• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Instability Analysis of Positron-Acoustic Waves in a Magnetized Multi-Species Plasma

    2018-01-22 09:27:27HossenShahHossenandMamunDepartmentofPhysicsJahangirnagarUniversitySavarDhaka34Bangladesh
    Communications in Theoretical Physics 2017年4期

    M.A.Hossen,M.G.Shah,M.R.Hossen,and A.A.MamunDepartment of Physics,Jahangirnagar University,Savar,Dhaka-34,Bangladesh

    2Department of Physics,Hajee Mohammad Danesh Science and Technology University,Dinajpur-5200,Bangladesh

    3Department of General Educational Development,Daffodil International University,Sukrabad,Dhaka-1207,Bangladesh

    1 Introduction

    In contrast with the past,there has been continual attention in quantum plasmas in ultra-dense astrophysical systems[1?9]as well as laboratory plasmas.[10?12]The quantum effects become noticeable on the study of electron-positron(EP)plasmas which exist in the pulsar magnetosphere,[13?14]active galactic nuclei,[15]in the early universe,[16]etc.,and in laboratory situations.[17?18]In most of the cases,the EP plasma is supposed to exist in relativistic regimes,[19]and most of the theoretical investigations on the nonlinear structures in EP as well as electron-positron-ion(EPI)plasma medium have been done considering the relativistic cases.[20?21]Positrons are created in the interstellar medium when the atoms become interacted by the cosmic ray nuclei.[22]The data obtained during the alpha magnetic spectrometer flight permitting to probe the radiation belts in the Earths innermost magnetosphere provided an evidence of the presence of positrons.[23?24]In order to study the collective behavior of a plasma containing electrons and positron,it is necessary to find the condition to neglect the annihilation process.Many authors have neglected the annihilation process in the ultra-relativistic dense plasmas.[25?26]

    Many astrophysical environments(viz.neutron stars,white dwarfs,etc.) where Fermi energy of the plasma species becomes comparable to or higher than their rest mass energy,show an unavoidable dependency on relativistic effects of plasma components.[27?30]The density of such a compact objects turned into so high that prevents gravitational collapse through the presence of degenerate pressure.Perhaps,there is a dramatic increase in energy of the accelerated particles to generate electrons and positrons by virtue of colliding these high-energy particles.For such an interstellar compact object,the degenerate pressure for the cold positron fluid can be given by the following equation,

    where

    for the non-relativistic limit(where Λc=π?/mc=1.2 ×10?10cm,and ? is the Planck constant divided by 2π).While for the electron and hot positron fluids,

    where for the non-relativistic limit[31?35]

    and for the ultra-relativistic limit[31?35]

    Presently,a considerable attention has been drawn to study the PA waves in astrophysical dense EPI plasmas containing distinct group of positrons(i.e.cold positrons and/or hot positrons).[36?38]The coexistence of cold and hot positron populations in pulsar magnetosphere has been predicted by Bharuthram.[39]In two temperature EPI plasma the interesting phenomena differing from that of one temperature can exist.Furthermore,in contrast to the case of the pure EP plasma,in two temperature EPI plasma the modulational instability may occur.Therefore,the prediction of existing cold and hot positrons species becomes momemtous to know the novel electrostatic perturbations as well as multi-dimensional instability in magnetized EPI plasmas.Basically,PA waves are the result of two distinct positron components(cold positron and hot positron)at different temperatures.The cold positron mass provides the inertia whereas the hot positrons and hot electrons provide the essential thermal pressure to develop the restoring force for the existence of PA waves.It is typically high frequency waves in comparison with the ion plasma frequency propagating at a phase speed which lies between the hot and cold positron thermal velocities.On the PA wave time scale,the ions are generally assumed stationary forming a neutralizing background.This means that the ion dynamics does not in fluence the PA waves because the PA wave frequency is much larger than the ion plasma frequency.

    The nonlinear propagation of IA,PA and Electronacoustic waves for the relativistic plasma has been theoretically studied by a number of authors.[38,40?52]El-Shamyet al.[38]numerically investigated the in fluences of the cold/hot positron parameters on the phase shifts in a plasma system consisting of cold positrons,immobile ions,electrons,and hot positrons.Sahu[44]examined the planar and nonplanar PA shock waves in an unmagnetized EPI plasma system(containing mobile cold positrons,stationary positive ions,and Boltzmann-distributed electrons and hot positrons),and showed the effects of the ion kinematic viscosity,and Boltzmann-distributed electrons and hot positrons on PA shock waves.In a relativistically degenerate magnetoplasma,Ali and Rahman[53]investigated IA waves and numerically shown that the IA solitons and shocks are signi ficantly in fluenced by various parameters of plasma system.

    However,all of these theoretical investigations[38,40?45]on the PA waves are accomplished in an unmagnetized EPI plasma system,and the effect of magnetic field or obliqueness is ignored.The Zakharov–Kuznetsov(ZK)equation and it’s solitary wave solution have been derived using the reductive perturbation method in a magnetized EPI plasma(consisting of inertial cold positrons,negatively charged immobile heavy ions,degenerate electrons,and hot positrons).Their multi-dimensional instability are also studied by the small-k(long-wavelength plane wave)perturbation expansion method.The effects of relativistic electrons/hot positrons degenerate pressure,obliqueness,etc.on the width,amplitude,and phase speed of the PASWs have been studied.

    The article is organized in the following way.The normalized governing equations are presented in Sec.2.The ZK equation and it’s stationary solitary wave solution are derived on Sec.3.The instability of the PASWs(linear wave analysis)has been analyzed in Secs.4 and 5.The parametric investigations of our plasma systems is given in Sec.6.Finally,this paper ends up with the conclusion which is given in Sec.7.

