(zhǎng)期跑臺(tái)運(yùn)動(dòng)結(jié)合全身震動(dòng)訓(xùn)練可有效降低db/db小鼠肝臟脂肪含量,抑制內(nèi)臟脂肪細(xì)胞的肥大[68]。二甲雙胍結(jié)合運(yùn)動(dòng)對(duì)嚙齒類動(dòng)物和人體血糖的調(diào)控作用存在差異,可能與不同物種對(duì)二甲雙胍等其他降糖類藥物的藥代動(dòng)力學(xué)表現(xiàn)不同相關(guān),同時(shí)不同物種的運(yùn)動(dòng)適應(yīng)性和機(jī)能改善也不盡相同。建議更多地將調(diào)控2型糖尿病血糖穩(wěn)態(tài)的分子機(jī)制研究成果轉(zhuǎn)化至人體中,研發(fā)出有效的藥物或與運(yùn)動(dòng)結(jié)合的運(yùn)動(dòng)處方,為改善2型糖尿病的血糖穩(wěn)態(tài)和胰島素抵抗邁出實(shí)質(zhì)性的一步。

      4 小結(jié)

      二甲雙胍結(jié)合不同形式的運(yùn)動(dòng)干預(yù)對(duì)2型糖尿病血糖穩(wěn)態(tài)的作用可總結(jié)為以下3點(diǎn):(1)中低強(qiáng)度的運(yùn)動(dòng)干預(yù)可有效改善糖尿病人的血糖水平。(2)中等強(qiáng)度、高強(qiáng)度間歇運(yùn)動(dòng)和抗阻運(yùn)動(dòng)都有助于2型糖尿病人的血糖穩(wěn)態(tài),但何種組合方式更佳有待進(jìn)一步研究。(3)運(yùn)動(dòng)量主要以長(zhǎng)期運(yùn)動(dòng)干預(yù)為主,形成病人的運(yùn)動(dòng)適應(yīng),更有助于血糖控制和穩(wěn)定。在二甲雙胍服用劑量和時(shí)間方面,長(zhǎng)期和短期的二甲雙胍治療都可顯著降低2型糖尿病的血糖和胰島素抵抗,病人服用劑量一般在1 000~2 000 mg/d,中等劑量的二甲雙胍藥代動(dòng)力學(xué)和效果最佳。在實(shí)驗(yàn)?zāi)P头矫?,運(yùn)動(dòng)和藥物干預(yù)的實(shí)際效果以人體實(shí)驗(yàn)為主,測(cè)試血液、肌肉中的相關(guān)指標(biāo);機(jī)制研究主要集中在糖尿病小(大)鼠,不同品系的糖尿病小(大)鼠得出的實(shí)驗(yàn)結(jié)果也不盡相同,這和動(dòng)物本身藥物和運(yùn)動(dòng)的耐受和適應(yīng)性不同有關(guān)。

      隨著對(duì)2型糖尿病發(fā)病機(jī)制和治療方案研究的不斷深入,已發(fā)現(xiàn)二甲雙胍的降糖機(jī)制是通過降低線粒體呼吸鏈復(fù)合物Ⅰ酶和線粒體甘油磷酸脫氫酶(mGPD)從而抑制肝臟糖異生,促進(jìn)胰島素的分泌和活性,增強(qiáng)胰島素敏感性和抑制胰島素抵抗。其中AMPK作為二甲雙胍和運(yùn)動(dòng)作用的敏感靶蛋白和以AMPK介導(dǎo)的信號(hào)通路將是今后的研究熱點(diǎn)。此外,二甲雙胍不僅有降糖作用,而且發(fā)揮減輕體重、抑制炎癥反應(yīng)、癌癥等多重作用。二甲雙胍的服用也會(huì)帶來副作用,高乳酸血癥和高酮癥,與運(yùn)動(dòng)的結(jié)合可緩解該癥狀。所以二甲雙胍結(jié)合運(yùn)動(dòng)干預(yù)是必行的有效治療方案,針對(duì)不同的人群探索最優(yōu)和精準(zhǔn)的運(yùn)動(dòng)處方結(jié)合服用二甲雙胍是未來研究必須長(zhǎng)期堅(jiān)持的目標(biāo)。

