• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamics of Optical Bistability with Kerr-nonlinear Blackbody Radiation Reservoir

    2018-01-22 09:27:22YasserSharaby
    Communications in Theoretical Physics 2017年4期

    Yasser A.Sharaby

    Suez University,Faculty of Sciences,Physics Department,Suez,Egypt

    1 Introduction

    Optical bistability(OB)is a phenomenon generated in non-equilibrium systems due to both,nonlinearity and feedback.[1?3]It has been investigated both experiementally and theoretically in Rnig and Fabry–Perot cavities.[4?22]OB has potential applicationsin various fieldsofopticalcomputation and communications[7?8,15?18,23?25]since,it exhibits two output states for one input field. Such a bistable device may be used for optical transistors,switching,memories and quantum logic gates.Optical bistability can be realized in normal[1?2,8?18]and squeezed vacua radiation reservoirs,[26?33]in both Fabry–Perot and ring cavity configurations.

    Recently,OB has been studied for a system of twolevel atoms placed in a ring cavity in the presence of Kerr nonlinear blackbody(KNB)radiation reservoir.[34]It is shown that OB can be observed with lower cooperative parameter compared with that in normal[8]and squeezed[29]vacua.Further,the OB with KNB reservoir[34]offeres the possibility of thermal switching device near resonance conditions at fixed input field.Moreover,critical slowing down of the thermal switching effects has been stuided recently[35]by perturbing the relative temperature in the vicinity of its critical value.It is observed that,the OB device switches faster with KNB radiation reservoir than with other NV(normal vacuum),SV(squeezed vacuum)and TF(thermal field)reservoirs.Also,the thermal switching can be enhanced by increasing the relative temperatureTb.Very recently,[36]we have shown that in the presence of inhomogeneous broadening of atomic linewidth,bistability area increases with relative temperatureTband thermal switching occurs over a larger range ofTbin comparsion with homogeneous broadening of atomic linewidth.[34]

    In the case of KNB,the resulting radiation produce some photon pairs,and unpaired photons forming a nonpolariton,a quasiparticle that contributes to the free thermal(blackbody)radiation.[37]These photon pairs are formed by the presence of the phonons at temperature below a certain transition temperature,so the KNB can be found in a squeezed thermal state.A KNB radiation reservoir can be acheived by simply filling the interior of a blackbody cavity with a Kerr-like medium(usually a nonlinear crystal in rectangular or cylindrical kind of shape)under the condition that the thermal radiation and the Kerr-like medium are in thermal equilibrium with each other and maintain a fixed temperature for the cavity.[37?39]In the case of normal blackbody,the state of the electromagnetic field is replaced by photon pair state in the KNB case during matter- field interaction.This leads to a replacment of in finite energy of the vacuum field by a finite energy of phton pairs.[38?39]Some important studies in the presence of the KNB reservoir are:the suppression of spontaneous emission from a two-level atom below a transition temperature[39]and the preservation of quantum entanglements of atoms.[40]

    In earlier works[10,41?42]a linear stability analysis for the absorptive optical bistability in a ring cavity showed that under certain conditions,part of the upper branch of the hysteresis curve is unstable.Such a system can operate as a transformer of continuous wave light into pulsed light,where a self pulsing oscillation occurs with a period equal to the cavity round-trip time.This analysis was generalized in the dispersive OB case[43](see Refs.[17–18]and references therein).Another mechanism of in-stability was theoretically studied by Ikedaet al.,[44?47]where periodic instabilities and chaotic behavior could occur in optical bistable two-level system in a ring cavity with time delay effects,when the propagation time of the radiation field from the output-to the input-end is longer than the atomic decay time.This instability can lead to period doubling and chaos as reported[6]for Fabry–Perot cavity containing sodium atoms in the absorptive OB case.Single mode instabilities ranging from gain assisted laser systems[48]to passive two-level optical bistable systems have been investigated[49]and revisited with more details.[50?53]Effects of the squeezed vacuum on the dynamic behavior of two-level OB systems have been discussed in Ref.[30].Novel instability of OB systems has been examined in Ref.[54]for thin material with thickness much smaller than the wavelength for pure absorptive OB csae.Another new type of instability occurs in three-level atomic medium,[55]which does not require the condition of existence of finite detuning and occurs without coupling to multiple modes of the cavity field in contrast to that occurs in the two-level atomic bistability.[56]Further,the instability examination in the lower cooperative branch for the Λ-andV-atomic systems inside a double-cavity[57]showed that it is due to the leakage of population from the coherently prepared lower atomic levels.This leakage occurs via spontaneous emission into the ground state leading to instability in the lower cooperative branch.Such instability occurs only in the V-type system wherein incoherent decay coupling of the pair of ground states is essential to obtain instabilities in the cooperative branch.