    2 Governing Equations

    We consider the propagation of low-frequency PASWs in a four components magnetized EPI plasma(containing inertial cold positrons,negatively charged immobile heavy ions,degenerate electrons,and hot positrons).At equilibrium,the quasi-neutrality condition readsnpc0+nhp0=ne0+Zini0,wherenpc0,nhp0,ne0,andni0are the equilibrium densities of the cold positrons,hot positrons,electrons and ions,respectively andZiis the ion-charged state.In our present work,we have considered the effects that come from degenerate pressure only;not any quantum effects related to any particular components.For this reason,quantum effect terms i.e.,Bohm potential,quantum spin effects,etc.are ignored in Eqs.(6)and(7).In some other works,[54?55]authors have taken into account Bohm potential associated with particular plasma components such as electrons and positrons.Authors may consider typical parameters instead of the normalized parameters but that is beyond the scope of the present work.It is notable that the mass of cold positron is exactly the same as that of hot positron and electron,but their temperatures are different.The temperature of the cold positron is assumed to be very small,and in our present work it is neglected compared to the temperatures of hot positrons and electrons.So,we consider inertial cold positron,and define the waves associated with the inertial cold positron fluid as the PASWs.The model,what we have considered,is magnetized and since cold positron gives the inertia of this system so that we provide the magnetized equation for the cold positron only.Furthermore,the magnetized cold ion or cold positron or cold electron is common in Refs.[56–59].

    The phase velocity of the PASWs is assumed to be much larger than the cold positrons thermal velocity and much less than the electrons/hot positrons thermal velocities,i.e.vTpc?ω/κ?vTph/vTe.In addition,electrons and hot positrons are considered to be inertialess and move almost parallel to the external magnetic field direction and negatively charged immobile heavy ions participate only to maintain the quasi-neutrality conditon.Under these situations,the basic set of nonlinear dynamic equations for magnetized cold positrons are governed as follows:

    The momentum equations for inertialess degenerate electrons and hot positrons are given by

    The Poisson equation is written as

    wherenpc(ns)is the cold positron(hot positron/electron)number density normalized by its equilibrium valuenpc0(nph0/ne0);upcis the cold positron fluid speed normalized byCpc=(msc2/mpc)1/2,ms(mpcandme)being the rest mass of species(cold positron and electron);jrepresents the charge state of plasma species(i.e.j=1 for electron andj=?1 for hot positron);cbeing the speed of light in vacuum;?is the electrostatic wave potential normalized bymec2/e,ebeing the magnitude of the charge of an electron;the time variabletis normalized byωpc?1=(mpc/4πe2npc0)1/2,and the space variable is normalized byλD=(mec2/4πe2npc0)1/2,respectively.Hereα=ne0/npc0,σ=nph0/npc0,μ=ni0/npc0,andωcpcbeing the cold positron cyclotron frequency(eB0/mpcc)normalized byωpc?1,andKs=nγ?1s0Ls/msc2,respectively.

    3 Derivation of Z-K Equation

    To derive the ZK equation for describing the nonlinear propagation of the PASWs in the EPI plasma under consideration,we use Eqs.(6)–(9),and employ the reductive perturbation technique.[60]We first introduce the stretched coordinates as

    where?is a small parameter measuring the weakness of the dispersion,Vpis the linear phase speed normalized by the PASWs speed(Cpc).It may be noted here thatX,Y,andZare all normalized by the Debye radius(λD),andτis normalized by the ion plasma periodWe next expand the quantities about their equilibrium values in a power series of?as[60?61]

    Now,using Eqs.(10)–(19)into Eqs.(6)–(9),taking the lowest order coeきcient of?,we can write

    whereK′=γKand Eq.(23)is the phase speed of the PA waves propagating in the magnetized EPI plasma under consideration.It is seen thatVpdecreases(increases)with the increase of the electron number density(cold positron number density).The first orderXandY-components of Eq.(7)can be written as

    Equations(24)and(25)represent theXandYcomponents of the cold positron electric field drifts.These equations are also satis fied by the second order continuity equation.Again,using Eqs.(10)–(19)into Eqs.(6)–(9),and eliminatingandthe next higher orderXandYcomponents can be found as

    Equations(26)and(27)represent theXandYcomponents of the cold positron polarization drifts.Now,following the same procedure one can obtain the next higher order continuity equation,andZcomponent of the momentum equation.Using these new higher order equations along with Eqs.(20)–(28),one can eliminateand?(2),and finally obtain

    where

    Equation(29)is the ZK equation describing the nonlinear propagation of the PASWs in a magnetized EPI plasma with degenerate relativistic electron and hot positron fluids.

    The stationary SWs solution of the ZK equation can be written as

    whereψm=3U0/δ1is the amplitude,andis the inverse of the width of the solitary waves.The PASWs with positive(negative)potentialψm>0(ψm<0)is found forB>0(B<0)for the permissible value of any parameter.

    4 Instability of the SWs

    The instability of the obliquely propagating PASWs is studied by adopting the method of small-kperturbation expansion.[62?66]We first assume that

    for a long-wavelength plane wave perturbation in a direction with direction cosines(lζ,lη,lξ),ψcan be written as

    After some algebric calculation the linearized ZK equation can be expressed as

    We have to find the expression ofω1by solving the zeroth,first,and second-order equations obtained from Eqs.(35)–(38).After integration,we can write the zeroth-order equation as

    whereCis an integration constant.The solutions of the homogeneous part of the Eq.(38)can be written as

    So,the general solution of this zeroth-order equation is as

    whereC1andC2are two integration constants.Now,evaluating all integrals,the general solution of this zerothorder equation,forφ0not tending to±∞ as Z → ±∞,can finally be simpli fied to

    The first-order equation,i.e.the equation with terms linear ink,obtained from Eqs.(35)–(38),and(42),after integration,it can be expressed as

    whereKis another integration constant,andα1andβ1are given by

    Now,following the same procedure,the general solution of this first-order equation,forφ1not tending to ±∞ as

    Z→±∞,can be written as

    The second-order equation,i.e.the equation with terms involvingk2,obtained from Eq.(38)after substituting Eqs.(35)–(37),can be written as

    where

    The solution of this second-order equation exists if the right-hand side is orthogonal to a kernel of the operator adjoint to the operator

    This kernel,which must tend to zero as Z→ ±∞,is?0=?msech2(κZ).Thus we can write the following equation determiningω1as follows

    Now,substituting the expressions forφ0andφ1given by Eqs.(48)and(51),and after integration,we arrive at the following dispersion relation

    where

    It is clear from the dispersion relation(50)that there is always instability if(Υ? ?2)>0.Thus,using Eqs.(32),(36),(44),(47),(51),and(52),one can express the instability criterion as[67?68]

    whereSican be expressed as

    If this instability criterionSi>0 is satis fied,the growth rateof the unstable perturbation of these PASWs is given by

    Equation(55)represents that the growth rate(Γ)of the unstable perturbation is a linear function of PASWs speed(U0),but a nonlinear function of the propagating angle(δ),cold positron-cyclotron frequency(ωcpc)and direction cosines(lζandlη).