      參考文獻(xiàn):

      [1] ONKEN B,DRISCOLL M. Metformin induces a dietary restriction-like state and the oxidative stress response to extend C. elegans healthspan via AMPK,LKB1,and SKN-1[J]. PloS One,2010,5(1):e8758.

      [2] MILLER R A,CHU Q,XIE J,et al. Biguanides suppress hepatic glucagon signaling by decreasing production of cyclic AMP[J]. Nature,2013,494(7436):256-260.

      [3] KRISTENSEN J M,LARSEN S,HELGE JW,et al. Two weeks of metformin treatment enhances mitochondrial respiration in skeletal muscle of AMPK kinase dead but not wild type mice[J]. PloS One,2013,8(1):e53533.

      [4] GARABADU D,KRISHNAMURTHY S. Metformin attenuates hepatic insulin resistance in type-2 diabetic rats through PI3K/Akt/GLUT-4 signalling independent to bicuculline-sensitive GABAA receptor stimulation[J]. Pharmaceutical Biology,2017,55(1):722-728.

      [5] APAIJAI N,CHINDA K,PALEE S,et al. Combined vildagliptin and metformin exert better cardioprotection than monotherapy against Ischemia-Reperfusion Injury in Obese-Insulin Resistant Rats[J]. PLoS One,2014,9(7):e102374.

      [6] KHAN S,JENA G. Sodium butyrate reduces insulin-resistance,fat accumulation and dyslipidemia in type-2 diabetic rat: A comparative study with metformin[J]. Chem Biol Interact,2016,254:124-134.

      [7] DEROSA G,BONAVENTURA A,BIANCHI,et al. Vildagliptin compared to glimepiride on post-prandial lipemia and on insulin resistance in type 2 diabetic patients[J]. Metabolism,2014,63(7):957-967.

      [8] ORTEGA J F,HAMOUTI N,F(xiàn)ERN?NDEZ-EL?AS V E,et al. Metformin does not attenuate the acute insulin-sensitizing effect of a single bout of exercise in individuals with insulin resistance[J]. Acta Diabetol,2014,51(5):749-755.

      [9] MALIN S K,GERBER R,CHIPKIN S R,et al. Independent and combined effects of exercise training and metformin on insulin sensitivity in individuals with prediabetes[J]. Diabetes Care,2012,35(1):131-136.

      [10] CADEDDU C,NOCCO S,CUGUSI L,et al. Effects of metformin and exercise training,alone or in combination,on cardiac function in individuals with insulin resistance[J]. Cardiol Ther,2016,5(1):63-73.

      [11] CADEDDU C,NOCCO S,LUCIA C,et al. Effects of metformin and exercise training,alone or in association,on cardio-pulmonary performance and quality of life in insulin resistance patients[J]. Cardiovasc Diabetol,2014,13(1):93-101.

      [12] 黃彩華,陳俊欽,林建新,等. 運(yùn)動(dòng)改善2型糖尿病胰島素抵抗與血清脂聯(lián)素和瘦素及其交互作用[J]. 中國(guó)體育科技,2011,47(4):100-105.

      [13] GASPAROVA I,KUBATKA P,OPATRILOVA R,et al. Perspectives and challenges of antioxidant therapy for atrial fibrillation[J]. Naunyn Schmiedebergs Arch Pharmacol,2017,390(1):1-14.

      [14] DI MEO S,REED T T,VENDITTI P,et al. Role of ROS and RNS sources in physiological and pathological conditions[J]. Oxid Med Cell Longev,2016,2016(1245049):1-44.