    In normal vacuum,the dynamics of OB outside the rotating wave approximation has been examined recently.[58]In this study,the optical bistable behavior routes from periodic to chaotic behavior,with spiking generation,by decreasing the input field.In addition,the atomic detuning causes bifurcation from chaotic to self pulsing and vice versa.Optical chaos generated in nonlinear optical systems is applicable for communication information at high data rates[59]and useful in applications of random number generation.[60?61]

    In this paper,we further extend the work reported in Ref.[34]to investigate the dynamical behavior of homogeneously broadened two-level atomic systems placed in an optical ring cavity,in the presence of KNB radiation reservoir.We show that the dynamics of the system and chaos are sensitively dependent on the input field amplitude,the relative temperature and the atomic- field detuning parameter.

    The paper is organized as follows:In Sec.2,we review the Maxwell–Bloch equations for the OB system in contact with KNB reservoir.Section 3 presents the computational results,followed by a conclusion in Sec.4.

    2 Model Review

    Consider a homogeneously broadened two-level atomic medium of lengthLplaced inside an optical ring cavity driven by a coherent field and exposed to KNB radiation reservoir.The Maxwell–Bloch equations are given as,[34]

    Here,n1=(e?ω/kBT? 1)?1is the average photon number of the heat bath(thermal reservoir)maintained at fixed temperatureTB,kBis the Boltzman consant andδ=(ωo?ωL)/γ⊥is the normalized atom- field detuning,ωLis the input field frequency,γ⊥is the transverse atomic decay rate for the polarization atomic component andγ‖is the longitudinal atomic decay rate for the population difference.C=αL/2Tis the cooperativity parameter,withαis the absorption coeきcient andTis the transmissivity of the output mirror.x,Yare the normalized transmitted and incident field amplitudes,respectively.r±(t)are the mean values of the quadratic atomic polarization components andr3(t)is the mean atomic population.θ=(ωc?ωL)/κis the normalized cavity detuning withωccavity mode frequency,κ=cavity decay constant.The relative decay rateΓris defined asΓr=γKNB/γ⊥withγKNBis the atomic decay rate in the presence of KNB radiation reservoir.In the KNB reservoir case,[39?40]the radiation is in a squeezed thermal state below a transition temperatureTc(dependent on the Kerr nonlinear crystal)which results in atomic spontaneous emission supression due to formation of phonon pairs via lattice vibrations.AboveTc,the KNB behaves like a normal blackbody(ordinary thermal radiation of temperatureTB).The formation of photon pairs is physically understood as follows:[37]the photons in the blackbody radiation experience an effective interaction by excahnge of phonons.In this case,the photon is surrounded by a phonon cloud which couples with another photon to form photon pairs.Thus,photons with opposite wave vectors and spins are bound into pairs,and unpaired photons are tranformed into quasiparticle nonpolaitons forTB<Tc.Accordingly,Γris given as,[39]