    5 Linear Wave Analysis

    We have derived the linear dispersion relation for PASWs to evaluate the characteristics of the linear waves.By linearizing equation(29),we can write

    We assume that the variation of the dispersion relation(ω/k)in the transverse dimensions(theXandYdirections)is much slower than that of theZdirection.Afterward,we can neglect the transverse dimensions,i.e.,?/?X=?/?Y?→ 0.Then from Eq.(61),

    We first consider that perturbation varying as?(1)∝e?(iω+ikZ)in the small amplitude limit to derive the dispersion relation.Now,from Eq.(62),the dispersion relation for the linear ZK equation is given by,

    It is seen from the dispersion relation that PASWs signi ficantly modi fied by the the ratio of electron to cold positron number density(α),and with the ratio of hot positron to cold positron number density(σ).

    6 Parametric Investigations

    In this section,we will brie fly discuss the effects of the variation of the relative number densities such as the ratio of electron to cold positron number density(α),the ratio of hot positron to cold positron number density(σ),and the obliqueness(δ)of the magnetic field on the basic properties of the PASWs such as the amplitude(ψm),the width(Δ),and the instability.

    6.1 Linear Properties

    The dispersion relation which is shown in Eq.(63)is graphically represented in Fig.1.We find that the curve of the ultra-relativistic case is higher than that of the nonrelativistic case.The value ofωincreases more rapidly with the increase of the value ofkfor ultra-relativistic case than the non-relativistic case.

    Fig.1 (Color online)The variation of the angular frequency(ω)with wave number(k)of the PASWs for the non-relativistic(red)and ultra-relativistic(blue)cases.

    6.2 Nonlinear Properties

    (i)Effect of electron to cold positron number density ratioα:

    Fig.2 The variation of amplitude(ψm)of the PASWs for different values of α.The dashed curves are for the ultra-relativistic case where the solid curves are for the non-relativistic case.

    The effect of electron to cold positron number density ratio(α)on the amplitude(ψm)of the PASWs pro file is shown in Fig.2.It is found that the variation ofψmfor ultra-relativistic(γ=4/3)case is higher than the nonrelativistic(γ=5/3)case.The variation ofψmfor different values ofαis depicted Fig.2.It is found that theψmdecreases(increases)with the increase of the value of electron number density(cold positron number density).The variation of Δ with respect to the variation ofδandαis shown in Figs.5 and 6.It has been clear from our observation thatψmas well as Δ is always greater for the ultra-relativistic case than the non-relativistic case.After reaching a certain value,Δ begins to decrease with the increase ofδ,and becomes zero atδ=90°.

    (ii)Effect of hot positron to cold positron number density ratioσ:

    The variation of the PASWs pro fileψmandξwithσis shown in Fig.3 for both non-relativistic and ultrarelativistic cases.It is seen thatψmdecreases with the increase of the value ofσ.The variation of Δ with respect to the variation ofδandσare depicted in Figs.7 and 8.The Δ increases withδand reaches to it is maximum value with increasing ofδ.After reaching a certain value it begins to decrease and becomes zero atδ=90°.It has been clear from our observation that Δ is always greater in ultra-relativistic case than the non-relativistic case.

    Fig.3 The variation of amplitude(ψm)of the PASWs for different values of σ.The dashed curves are for the ultra-relativistic case where the solid curves are for the non-relativistic case.

    (iii)Effect of obliqueness parameterδ:

    It is assumed that the external magnetic field is directed along thez-axis,i.e.,B0=B0and the propagation is in thex–yplane.It is seen that the magnitude of the external magnetic field has no effect on the amplitude of the solitary waves.However,it does have an effect on the width of these solitary waves.The impact of the external magnetic fieldB0through cold positron cyclotron frequencyωcpcon the width of PASWs has been observed and found that the width of the K-dV soliton increases with the decreasing value ofωcpcfor the non-relativistic and the ultra-relativistic limits.It is shown that,as we increase the magnitude of the magnetic field,the width of these solitary waves decreases,i.e.the external magnetic field makes the solitary structures more spiky.The variation of Δ withδ(αandσ)for non-relativistic and ultrarelativistic case is represented in Fig.4(Figs.5–8).Δ increases with the increase of the value ofδ(from 0°? 55°)but begins to decrease for the values which lies within(55°? 90°).It should be mentioned here that the maximum obliqueness i.e.whenδ?→ 90°,the Δ?→ 0 andψmbecomes∞.So,the assumption that are electrostatic will no longer be valid,and fully electromagnetic theory is needed.

    Fig.4 Comparison between width(Δ)and obliqueness parameter(δ)in considering non-relativistic(dotted curve)and ultra-relativistic(solid curve)cases.

    Fig.6 The variation of width(Δ)of the potential associated with the PASWs with the obliqueness parameter(δ)and the ratio of electron to cold positron number density(α)considering ultra-relativistic case.

    Fig.7 Showing the pro file of the PASWs along with the variation of the width(Δ)and the obliqueness(δ)with σ considering non-relativistic case.

    Fig.8 Showing the pro file of the PASWs along with the variation of the width(Δ)and the obliqueness(δ)with σ considering ultra-relativistic case.

    (iv)Instability of the PASWs:

    We have graphically obtained the parametric regimes by theSi=0 surface plots(Figs.9–12)above which the PASWs become unstable,and below which the PASWs become stable.These show the variation of the parametric regimes which play an important role for the instability of the PASWs indicating that for the parameters above the surface,the PASWs become unstable.It is seen thatωcpcincreases with the increase of bothδandlζshown in Fig.9.The increment of the values ofδandlζgives a clear indication that the value ofωcpcincreases for which the PASWs become unstable.Si=0 surface plot showing the variation ofωcpcwithlζandlηforδ=15°which is represented in Fig.10.This indicates that as the value oflζandlηincrease,the value ofωcpcfor which the solitary waves become unstable decreases.The nonlinear variations of Γ withlζ,lη,ωcpc,andδare shown in Figs.11–12.The variation of Γ withlζ,andlηis depicted in Fig.11.It is clear from this that the unstable perturbation increases as the increasing of bothlζandlη.With the increasing of the values ofωcpcandδ,the value of Γ decreases which is depicted in Fig.12.It is found thatαandσhave no any effect on the instability or growth rate of the PASWs.