      [15] MAIESE K. New insights for oxidative stress and diabetes mellitus[J]. Oxid Med Cell Longev,2015,2015(875961):1-17.

      [16] BHATT M P,LIM Y C,KIM Y M,et al. C-peptide activates AMPKα and prevents ROS-mediated mitochondrial fission and endothelial apoptosis in diabetes[J]. Diabetes,2013,62(11):3851-3862.

      [17] KURBAN S,MEHMETOGLU,YERLIKAYA H F,et al. Effect of chronic regular exercise on serum ischemia-modified albumin levels and oxidative stress in type 2 diabetes mellitus[J]. Endocr Res,2011,36(3):116-123.

      [18] MOON J S,KARUNAKARAN U,ELUMALAI S,et al. Metformin prevents glucotoxicity by alleviating oxidative and ER stress-induced CD36 expression in pancreatic beta cells[J]. J Diabetes Complications,2017,31(1):21-30.

      [19] KELLY B,TANNAHILL G M,MURPHY M P,et al. Metformin inhibits the production of reactive oxygen species from NADH:ubiquinone oxidoreductase to limit induction of interleukin-1β (IL-1β) and boosts interleukin-10 (IL-10) in lipopolysaccharide (LPS)- activated

      macrophages[J]. J Biol Chem,2015,290(33):20348-20359.

      [20] CHIS I C,CLICHICI A,NAGY A L,et al. Quercetin in association with moderate exercise training attenuates injuries induced by experimental diabetes in sciatic nerves[J]. J Physiol Pharmacol,2017,68(6):877-886.

      [21] 金海秀,漆正堂,孫易,等. 胰島素抵抗的內(nèi)質(zhì)網(wǎng)非折疊蛋白反應(yīng)機(jī)制與運(yùn)動(dòng)應(yīng)激研究進(jìn)展[J]. 體育科學(xué),2016,36(5):78-85.

      [22] MATSUDA T,TAKAHASHI H,MIEDA Y,et al. Regulation of pancreatic β cell mass by cross-interaction between CCAAT enhancer binding protein β induced by endoplasmic reticulum stress and AMP-Activated protein kinase activity[J]. PLoS One,2015,10(6):e0130757.

      [23] CHEANG W S,TIAN X Y,WONG W T,et al. Metformin protects endothelial function in Diet-Induced obese mice by inhibition of endoplasmic reticulum stress through 5 adenosine Monophosphate-Activated protein Kinase–Peroxisome Proliferator–Activated receptor δ pathway[J]. Arterioscler Thromb Vasc Biol,2014,34(4):830-836.

      [24] PEI L,YANG J,DU J,et al. Downregulation of chemerin and alleviation of endoplasmic reticulum stress by metformin in adipose tissue of rats[J]. Diabetes Res Clin Pract,2012,97(2):267-275.

      [25] CHEN Q,THOMPSON J,HU Y,et al. Metformin attenuates ER stress-induced mitochondrial dysfunction[J]. Transl Res,2017,190(3):40-50.

      [26] SIMON-SZAB? L,KOKAS M,MANDL J,et al. Metformin attenuates palmitate-induced endoplasmic reticulum stress,serine phosphorylation of IRS-1 and apoptosis in rat insulinoma cells[J]. PLoS One,2014,9(6):e97868.

      [27] DIAZ-MORALES N,IANNANTUONI F,ESCRIBANO-LOPEZ I,et al. Does Metformin Modulate Endoplasmic Reticulum Stress and Autophagy in Type 2 Diabetic Peripheral Blood Mononuclear Cells?[J]. Antioxid Redox Signal,2018,28(17):1562-1569.

      [28] JUNG T W,LEE M W,LEE Y J,et al. Metformin prevents endoplasmic reticulum stress-induced apoptosis through AMPK-PI3K-c-Jun NH2 pathway[J]. Biochem Biophys Res Commun,2012,417(1):147-152.