    WithΔ(TB)/=0:(TB<TC)is the order parameter for pairing of photons,and has the approximate form,[39]

    which is monotonically decreasing function of the temperatureTB,vanishes at the transition temperatureTcand yieldsΓr/μ=1,μis the refractive index of the medium of KNB,Tb=TB/Tcis the relative temperature of the KNB reservoir.Δ(TB)=0 for normal blackbody thermal reservoirTB≥Tcand normal vacuum case whereΓr=1.Tcis determined explicity from the equation,[34]

    withγ<1 is a dimensionless parameter,termed as coupling constant related to the characteristic of Kerr nonlinear crystal placed in the cavity,Xc= ?ωR/2kBTcandωRis the frequency of the Raman-active mode of the crystal.[39]

    In the steady state case,Eqs.(1)–(3),give the inputoutput relationship,

    Instabilities of single mode laser one-photon systems have been investigated in 1970’s,[48]which showed the analogy of the chaotic behavior between laser systems and fluids(modelled by Lorenz equations).The chaos in nonlinear optical cavities results either from nonlinear lightmatter interaction[44]or from nonlinear coupling between optical modes as in laser cavities.[62]The conditions of self-pulsing have been discussed in both absorptive and dispersive regimes in ring cavity[42?43]and the route from self-pulsing to chaos has been reported for large parametersC=70000,δ=374,θ=340.[56]Further,the nonlinear dynamics of two photon laser system was investigated and showed chaotic,period doubling,stable and bistable states[53]with chaos suppressed by initial atomic populations,atomic coherence and injected classical field.Optical instabilities most likely[49?52]arise when the atomic system interacts with(large)multimode field leading to chaos and self-pulsing or with intense single cavity mode field that saturates the collection of atoms in the absorptive OB.When the system in the vicinity of the unstable region of the upper branch of OB curve,either it transfers to the lower branch or exhibits either periodic(self pulsing)oscillatory behavior or non-periodic chaotic behavior.The analytical study of instability[17?18]for absorptive and dispersive bistability shows that the instability of the upper branch may exist if at least one of the off-resonant modes are unstable.

    Here,we investigate the nonlinear dynamical behavior of the OB system,Eqs.(1)–(3),within the RWA in the dispersive OB case when the atomic polarization variables are eliminated adiabatically.In this adiabatic case,the atomic relaxation time for the atomic polarization components is shorter than the other characteristic times(γ⊥?γ‖,κ,κθ,κC)of the system.Hence by substutiting the stationary value ofr?from Eq.(2)into Eqs.(1),(3)and then expressing the normalized output fields as,x=u+ivand we obtain the following system of ODEs:

    where,κ′=κ/γ‖,τ=κt.Equations(8)–(10)are solved numerically with the initial conditions by using the standard Runge–Kutta method to show the transition between dynamical states by varying the relative temperatureTb.

    3 Computational Results

    Nonlinear systems that display period doubling and chaos are sensitive to the system parameters and essentially show four mo des of operations:chaotic,stable,periodic,and quasiperiodic.The effect of relative temperature(Tb)on the steady state relation(the output field|x|against the input fieldY),in the dispersive case,for large set of paramters(cf Refs.[42–43]),δ=220,θ=250 and fixedC=60000(Fig.1)show that the bistable area decreases with increasing the relative temperatureTb.Linear stability analysis around the stationary state shows that,points on the upper branch of the bistable behavior are unstable and the associated instability arises with opposite signs of the detuning parameters(δθ<0)and multiple periods of unstable points occur for large cooperativity(C>300).[49]

    Fig.1 The output field|x|against the incident field Y for δ=220, θ=250,C=60000,and different relative temperature Tb=0.7139,0.6428,and 0.6094 equivalent to Γr=0.9,0.7,0.6,respectively.Inset shows the relative decay parameter Γragainst the relative temperature Tb.

    In the normal vacuum case,OB behaves nonlinearly exhibiting stable,periodic,quasiperiodic and choas modes according to the values of the system parameters.[49,56]We calculate the bifurcation diagram of the maximum peak of the output field(Max|x|)as a function of relative temperatureTbto analyze the transition between the dynamical states.The transition between dynamical states when varying the relative temperatureTbis displayed by the bifurcation diagram(Fig.2),for fixed

    and input field valueY=1750.In this bifurcation diagram,the route of periodic(including stable,period doubling)to chaotic behavior is observed by decreasing the relative temperatureTbover range

    For decreasing the relative temperatureTb,the system display chaos over the relative temperature range

    and followed by periodic behavior again over range

    These opposite two routes occur over a range of 0.5<Tb<0.9.Thus,the OB with KNB is very rich in dynamics,such that the device can operate at specified temperatureTb,as a pulsed device with regular or irregular osillations.