    Fig.9 Plot Si=0.The variation of ωcpcwith δ and lζ for the parameter lη=0.10.

    Fig.10 Plot Si=0.The variation of ωcpcwith lζ and lη for the parameter δ=15.

    Fig.11 The variation of Γ with lζ and lη for the parameters U0=0.1,δ=15,ωcpc=0.80.

    Fig.12 The variation of Γ with ωcpcand δ for the parameters U0=0.1,lη=0.70,and lζ=0.20.

    7 Conclusion

    To summarize,the propagation of the PASWs in amagnetized EPIplasma(containinginertialcold positrons, relativistic degenerate electrons and hot positrons,and negatively charged immobile heavy ions)has been theoretically investigated.We have studied the basic properties of the PASWs by analyzing the stationary solitary wave solution of the ZK equation,and finally analyzed the instability of these structures by small-k perturbation expansion method.

    The solitary like structures,which we have predicted here,are due to balance between the nonlinearity and the dispersion,where the inertia comes from cold positron,and restoring force from the degenerate electron as well as hot positron.In our model,we used the following parameters for our numerical analysis,U0=0.01?0.1,σ=0.1?0.8,nso=1.0×1025?1030,δ=15,α=0.1?0.9,andμ=0.1 ? 0.6[38,44]and for instability analysisωcpc=0.2 to 0.9,lζ=lη=0.1 to 0.9,andδ=0°to 90°.However,the ranges of the plasma parameters are very wide and relevant to many dense plasma environments.Finally,we hope that our present investigation may help to analyze the formation,and the basic characteristics of PASWs structures in a relativistic degenerate EPI plasma which occurs in space and many astrophysical situations,especially in pulsar environments.[38]

    [1]M.Opher,L.O.Silva,D.E.Dauger,V.K.Decyk,and J.M.Dawson,Phys.Plasmas 8(2001)2454.

    [2]S.Sadiq,S,Mahmood,Q.Haque,and M.Z.Ali,Astrophys.J.793(2014)27.

    [3]J.Rafelski,L.Labun,and J.Birrell,Phys.Rev.Lett.110(2013)111102.

    [4]S.Ahmad,Ata-ur-Rahman and S.A.Khan,Astrophys.Space Sci.358(2015)16.

    [5]M.R.Hossen,L.Nahar,S.Sultana,and A.A.Mamun,High Energy Density Phys.13(2014)13.

    [6]M.R.Hossen,L.Nahar,S.Sultana,and A.A.Mamun,Astrophys.Space Sci.353(2014)123.

    [7]M.R.Hossen,L.Nahar,and A.A.Mamun,Phys.Scr.89(2014)105603.

    [8]B.Hosen,M.G.Shah,M.R.Hossen,and A.A.Mamun,Euro.J.Plus 131(2016)81.

    [9]B.Hosen,M.Amina,A.A.Mamun,and M.R.Hossen,J.Korean Phys.Soc.69(2016)1762.

    [10]S.Datta and M.J.McLennan,Rep.Prog.Phys.53(1999)1003.

    [11]S.C.Wilks,H.Chen,E.Liang,P.Patel,D.Price,B.Remington,R.Shepherd,M.Tabak,and W.L.Kruer,Astrophys.Space Sci.298(2005)347.

    [12]N.Crouseilles,P.A.Hervieux,and G.Manfredi,Phys.Rev.B 78(2008)155412.

    [13]P.Goldreich and W.H.Julian,Astrophys.J.157(1969)869.

    [14]F.C.Michel,Rev.Mod.Phys.54(1982)1.

    [15]H.R.Miller and P.J.Witta,Active Galactic Nuclei,Springer,Berlin(1987).

    [16]W.Misner,K.S.Thome,and J.A.Wheeler,Gravitation,Freeman,San Francisco(1973).

    [17]R.G.Greaves,M.D.Tinkle,and C.M.Surko,Phys.Plasmas 1(1994)1439.

    [18]P.Helander and D.J.Ward,Phys.Rev.Lett.90(2003)135004.

    [19]M.L.Burns,Positron-Electron Pairs in Astrophysics,American Institute of Physics,Melville,New York(1983).

    [20]V.I.Berezhiani,M.Y.El-Ashry,and U.A.Mo fiz,Phys.Rev.E 50(1994)448.

    [21]J.Zhao,J.I.Sakai,K.I.Nishikawa,and T.Neubert,Phys.Plasmas 1(1994)4114.

    [22]O.Adrani,G.C.Barbarino,and G.A.Bazilevskaya,et al.,Nature(London)458(2009)607.

    [23]E.Fiandrini,G.Esposito,B.Bertucci,B.Alpat,et al.,Space Weather 2(2004)S09S02.

    [24]V.Plyaskin,Astropart.Phys.30(2008)18.

    [25]W.F.El-Taibany and A.A.Mamun,Phys.Rev.E 85(2012)026406.

    [26]E.W.Laing and D.A.Diver,Plasma Phys.Control.Fusion 55(2013)065006.

    [27]S.L.Shapiro and S.A.Teukolsky,Black Holes,White Dwarfs and Neutron Stars:The Physics of Compact Objects,John Wiley&Sons,New York(1983).

    [28]F.C.Michel,Theory of Neutron Star Magnetosphere,IL:Chicago University,Chicago(1991).

    [29]M.A.Hossen and A.A.Mamun,Phys.Plasmas 22(2015)102710.

    [30]M.A.Hossen,M.R.Hossen,S.Sultana,and A.A.Mamun,Astrophys.Space Sci.357(2015)34.

    [31]S.Chandrasekhar,Philos.Mag.11(1931)592.

    [32]S.Chandrasekhar,Astrophys.J.74(1931)81.

    [33]M.R.Hossen and A.A.Mamun,Braz.J.Phys.44(2014)673.

    [34]M.R.Hossen,L.Nahar,and A.A.Mamun,Braz.J.Phys.44(2014)638.

    [35]M.A.Hossen,M.R.Hossen,and A.A.Mamun,Braz.J.Phys.44(2014)703.

    [36]J.Srinivas,S.I.Popel,and P.K.Shukla,J.Plasma Phys.55(1996)209.