      [29] FORETZ M,GUIGAS B,BERTRAND L,et al. Metformin:from mechanisms of action to therapies[J]. Cell Metab,2014,20(6):953-966.

      [30] HAWLEY S A,ROSS F A,CHEVTZOFF C,et al. Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation[J]. Cell Metabolism,2010,11(6):554-565.

      [31] BIRNBAUM M J,SHAW R J. Genomics:Drugs,diabetes and cancer[J]. Nature,2011,470(7334):338-339.

      [32] STEPHENNE X,F(xiàn)ORETZ M,TALEUX N,et al. Metformin activates AMP-activated protein kinase in primary human hepatocytes by decreasing cellular energy status[J]. Diabetologia,2011,54(12):3101-3110.

      [33] VIOLLET B,GUIGAS B,SANZ GARCIA N,et al. Cellular and molecular mechanisms of metformin: an overview[J]. Clinical Science,2012,122(6):253-270.

      [34] MADIRAJU A K,ERION D M,RAHIMI Y,et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase[J]. Nature,2014,510(7506):542-546.

      [35] DUCA F A,C?T? C D,RASMUSSEN B A,et al. Metformin activates a duodenal Ampk dependent pathway to lower hepatic glucose production in rats[J]. Nat Med,2015,21(5):506-511.

      [36] VISKOCHIL R,MALIN S K,BLANKENSHIP J M,et al. Exercise training and metformin,but not exercise training alone,decreases insulin production and increases insulin clearance in adults with prediabetes[J]. J Appl Physiol,2017,123(1):243-248.

      [37] HANSEN M,PALS?E M K,HELGE J W,et al. The Effect of metformin on glucose homeostasis during moderate exercise[J]. Diabetes Care,2015,38(2):293-301.

      [38] BOUL? N G,KENNY G P,LAROSE J,et al. Does metformin modify the effect on glycaemic control of aerobic exercise,resistance exercise or both?[J]. Diabetologia,2013,56(11):2378-2382.

      [39] FLOREZ H,TEMPROSA M G,ORCHARD T J,et al. Metabolic syndrome components and their response to lifestyle and metformin interventions are associated with differences in diabetes risk in persons with impaired glucose tolerance[J]. Diabetes Obes Metab,2014,16(4):326-333.

      [40] SOMINENI H K,BOIVIN G P,ELASED K M. Daily exercise training protects against albuminuria and angiotensin converting enzyme 2 (ACE2) shedding in db/db diabetic mice[J]. J Endocrinol,2014,221(2):235-251.

      [41] ERICKSON M L,LITTLE J P,GAY J L,et al. Effects of postmeal exercise on postprandial glucose excursions in people with type 2 diabetes treated with add-on hypoglycemic agents[J]. Diabetes Res Clin Pract,2017,126(15):240-247.

      [42] CHAVANELLE V,BOISSEAU N,OTERO Y F,et al. Effects of high-intensity interval training and moderate-intensity continuous training on glycaemic control and skeletal muscle mitochondrial function in db/db mice[J]. Sci Rep,2017,7(204):1-10.

      [43] MALIN S K,BRAUN B. Impact of metformin on exercise-Induced metabolic adaptations to lower type 2 diabetes risk[J]. American College of Sports Medicine,2016,44(1):4-11.

      [44] 王寶明. 運(yùn)動(dòng)與二甲雙胍聯(lián)合干預(yù)對(duì)2型糖尿病大鼠骨骼肌LKB1-AMPK-GLUT4信號(hào)通路的影響[D]. 沈陽(yáng):沈陽(yáng)體育學(xué)院,2013.

      [45] O'NEILL H M,LALLY J S,GALIC S,et al. AMPK phosphorylation of ACC2 is required for skeletal muscle fatty acid oxidation and insulin sensitivity in mice[J]. Diabetologia,2014,57(8):1693-1702.