    Fig.2 Bifurcation diagram representing the maximum value of the output field|x|against the relative temperature Tbfor fixed C=60000,κ′=0.25,δ=220,θ=250,and Y=1750.

    Fig.3 (a)Self pulse oscillations for the output field|x|in the adiabatic case against the time τ for C=60000,δ=220,θ=250,Y=1750 and Tb=0.887.(b)The corresponding phase-space representation(Im(x),Re(x))of the output field.(c)Power spectrum for|x|.(d)–(f)Same as(3(a)–3(c))but with Tb=0.87.(g)–(i)Same as(3(a)–3(c))but with Tb=0.76.

    Fig.4 Same as Fig.3 but with Tb=0.738,0.76,0.5675.

    Fig.6 (a)Bifurcation diagram representing the maximum value of the output field|x|against the relative temperature Tbfor fixed C=60000,δ=220,θ=250,and Y=1830.(b)As(6(a))but with Y=1850.(c)As(6(a))but with Y=2200.

    The transition between dynamical states can be shown by integrating the system of normalized coupled equations(8)–(10)for fixed values ofδ=220,θ=250,C=60000,κ′=0.25,Y=1750 and different values ofTb.For differentTbvalues,the time-dependent of the output field|x|and the phase portrait(Im(x),Re(x))and power spectrum diagrams of the input intensities are plotted respectively in Figs.3–5 for fixed parameters of the system.Periodic behavior for the output field along the upper branch of the OB curve is shown in Fig.3 for different values of the relative temperatureTb.AtTb=0.887,(Figs.3(a)–3(c)),a single period(Fig.3(a))is exhibited in phase space(Fig.3(b))and con firmed as a prominent sigle peak in the power spectrum(Fig.3(c)).Decreasing the relative temperatureTbto 0.87,the double period occurs in Figs.(3(d)–3(e))and two prominent peaks in Fig.(3f).Further decrease in the relative temperatureTbto 0.76(Figs.3(g)–3(i))and 0.738(Figs.4(a)–4(c))shows the occurance of period four.When the relative temperatureTbis reduced to 0.67 the system starts to perform more periods and finally chaotic behavior occurs(Figs.4(d)–4(f)).After a range of chaotic behavior over the relative temperature range(0.558<Tb<0.725),a decrease in the relative temperature toTb=0.5675,causes periodic behavior with period 4(Figs.4(g)–4(i)),double period at valuesTb=0.557,0.539(Figs.5(a)–5(f)),and a single period atTb=0.518(Figs.5(g)–5(i)).

    Increasing the input fieldYalong the upper branch toY=1830(Fig.6(a)),the chaotic range over the relative temperature range shrinkes with more shrinking atY=1850(Fig.6(b)),but bifurcation to instability modes still exist.Chaos vanishes with further increase of the input fieldY=2200(Fig.6(c)),and the system shows only stable and two-periods.Note that every point in the bifucation diagram represents a peak of the oscillations.For fixedY=1750,the system routes from chaotic to aperiodic behavior and again to chaotic behavior by varying the atomic detuning(Fig.7).

    Fig.7 Bifurcation diagram representing the maximum value of the output field|x|against the atomic detuning δ for fixed values of parameters C=60000,κ′=0.25,θ=250,Y=1800,and Tb=0.6094.