    [37]I.J.Lazarus,R.Bharuthram,S.V.Singh,S.R.Pillay,and G.S.Lakhina,J.Plasma Phys.78(2012)621.

    [38]E.F.El-Shamy,W.F.El-Taibany,E.K.El-Shewy,and K.H.El-Shorbagy,Astrophys.Space Sci.338(2012)279.

    [39]R.Bharuthram,Astrophys.Space Sci.189(1992)213.

    [40]M.G.Shah,M.R.Hossen,S.Sultana,and A.A.Mamun,Chin.Phys.Lett.32(2015)085203.

    [41]M.G.Shah,M.R.Hossen,and A.A.Mamun,Braz.J.Phys.45(2015)219.

    [42]M.G.Shah,M.R.Hossen,and A.A.Mamun,J.Plasma Phys.81(2015)905810517.

    [43]M.G.Shah,A.A.Mamun,and M.R.Hossen,J.Korean Phys.Soc.66(2015)1239.

    [44]B.Sahu,Phys.Scr.82(2010)065504.

    [45]S.K.El-Labany,M.Shalaby,R.Sabry,and L.S.El-Sherif,Astrophys.Space Sci.340(2012)101.

    [46]M.R.Hossen,S.A.Ema,and A.A.Mamun,Commun.Theor.Phys.62(2014)888.

    [47]M.R.Hossen,L.Nahar,and A.A.Mamun,J.Astrophys.2014(2014)653065.

    [48]M.R.Hossen,L.Nahar,and A.A.Mamun,J.Korean Phys.Soc.65(2014)1863.

    [49]M.R.Hossen and A.A.Mamun,Plasma Sci.Technol.17(2015)177.

    [50]M.A.Hossen,M.R.Hossen,and A.A.Mamun,J.Korean Phys.Soc.65(2014)1883.

    [51]M.R.Hossen and A.A.Mamun,J.Korean Phys.Soc.65(2014)2045.

    [52]S.A.Ema,M.R.Hossen,and A.A.Mamun,Contrib.Plasma Phys.55(2015)551.

    [53]S.Ali and Ata-ur-Rahman,Phys.Plasmas 21(2014)042116.

    [54]M.A.Hossen and A.A.Mamun,Phys.Plasmas 22(2015)073505.

    [55]M.M.Hasan,M.A.Hossen,A.Rafat,and A.A.Mamun,Chin.Phys.B 25(2016)105203.

    [56]Z.Zhenni,W.Zhengwei,L.Chunhua,and Y.Weihong,Plasma Sci.Technol.16(2014)995.

    [57]M.Shahmansouri and H.Alinejad,Astrophys.Space Sci.347(2013)305.

    [58]H.Alinejad and A.A.Mamun,Phys.Plasmas 18(2011)112103.

    [59]M.Rahman,M.S.Alam,and A.A.Mamun,Astrophys.Space Sci.357(2015)36.

    [60]H.Washimi and T.Taniuti,Phys.Rev.Lett.17(1966)996.

    [61]P.K.Shukla and M.Y.Yu,J.Math.Phys.19(1978)2506.

    [62]A.A.Mamun,Phys.Scr.58(1998)505.

    [63]A.A.Mamun and R.A.Cairns,J.Plasma Phys.56(1996)175.

    [64]E.Infeld,J.Plasma Phys.33(1985)171.

    [65]M.G.M.Anowar and A.A.Mamun,Phys.Plasmas 15(2008)102111.

    [66]S.Akter,M.M.Haider,S.S.Duha,M.Salahuddin,and A.A.Mamun,Phys.Scr.88(2013)015501.

    [67]M.M.Haider and A.A.Mamun,Phys.Plasmas 19(2012)102105.

    [68]M.M.Haider,Contrib.Plasma Phys.53(2013)234.