      [46] LINDEN M A,F(xiàn)LETCHER J A,MORRIS E M,et al. Combining metformin and aerobic exercise training in the treatment of type 2 diabetes and NAFLD in OLETF rats[J]. Am J Physiol Endocrinol Metab,2014,306(3):E300-310.

      [47] BAPTISTA L C,MACHADO-RODRIGUES A M,MARTINS R A. Exercise but not metformin improves health-related quality of life and mood states in older adults with type 2 diabetes[J]. Eur J Sport Sci. 2017,17(6):794-804.

      [48] CUNHA M R,SILVA M E,MACHADO H A,et al. Cardiovascular,metabolic and hormonal responses to the progressive exercise performed to exhaustion in patients with type 2 diabetes treated with metformin or glyburide[J]. Diabetes Obes Metab,2008,10(3):238-245.

      [49] SHAROFF C G,HAGOBIAN T A,MALIN S K,et al. Combining short-term metformin treatment and one bout of exercise does not increase insulin action in insulin-resistant individuals[J]. Am J Physiol Endocrinol Metab,2010,298(4):815-823.

      [50] BOUL? N G,ROBERT C,BELL G J,et al. Metformin and exercise in type 2 diabetes:examining treatment modality interactions[J]. Diabetes Care,2011, 34(7):1469-1474.

      [51] MYETTE-C?T? ?,TERADA T,BOUL? N G. The effect of exercise with or without metformin on glucose profiles in type 2 diabetes:a pilot study[J]. Can J Diabetes,2016,40(2):173-177.

      [52] SAJAN M P,BANDYOPADHYAY G,MIURA A, et al. AICAR and metformin,but not exercise,increase muscle glucose transport through AMPK-,ERK-,and PDK1-dependent activation of atypical PKC[J]. Am J Physiol Endocrinol Metab,2010,298(2):179-192.

      [53] EHRLICH S F,HEDDERSON M M,BROWN S D,et al. Moderate intensity sports and exercise is associated with glycaemic control in women with gestational diabetes[J]. Diabetes Metab,2017,43(5):416-423.

      [54] DEMPSEY P C,BLANKENSHIP J M,LARSEN R N,et al. Interrupting prolonged sitting in type 2 diabetes:nocturnal persistence of improved glycaemic control[J]. Diabetologia,2017,60(3):499-507.

      [55] DUVIVIER B M,SCHAPER N C,HESSELINK M K,et al. Breaking sitting with light activities vs structured exercise:a randomised crossover study demonstrating benefits for glycaemic control and insulin sensitivity in type 2 diabetes[J]. Diabetologia,2017,60(3):490-498.

      [56] MCGARRAH R W,SLENTZ C A,KRAUS W E. The effect of vigorous-versus moderate-Intensity aerobic exercise on insulin action[J]. Curr Cardiol Rep,2016,18(12):117.

      [57] RUFFINO J S,SONGSORN P,HAGGETT M,et al. A comparison of the health benefits of reduced-exertion high-intensity interval training (REHIT) and moderate-intensity walking in type 2 diabetes patients[J]. Appl Physiol Nutr Metab,2017,42(2):202-208.

      [58] GIDLUND E K,VON WALDEN F,VENOJ?RVI M,et al. Humanin skeletal muscle protein levels increase after resistance training in men with impaired glucose metabolism[J]. Physiol Rep,2016,4(23):1-10.

      [59] JORGE M L,DE OLIVEIRA V N,RESENDE N M,et al. The effects of aerobic,resistance,and combined exercise on metabolic control,inflammatory markers,adipocytokines,and muscle insulin signaling in patients with type 2 diabetes mellitus[J]. Metabolism,2011,60(9):1244-1252.

      [60] HANSEN J S,ZHAO X,IRMLER M,et al. Type 2 diabetes alters metabolic and transcriptional signatures of glucose and amino acid metabolism during exercise and recovery[J]. Diabetologia,2015,58(8):1845-1854.