    4 Conclusion

    We have investigated the nonlinear dynamics of OB system phenomenon with homogeneously broadened twolevel atomic medium interacting with a single mode of the ring cavity in the presence of a Kerr-nonlinear blackbody(KNB)radiation reservoir.The relative temperatureTb(ratio between the temperature of the reservoirTBand the transtion temperatureTc)affects signi ficantly the steady state behavior of the system.In addition,the relative temperatureTbgives rise to rich dynamical behavior via bifurcation diagrames of the output field withTb.The system bifurcates from periodic to chaotic behavior by the decreasing the relative temperature at fixed input field.The choas region extends over the range 0.558<Tb<0.725 followed by periodic behavior with further decrease in the relative temperature.The chaotic behavior that exhibited for input field(Y=1750)shrinks and vanishes by increasing the input field(atY=2200).The vanishing of chaos over a certain range of relative temerature is desirable,sometimes,in optical bistable systems which implies stablization for steady states.ForY=2200 the system shows only a single period and two periods over the entire range of relative temperatureTb.The transition between the dynamical states routes from regular(self-pulsing)to irregular(chaos)oscillations by varying the atomic detuning as seen in the bifurcation diagram of the output field against the atomic detuning.

    Future investigation in the same model may include the effect of:cavity time delay effect(cf Ref.[58])and inhomogeneous broadening on the dynamics of the sysytem(cf Ref.[36]).

    The author acknowledges fruitful discussions with Prof.S.Shoukry Hassan(University of Bahrain).

    [1]H.M.Gibbs,Optical Bistability Controlling Light With Light,Academic Press,Inc.,Orlando,FL(1985)p.481.

    [2]A.Joshi and M.Xiao,Controlling Steady-State and Dynamical Properties of Atomic Optical Bistability,World Scienti fic,Singapore(2012).

    [3]Chunfei Li,Nonlinear Optics:Principles and Applications,Shanghai Jiao Tong University Press,Shanghai and Springer Nature Singapore Pte Ltd.(2017).

    [4]A.Sz?ke,V.Daneu,J.Goldhar,and N.A.Kurnit,Appl.Phys.Lett.15(1969)376.

    [5]S.L.McCall,Phys.Rev.A 9(1974)1515.

    [6]H.M.Gibbs,S.L.McCall,and T.N.C.Venkatesan,Phys.Rev.Lett.36(1976)1135.

    [7]H.M.Gibbs,S.L.McCall,and T.N.C.Venkatesan,Opt.News 5(1979)6.

    [8]R.Bonifacio and L.A.Lugiato,Opt.Commun.19(1976)172.

    [9]R.Bonifacio and L.A.Lugiato,Phys.Rev.A 18(1978)1129.

    [10]R.Bonifacio and L.A.Lugiato,Lett.Nuovo Cimento 21(1978)517.

    [11]S.S.Hassan,P.D.Drummond,and D.F.Walls,Opt.Commun.27(1978)480.

    [12]E.Abraham,R.K.Bullough,and S.S.Hassan,Opt.Commun.29(1979)109.

    [13]E.Abraham,S.S.Hassan,and R.K.Bullough,Opt.Commun.33(1980)93.

    [14]E.Abraham and S.S.Hassan,Opt.Commun.35(1980)291.

    [15]E.Abraham and S.D.Smith,J.Phys.E 15(1982)33.

    [16]E.Abraham and S.D.Smith,Rep.Prog.Phys.45(1982)815.

    [17]L.A.Lugiato,inProgress in Optics,ed.E.Wolf,Vol.21 North Holland,Amsterdam(1984)pp.71-183.

    [18]L.A.Lugiato and L.M.Narducci,in:Fundamental Systems in Quantum Optics,eds.J.Dalibard,J.M.Raimond,and J.Zinn-Justin,Elsevier Sci.Publ.,Amsterdam(1992)pp.942-1043.

    [19]B.S.Wherrett and P.Chavel,(Eds.),Optical Computing,Inst.Physics Publ.,Bristol(1995).

    [20]J.N.Lee,(Ed.)Design Issues in Optical Processing,Cambridge University Press,Cambridge,UK(1995).

    [21]D.G.Feitelson,Optical Computing,MIT Press,MA(1988).

    [22]C.M.Bowden,M.Ciftan,and H.R.Robl(Eds),Optical Bistability,Plenum Press,NY(1981).