    18禁国产床啪视频网站| 丰满少妇做爰视频| 日韩 欧美 亚洲 中文字幕| 免费久久久久久久精品成人欧美视频| 亚洲,欧美精品.| 欧美人与性动交α欧美软件| 欧美日韩成人在线一区二区| 国产主播在线观看一区二区| 欧美日韩国产mv在线观看视频| 欧美日韩成人在线一区二区| 国产伦理片在线播放av一区| 国产成+人综合+亚洲专区| 99热网站在线观看| 99国产精品一区二区蜜桃av | 午夜精品久久久久久毛片777| 欧美日本中文国产一区发布| 又紧又爽又黄一区二区| 老司机午夜十八禁免费视频| 美女高潮到喷水免费观看| 另类精品久久| av天堂久久9| 纵有疾风起免费观看全集完整版| 亚洲av日韩在线播放| 男女下面插进去视频免费观看| 日本a在线网址| 午夜福利在线免费观看网站| 露出奶头的视频| 欧美日韩中文字幕国产精品一区二区三区 | 日本欧美视频一区| 下体分泌物呈黄色| 国产精品免费视频内射| 侵犯人妻中文字幕一二三四区| 亚洲五月色婷婷综合| 亚洲专区字幕在线| 久久久久国内视频| 国产97色在线日韩免费| 纵有疾风起免费观看全集完整版| 亚洲熟妇熟女久久| 亚洲男人天堂网一区| 国产精品二区激情视频| 国产日韩欧美亚洲二区| 精品亚洲成a人片在线观看| 乱人伦中国视频| 国产男靠女视频免费网站| 亚洲伊人色综图| 日韩制服丝袜自拍偷拍| 老熟女久久久| 丁香六月天网| 99久久人妻综合| 亚洲第一av免费看| 久久精品国产亚洲av香蕉五月 | 不卡一级毛片| 国产精品久久久久久精品电影小说| 亚洲av片天天在线观看| 午夜91福利影院| 天天躁日日躁夜夜躁夜夜| 一边摸一边抽搐一进一出视频| 一级a爱视频在线免费观看| 国产日韩欧美视频二区| 热re99久久精品国产66热6| 在线亚洲精品国产二区图片欧美| 国产亚洲一区二区精品| 国产视频一区二区在线看| 婷婷成人精品国产| 亚洲少妇的诱惑av| 十八禁高潮呻吟视频| 天天躁狠狠躁夜夜躁狠狠躁| 巨乳人妻的诱惑在线观看| 高清视频免费观看一区二区| 日本精品一区二区三区蜜桃| 一个人免费在线观看的高清视频| 国产精品av久久久久免费| 久久久久久久精品吃奶| 热re99久久精品国产66热6| 亚洲成人免费电影在线观看| 人人妻,人人澡人人爽秒播| 免费看a级黄色片| 国产精品香港三级国产av潘金莲| 国产亚洲欧美在线一区二区| 免费观看av网站的网址| 中文字幕人妻熟女乱码| 国产成人免费观看mmmm| 国产人伦9x9x在线观看| 黄色毛片三级朝国网站| 岛国在线观看网站| 国产视频一区二区在线看| 丝袜在线中文字幕| 每晚都被弄得嗷嗷叫到高潮| 欧美亚洲日本最大视频资源| 日韩制服丝袜自拍偷拍| 免费黄频网站在线观看国产| 97在线人人人人妻| 欧美激情极品国产一区二区三区| 免费在线观看完整版高清| 久久久国产精品麻豆| 久久99一区二区三区| 国产色视频综合| 麻豆国产av国片精品| 精品久久蜜臀av无| 搡老乐熟女国产| 久久热在线av| 一级毛片女人18水好多| 一级毛片女人18水好多| 高清欧美精品videossex| 又黄又粗又硬又大视频| 一级a爱视频在线免费观看| 亚洲 国产 在线| 少妇精品久久久久久久| 他把我摸到了高潮在线观看 | 久久人妻福利社区极品人妻图片| 国产精品九九99| 91精品三级在线观看| 日韩熟女老妇一区二区性免费视频| 岛国毛片在线播放| 叶爱在线成人免费视频播放| 国产精品久久久久久人妻精品电影 | 夜夜夜夜夜久久久久| 欧美大码av| 一本综合久久免费| 成人特级黄色片久久久久久久 | 久久中文字幕一级| 大香蕉久久成人网| 最新在线观看一区二区三区| 熟女少妇亚洲综合色aaa.| 精品高清国产在线一区| 久久精品亚洲熟妇少妇任你| 国产日韩欧美视频二区| 纯流量卡能插随身wifi吗| 久久亚洲精品不卡| videosex国产| 亚洲精品美女久久久久99蜜臀| 国内毛片毛片毛片毛片毛片| 18禁美女被吸乳视频| 最近最新中文字幕大全免费视频| 国产av精品麻豆| 久久亚洲真实| 男女边摸边吃奶| 欧美日韩视频精品一区| 大码成人一级视频| 久久国产亚洲av麻豆专区| 亚洲专区字幕在线| 男人舔女人的私密视频| av视频免费观看在线观看| 国产男女超爽视频在线观看| 桃红色精品国产亚洲av| 熟女少妇亚洲综合色aaa.| 久久精品国产综合久久久| 亚洲精品中文字幕在线视频| 久久久国产欧美日韩av| 国产精品九九99| 亚洲色图 男人天堂 中文字幕| 怎么达到女性高潮| 动漫黄色视频在线观看| 波多野结衣av一区二区av| 大香蕉久久网| 91国产中文字幕| 女人精品久久久久毛片| 日日摸夜夜添夜夜添小说| 动漫黄色视频在线观看| h视频一区二区三区| 亚洲av电影在线进入| 日本av免费视频播放| svipshipincom国产片| 女人爽到高潮嗷嗷叫在线视频| 激情在线观看视频在线高清 | 久久婷婷成人综合色麻豆| 精品视频人人做人人爽| 成人免费观看视频高清| 丝袜人妻中文字幕| 日本一区二区免费在线视频| 91大片在线观看| 亚洲一区中文字幕在线| 97在线人人人人妻| 亚洲精品美女久久av网站| 免费看十八禁软件| 免费久久久久久久精品成人欧美视频| 99九九在线精品视频| 在线亚洲精品国产二区图片欧美| 18禁观看日本| 欧美亚洲日本最大视频资源| 18禁国产床啪视频网站| 麻豆av在线久日| 久久久久视频综合| 午夜日韩欧美国产| 12—13女人毛片做爰片一| 国产欧美日韩一区二区三| 国产成人精品无人区| av网站在线播放免费| 日韩免费高清中文字幕av| 亚洲成人免费av在线播放| 成人免费观看视频高清| 男人操女人黄网站| 亚洲情色 制服丝袜| 麻豆成人av在线观看| 一区二区日韩欧美中文字幕| 满18在线观看网站| 香蕉国产在线看| 正在播放国产对白刺激| 久久精品亚洲熟妇少妇任你| 国产男靠女视频免费网站| 精品国产一区二区三区久久久樱花| 后天国语完整版免费观看| 成人三级做爰电影| 国产在视频线精品| 好男人电影高清在线观看| 99国产精品免费福利视频| 久久性视频一级片| 国产精品欧美亚洲77777| 老司机深夜福利视频在线观看| 欧美日韩亚洲高清精品| 国产欧美日韩一区二区三| cao死你这个sao货| 日本撒尿小便嘘嘘汇集6| 日日爽夜夜爽网站| 亚洲精品在线美女| 蜜桃在线观看..