      [61] HU J,ZOU P,ZHANG S,et al. Empagliflozin/metformin fixed-dose combination:a review in patients with type 2 diabetes[J]. Expert Opin Pharmacother,2016,17(18):2471-2477.

      [62] VILLAR M M,MART?NEZ-ABUNDIS E,PRECIADO-M?RQUEZ R O,et al. Effect of diacerein as an add-on to metformin in patients with type 2 diabetes mellitus and inadequate glycemic control[J]. Arch Endocrinol Metab,2017,61(2):188-192.

      [63] LALAU J D,AZZOUG M L,KAJBAF F,et al. Metformin accumulation without hyperlactataemia and metformin induced hyperlactataemia without metformin accumulation[J]. Diabetes Metab,2014,40(3):220-223.

      [64] LI X,CHEN Y,ZHAO Z,et al. Pharmacokinetic/pharmacodynamic analysis of metformin using different models in diabetic rats[J]. Drug Res (Stuttg),2016,66(10):547-554.

      [65] SYLOW L,KLEINERT M,PEHM?LLER C,et al. Akt and Rac1 signaling are jointly required for insulin-stimulated glucose uptake in skeletal muscle and downregulated in insulin resistance[J]. Cell Signal,2014,26(2):323-331.

      [66] BRUST K B,CORBELL K A,AL-NAKKASH L,et al. Expression of gluconeogenic enzymes and 11β- hydroxysteroid dehydrogenase type 1 in liver of diabetic mice after acute exercise[J]. Diabetes Metab Syndr Obes,2014,7 495-504.

      [67] CUNHA V N,DE PAULA LIMA M,MOTTA- SANTOS D,et al. Role of exercise intensity on GLUT4 content,aerobic fitness and fasting plasma glucose in type 2 diabetic mice[J]. Cell Biochem Funct,2015,33(7):435-442.

      [68] MCGEE-LAWRENCE M E,WENGER K H,MISRA S,et al. Whole-body vibration mimics the metabolic effects of exercise in male leptin receptor deficient mice[J]. Endocrinology,2017,158(5):1160-1171.

      猜你喜歡
      穩(wěn)態(tài)敏感性服用
      水下超空泡航行體的多穩(wěn)態(tài)運(yùn)動(dòng)
      碳化硅復(fù)合包殼穩(wěn)態(tài)應(yīng)力與失效概率分析
      服用三七的“科學(xué)打開方式”
      中老年保健(2021年5期)2021-08-24 07:06:52
      電廠熱力系統(tǒng)穩(wěn)態(tài)仿真軟件開發(fā)
      煤氣與熱力(2021年4期)2021-06-09 06:16:54
      服用抗過敏藥物須謹(jǐn)慎
      如何正確服用胃藥
      服用降壓藥警惕不良反應(yīng)
      元中期歷史劇對(duì)社會(huì)穩(wěn)態(tài)的皈依與維護(hù)
      中華戲曲(2020年1期)2020-02-12 02:28:18
      釔對(duì)Mg-Zn-Y-Zr合金熱裂敏感性影響
      AH70DB鋼焊接熱影響區(qū)組織及其冷裂敏感性
      焊接(2016年1期)2016-02-27 12:55:37
      庆云县| 虎林市| 得荣县| 达拉特旗| 闽清县| 施秉县| 亳州市| 铜川市| 定远县| 科尔| 思南县| 多伦县| 湖南省| 东阿县| 仪陇县| 雷州市| 东乡| 赤峰市| 磐安县| 余庆县| 扎囊县| 舟曲县| 沽源县| 泾源县| 铁岭县| 南通市| 原阳县| 翁源县| 兴业县| 珠海市| 奉新县| 五河县| 昔阳县| 图木舒克市| 怀来县| 辽阳市| 万全县| 合作市| 镇宁| 克拉玛依市| 长兴县|