    [23]M.J.Adams,A.Hurtado,D.Labukhin,and I.D.Henning,Choas 20(2012)037102.

    [24]A.M.C.Dawes,L.Illing,S.M.Clark,and D.J.Gauthier,Science 308(2005)672.

    [25]Q.Guo,X.Zhao,H.Zhao,and V.Chigrinov,Opt.Lett.40(2015)2413.

    [26]S.M.A.Maize,M.F.M.Ali,and S.S.Hassan,Nonlinear Optics 8(1994)218.

    [27]J.Bergou and D.Zhao,Phys.Rev.A 52(1995)1550.

    [28]Z.Chen,C.Du,S.Gong,and Z.Xu,Phys.Lett.A 259(1999)15.

    [29]S.S.Hassan,H.A.Batra fi,R.Saunders,and R.K.Bullough,Eur.Phys.J.D 8(2000)403.

    [30]H.A.Batra fi,S.S.Hassan,R.Saunders,and R.K.Bullough,Eur.Phys.J.D 8(2000)417.

    [31]M.F.M.Ali,S.S.Hassan,and S.M.A.Maize,J.Opt.B:Quantum Semiclass.Opt.4(2002)388.

    [32]S.S.Hassan and Y.A.Sharaby,Eur.Phys.J.D 30(2004)393.

    [33]L.P.Maia,G.A.Prataviera,and S.S.Mizrahi,Phys.Rev.A 69(2004)053802.

    [34]A.Joshi,Y.A.Sharaby,and S.S.Hassan,Opt.Commun.359(2016)387.

    [35]Y.A.Sharaby,S.S.Hassan,and S.Lynch,Optik 127(2016)10195.

    [36]Y.A.Sharaby,Nonlinear Optics and Quantum Optics 48(2016)79.

    [37]Z.Cheng,Phys.Lett.A 291(2001)4.

    [38]Z.Cheng,Phys.Lett.A 331(2004)170.

    [39]M.Yin and Z.Cheng,Phys.Rev.A 78(2008)0638290.

    [40]Q.F.Xu,X.Z.Hui,J.N.Chen,and Z.Cheng,Eur.Phys.J.D 66(2012)66.

    [41]S.L.McCall,Appl.Phys.Lett.32(1978)284.

    [42]R.Bonifacio,M.Gronchi,and L.A.Lugiato,Opt.Commun.30(1979)129.

    [43]L.A.Lugiato,Opt.Commun.33(1980)108.

    [44]K.Ikeda,H.Daido,and O.Akimato,Phys.Rev.Lett.45(1980)709.

    [45]K.Ikeda and O.Akimoto,Phys.Rev.Lett.48(1982)617.

    [46]Ikeda,Opt.Commun.30(1979)257.

    [47]H.M.Gibbs,F.A.Hopf,D.L.Kaplan,and R.L.Shoemaker,Phys.Rev.Lett.46(1981)474.

    [48]H.Haken,Phys.Lett.A 53(1975)77.

    [49]L.A.Orozco,H.J.Kimble,A.T.Rosenberger,L.A.Lugiato,M.L.Asquini,M.Brambilla,and L.M.Narducci,Phys.Rev.A 39(1989)1235.

    [50]S.M.A.Maize,Nonlinear Optics and Quantum Optics 35(2006)331.

    [51]S.M.A.Maize and G.Ibrahim,Nonlinear Optics and Quantum Optics 35(2006)285.

    [52]S.M.A.Maize,G.Ibrahim,and M.F.M.Ali,Nonlinear Optics and Quantun Optics 36(2007)117.

    [53]Xie Xia,Huang Hong-Bin,Qian Feng,et al.,Commun.Theor.Phys.45(2006)1042.

    [54]L.A.Lugiato and F.Prati,Phys.Rev.Lett.104(2010)233902.

    [55]H.A.Babu and H.Wanare,Phys.Rev.A 88(2013)023814.

    [56]L.A.Lugiato,L.M.Narducci,D.K.Bandy,and C.A.Pennise,Opt.Commum 43(1982)281.