| 亚洲精品自拍成人| 亚洲avbb在线观看| 欧美精品啪啪一区二区三区| 免费黄频网站在线观看国产| 99精国产麻豆久久婷婷| 三级毛片av免费| 精品国内亚洲2022精品成人 | 黄色a级毛片大全视频| 久久久精品区二区三区| 国产伦理片在线播放av一区| 又大又爽又粗| 国产aⅴ精品一区二区三区波| 麻豆乱淫一区二区| 久久亚洲精品不卡| 国产福利在线免费观看视频| 日本wwww免费看| 99国产精品99久久久久| 亚洲精品一卡2卡三卡4卡5卡| avwww免费| 精品国产乱码久久久久久男人| 国产成人av教育| 在线观看免费高清a一片| 999久久久国产精品视频| 国产三级黄色录像| 久久香蕉激情| 国产成人av激情在线播放| 天堂俺去俺来也www色官网| 久久毛片免费看一区二区三区| 久久免费观看电影| 777米奇影视久久| 欧美人与性动交α欧美软件| 国产日韩欧美在线精品| 久久人妻熟女aⅴ| 在线av久久热| 夜夜骑夜夜射夜夜干| 国产日韩欧美在线精品| 在线看a的网站| 成人三级做爰电影| 久久 成人 亚洲| 国产亚洲av高清不卡| 欧美激情 高清一区二区三区| 一区二区三区精品91| 我的亚洲天堂| 丝袜在线中文字幕| 国产一区二区激情短视频| 一区在线观看完整版| 国产成人免费无遮挡视频| 久久久久久久国产电影| 亚洲中文av在线| 国产欧美日韩综合在线一区二区| 日日夜夜操网爽| 狠狠精品人妻久久久久久综合| 大香蕉久久网| 亚洲精品粉嫩美女一区| 欧美精品一区二区大全| 国产成人啪精品午夜网站| 天堂俺去俺来也www色官网| 啦啦啦 在线观看视频| 久久久精品国产亚洲av高清涩受| 国产成人精品久久二区二区免费| 日本五十路高清| 肉色欧美久久久久久久蜜桃| 成人三级做爰电影| 国产精品99久久99久久久不卡| 国产伦理片在线播放av一区| 欧美日韩福利视频一区二区| 亚洲欧美一区二区三区久久| 久久狼人影院| tocl精华| 丝袜美足系列| 国产又爽黄色视频| a级毛片在线看网站| www.精华液| 黑人巨大精品欧美一区二区mp4| 久久av网站| 后天国语完整版免费观看| 精品卡一卡二卡四卡免费| 国产在线观看jvid| 汤姆久久久久久久影院中文字幕| 国产精品一区二区在线不卡| 老汉色∧v一级毛片| 大陆偷拍与自拍| 成人三级做爰电影| 国产亚洲av高清不卡| 国产欧美亚洲国产| 亚洲一卡2卡3卡4卡5卡精品中文| 制服人妻中文乱码| 少妇粗大呻吟视频| 欧美日韩中文字幕国产精品一区二区三区 | 搡老乐熟女国产| 999久久久国产精品视频| 精品国产一区二区三区久久久樱花| 2018国产大陆天天弄谢| 妹子高潮喷水视频| 午夜福利在线免费观看网站| 夜夜夜夜夜久久久久| 9热在线视频观看99| 亚洲,欧美精品.| 国产欧美日韩综合在线一区二区| 高清欧美精品videossex| 一区二区日韩欧美中文字幕| 国产精品成人在线| 午夜91福利影院| 午夜福利乱码中文字幕| 青草久久国产| 色综合婷婷激情| 午夜精品国产一区二区电影| 黄频高清免费视频| 制服人妻中文乱码| 日韩欧美国产一区二区入口| 久久久久久久久久久久大奶| 黄色a级毛片大全视频| 极品少妇高潮喷水抽搐| 母亲3免费完整高清在线观看| 色视频在线一区二区三区| 久久久久久久国产电影| 性色av乱码一区二区三区2| 久久人妻av系列| 国产亚洲精品第一综合不卡| 一级片免费观看大全| 看免费av毛片| 波多野结衣av一区二区av| 制服诱惑二区| 我要看黄色一级片免费的| 欧美老熟妇乱子伦牲交| 精品久久久久久电影网| 黑人巨大精品欧美一区二区mp4| 在线天堂中文资源库| 性少妇av在线| 亚洲色图av天堂| 亚洲熟妇熟女久久| 久久久国产一区二区| 国产无遮挡羞羞视频在线观看| 日韩欧美免费精品| 国产aⅴ精品一区二区三区波| 丝瓜视频免费看黄片| 99国产精品一区二区蜜桃av | 日日夜夜操网爽| 亚洲欧美色中文字幕在线| 这个男人来自地球电影免费观看| 日日摸夜夜添夜夜添小说| 欧美av亚洲av综合av国产av| 99国产精品一区二区蜜桃av | 99国产精品99久久久久| 男女午夜视频在线观看| 99国产精品一区二区蜜桃av | 国产成人免费无遮挡视频| 国产淫语在线视频| 女人久久www免费人成看片| 亚洲熟女精品中文字幕| 美国免费a级毛片| 国产高清激情床上av| 超色免费av| 色尼玛亚洲综合影院| 老司机靠b影院| 美女高潮到喷水免费观看| 欧美日韩视频精品一区| 热re99久久国产66热| 久久精品熟女亚洲av麻豆精品| 69精品国产乱码久久久| 亚洲自偷自拍图片 自拍| 国产主播在线观看一区二区| 18禁黄网站禁片午夜丰满| 国产精品1区2区在线观看. | 人人妻,人人澡人人爽秒播| 国产福利在线免费观看视频| 免费在线观看日本一区| 国产高清视频在线播放一区| 性色av乱码一区二区三区2| 熟女少妇亚洲综合色aaa.| 亚洲精品中文字幕在线视频| 高清黄色对白视频在线免费看| 亚洲免费av在线视频| 亚洲色图av天堂| 中文字幕人妻丝袜一区二区| 99久久精品国产亚洲精品| 又紧又爽又黄一区二区| 国产精品av久久久久免费| 成人18禁高潮啪啪吃奶动态图| 涩涩av久久男人的天堂| 视频在线观看一区二区三区| 热re99久久国产66热| 亚洲,欧美精品.