    [57]H.A.Babu and H.Wanare,Phys.Rev.A 83(2011)033819.

    [58]Y.A.Sharaby,S.Lynch,A.Joshi,and S.S.Hassan,J.Nonlinear Opt.Phys.Mater.23(2014)1950019.

    [59]D.J.Gauthier,Science 279(1998)1156.

    [60]J.T.Gleeson,Appl.Phys.Lett.81(2002)1949.

    [61]T.Stojanvoski,J.Pihl,and L.Kocarev,IEEE.Trans.Circuits Syst.I 48(2001)382.

    [62]M.Virtu,K.Panajotov,H.Thienpoint,and M.Sciamanna,Nature Photon 7(2013)60.

    中文精品一卡2卡3卡4更新| 少妇 在线观看| 欧美少妇被猛烈插入视频| 中文天堂在线官网| 日本-黄色视频高清免费观看| 国产精品不卡视频一区二区| 97在线人人人人妻| 一级毛片aaaaaa免费看小| 欧美成人午夜免费资源| 美女视频免费永久观看网站| 欧美3d第一页| 久久久色成人| 人妻少妇偷人精品九色| 国产精品熟女久久久久浪| 人妻少妇偷人精品九色| 一级毛片我不卡| 五月天丁香电影| 偷拍熟女少妇极品色| 美女内射精品一级片tv| 国产国拍精品亚洲av在线观看| 一级二级三级毛片免费看| 国产成人91sexporn| 少妇人妻 视频| 亚洲av.av天堂| 我的女老师完整版在线观看| av免费在线看不卡| 又粗又硬又长又爽又黄的视频| 亚洲熟女精品中文字幕| 免费不卡的大黄色大毛片视频在线观看| 看非洲黑人一级黄片| xxx大片免费视频| 午夜免费鲁丝| 亚洲内射少妇av| 女人十人毛片免费观看3o分钟| 少妇裸体淫交视频免费看高清| 十分钟在线观看高清视频www | 极品少妇高潮喷水抽搐| 国产高清三级在线| 精品久久久噜噜| 国产精品99久久久久久久久| 日本免费在线观看一区| 午夜日本视频在线| 成人国产麻豆网| 日韩中文字幕视频在线看片 | 精品一品国产午夜福利视频| 久久精品国产亚洲av涩爱| 午夜福利在线观看免费完整高清在| 午夜福利在线在线| 日韩制服骚丝袜av| 国产亚洲91精品色在线| 青青草视频在线视频观看| 高清欧美精品videossex| 少妇熟女欧美另类| 熟妇人妻不卡中文字幕| 亚洲三级黄色毛片| 岛国毛片在线播放| 久久久久久九九精品二区国产| 黄片wwwwww| 2018国产大陆天天弄谢| 一级二级三级毛片免费看| 免费观看的影片在线观看| 免费看av在线观看网站| 观看免费一级毛片| 麻豆成人av视频| 欧美日韩一区二区视频在线观看视频在线| 久久热精品热| 久久精品久久久久久噜噜老黄| 亚洲国产欧美在线一区| 亚洲国产精品一区三区| 日韩欧美精品免费久久| 建设人人有责人人尽责人人享有的 | 男男h啪啪无遮挡| 亚洲欧美一区二区三区国产| 极品教师在线视频| 日韩成人伦理影院| 我的老师免费观看完整版| 国产真实伦视频高清在线观看| 久久久久久人妻| 亚洲第一av免费看| 中国美白少妇内射xxxbb| 国产黄片美女视频| 永久网站在线| 国产精品偷伦视频观看了| 亚洲欧美成人综合另类久久久| 国产视频首页在线观看| 亚洲精品久久午夜乱码| 日韩欧美精品免费久久| 一区在线观看完整版| 国产色爽女视频免费观看| 久久鲁丝午夜福利片| 日韩人妻高清精品专区| 妹子高潮喷水视频| 视频区图区小说| 又黄又爽又刺激的免费视频.