| 亚洲成a人片在线一区二区| 欧美日韩黄片免| 18禁美女被吸乳视频| 亚洲精品av麻豆狂野| 精品一区二区三卡| 久久午夜亚洲精品久久| 搡老熟女国产l中国老女人| 美女高潮喷水抽搐中文字幕| 久久久久国产一级毛片高清牌| 精品国产超薄肉色丝袜足j| 国产成人精品久久二区二区91| 一级毛片精品| 久久毛片免费看一区二区三区| 极品人妻少妇av视频| 亚洲欧美激情在线| 肉色欧美久久久久久久蜜桃| 50天的宝宝边吃奶边哭怎么回事| 国产成人系列免费观看| 黄色片一级片一级黄色片| 女同久久另类99精品国产91| 色94色欧美一区二区| 男女高潮啪啪啪动态图| 老熟妇仑乱视频hdxx| 亚洲av国产av综合av卡| 咕卡用的链子| 捣出白浆h1v1| 黑人猛操日本美女一级片| 亚洲全国av大片| 久久精品成人免费网站| 黄色毛片三级朝国网站| 日韩欧美一区二区三区在线观看 | 国产午夜精品久久久久久| 亚洲国产中文字幕在线视频| av天堂在线播放| 成人手机av| 女性被躁到高潮视频| 性高湖久久久久久久久免费观看| 制服人妻中文乱码| 男人舔女人的私密视频| 汤姆久久久久久久影院中文字幕| 精品少妇内射三级| 亚洲精品一二三| 大片电影免费在线观看免费| 蜜桃国产av成人99| 大型av网站在线播放| 丰满少妇做爰视频| 日本精品一区二区三区蜜桃| 精品国产一区二区三区久久久樱花| 免费观看av网站的网址| 免费在线观看日本一区| 亚洲精品久久成人aⅴ小说| 操美女的视频在线观看| 国产无遮挡羞羞视频在线观看| 高清黄色对白视频在线免费看| 黑人操中国人逼视频| 少妇被粗大的猛进出69影院| 在线av久久热| 老司机靠b影院| 亚洲精华国产精华精| 中文字幕精品免费在线观看视频| 天天影视国产精品| tocl精华| www日本在线高清视频| 国产欧美日韩精品亚洲av| 精品久久久久久电影网| 久久久久网色| 国产欧美日韩一区二区三| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲午夜理论影院| 涩涩av久久男人的天堂| 国产有黄有色有爽视频| 最黄视频免费看| 99精品在免费线老司机午夜| 老熟妇仑乱视频hdxx| 成人亚洲精品一区在线观看| 国产精品一区二区在线不卡| 一进一出好大好爽视频| 少妇的丰满在线观看| 男人舔女人的私密视频| 欧美亚洲 丝袜 人妻 在线| 老熟妇乱子伦视频在线观看| 免费高清在线观看日韩| 脱女人内裤的视频| 国产不卡av网站在线观看| 久久性视频一级片| 真人做人爱边吃奶动态| 欧美老熟妇乱子伦牲交| 在线av久久热| 国产精品久久久久久精品电影小说| 国产亚洲欧美在线一区二区| 两个人看的免费小视频| 久久久欧美国产精品| 国产成人啪精品午夜网站| 国产又色又爽无遮挡免费看| 国产区一区二久久| 中文字幕制服av| 国产熟女午夜一区二区三区| 一边摸一边做爽爽视频免费| 男女免费视频国产| 久久 成人 亚洲| 国产在线视频一区二区| 国产aⅴ精品一区二区三区波| 午夜福利乱码中文字幕| 夜夜夜夜夜久久久久| av线在线观看网站| 久久香蕉激情| 黑人巨大精品欧美一区二区mp4| 久久天躁狠狠躁夜夜2o2o| 一本大道久久a久久精品| 国产精品一区二区在线观看99| 亚洲 欧美一区二区三区| 男女床上黄色一级片免费看| 搡老乐熟女国产| 一进一出好大好爽视频| 多毛熟女@视频| 日韩视频在线欧美| 亚洲人成伊人成综合网2020| 天天躁夜夜躁狠狠躁躁| 69精品国产乱码久久久| 大型黄色视频在线免费观看| 午夜精品久久久久久毛片777| 老司机靠b影院| 99精品久久久久人妻精品| 亚洲精品成人av观看孕妇| 男女免费视频国产| 国产精品久久久久成人av| 欧美激情高清一区二区三区| 国产成+人综合+亚洲专区| 国产精品av久久久久免费| 午夜福利视频精品| 国产精品免费一区二区三区在线 | www.999成人在线观看| 性少妇av在线| 99国产极品粉嫩在线观看| 亚洲伊人久久精品综合| 91字幕亚洲| 香蕉国产在线看| 热re99久久精品国产66热6| 国产精品偷伦视频观看了| 精品国产亚洲在线| 国产av又大| 女人被躁到高潮嗷嗷叫费观| 国产熟女午夜一区二区三区| 欧美 日韩 精品 国产| 久久香蕉激情| 丝瓜视频免费看黄片| 十分钟在线观看高清视频www| 男人舔女人的私密视频| 久久久精品国产亚洲av高清涩受| 日韩欧美国产一区二区入口| 国产麻豆69| 亚洲成人免费av在线播放| 国产精品秋霞免费鲁丝片| 亚洲精品在线观看二区| 18禁裸乳无遮挡动漫免费视频| 在线亚洲精品国产二区图片欧美| bbb黄色大片| 十八禁高潮呻吟视频| 老司机午夜福利在线观看视频 | 久久亚洲真实| 亚洲五月色婷婷综合| 十八禁人妻一区二区| 久热爱精品视频在线9| 亚洲人成电影观看| 婷婷成人精品国产| 69精品国产乱码久久久| www.自偷自拍.com| 亚洲国产av新网站| 亚洲伊人色综图| 日韩有码中文字幕| 黑人巨大精品欧美一区二区蜜桃| 无人区码免费观看不卡 | 午夜老司机福利片| 亚洲全国av大片| 国产成人免费观看mmmm| 国产日韩欧美在线精品| 自拍欧美九色日韩亚洲蝌蚪91| 国产xxxxx性猛交| 色尼玛亚洲综合影院| 亚洲精品一二三| 黄色a级毛片大全视频| 免费在线观看完整版高清| 国产av国产精品国产| 99国产综合亚洲精品| 亚洲自偷自拍图片 自拍| 国产精品av久久久久免费| 女性被躁到高潮视频| 色精品久久人妻99蜜桃| 天堂俺去俺来也www色官网| 久久久国产成人免费| 欧美+亚洲+日韩+国产| 女人精品久久久久毛片| 美女午夜性视频免费| 久久ye,这里只有精品| 日本精品一区二区三区蜜桃| 午夜福利视频精品| 欧美激情高清一区二区三区| 老司机亚洲免费影院| 天天操日日干夜夜撸| 国产精品亚洲一级av第二区| 久久久国产成人免费| 日韩欧美国产一区二区入口| 日韩大片免费观看网站| 精品国产一区二区三区四区第35| 中文字幕制服av| 女警被强在线播放| 无遮挡黄片免费观看| 欧美成人免费av一区二区三区 | a级毛片黄视频| 桃红色精品国产亚洲av| 老熟妇仑乱视频hdxx| 亚洲国产av新网站| 免费少妇av软件| 成人影院久久| 亚洲精品粉嫩美女一区| 香蕉久久夜色|