| 一区二区av电影网| 亚洲欧美日韩东京热| 在线亚洲精品国产二区图片欧美 | 99热6这里只有精品| 国产免费又黄又爽又色| 夫妻性生交免费视频一级片| 日韩不卡一区二区三区视频在线| 精品久久久久久久末码| 又爽又黄a免费视频| 久久精品国产亚洲av涩爱| 日产精品乱码卡一卡2卡三| 亚洲国产欧美在线一区| 久久久久精品性色| 在线观看免费视频网站a站| 大话2 男鬼变身卡| 亚洲国产欧美人成| 久久久久精品性色| 亚洲精品一二三| 欧美精品人与动牲交sv欧美| 黑人猛操日本美女一级片| 亚洲av成人精品一二三区| videos熟女内射| 精品酒店卫生间| 国产精品免费大片| 欧美高清成人免费视频www| 久久影院123| 插逼视频在线观看| 欧美日韩亚洲高清精品| 美女中出高潮动态图| 老司机影院毛片| 日韩伦理黄色片| 啦啦啦中文免费视频观看日本| 超碰97精品在线观看| 91精品一卡2卡3卡4卡| 亚洲精品亚洲一区二区| 日韩成人av中文字幕在线观看| 国产精品久久久久久精品古装| 91狼人影院| 日本与韩国留学比较| 我要看日韩黄色一级片| 国产69精品久久久久777片| 欧美老熟妇乱子伦牲交| 成人黄色视频免费在线看| 国产综合精华液| 色视频www国产| 一个人看视频在线观看www免费| 高清黄色对白视频在线免费看 | 免费观看无遮挡的男女| av黄色大香蕉| 高清黄色对白视频在线免费看 | 简卡轻食公司| 在线播放无遮挡| 免费高清在线观看视频在线观看| 最近中文字幕高清免费大全6| 嘟嘟电影网在线观看| 国产一区二区三区综合在线观看 | 亚洲精品一区蜜桃| 国产成人精品久久久久久| 中文精品一卡2卡3卡4更新| 久久久久精品性色| 亚洲久久久国产精品| 亚洲美女黄色视频免费看| 观看美女的网站| 欧美精品亚洲一区二区| 亚洲国产精品国产精品| 国产免费福利视频在线观看| 狂野欧美激情性xxxx在线观看| 一级黄片播放器| 中国美白少妇内射xxxbb| 自拍偷自拍亚洲精品老妇| 免费大片18禁| 女的被弄到高潮叫床怎么办| 精品国产露脸久久av麻豆| 亚洲欧美精品专区久久| 成人特级av手机在线观看| 色视频www国产| 伦理电影大哥的女人| 亚洲av男天堂| 水蜜桃什么品种好| 不卡视频在线观看欧美| av又黄又爽大尺度在线免费看| 乱系列少妇在线播放| 亚洲久久久国产精品| www.色视频.com| 国产老妇伦熟女老妇高清| 亚洲av成人精品一区久久| 久久热精品热| 大片免费播放器 马上看| 免费少妇av软件| 2022亚洲国产成人精品| 亚洲国产最新在线播放| 亚洲精品一二三| 亚洲欧美成人综合另类久久久| 亚洲四区av| 蜜桃在线观看..| 欧美bdsm另类| 精品人妻熟女av久视频| 成人免费观看视频高清| 亚洲欧洲日产国产| 亚洲不卡免费看| 午夜福利在线观看免费完整高清在| 夫妻午夜视频| 国产深夜福利视频在线观看| 国产黄色免费在线视频| 午夜老司机福利剧场| 久久这里有精品视频免费| av在线蜜桃| av在线蜜桃| 亚洲精品456在线播放app| 亚洲国产精品国产精品| 亚洲久久久国产精品| www.av在线官网国产| 男的添女的下面高潮视频| 久久99热这里只有精品18| 日本av手机在线免费观看| 人妻少妇偷人精品九色| 日本欧美视频一区| 国产熟女欧美一区二区| 国产精品av视频在线免费观看| 久久久久人妻精品一区果冻| 精品少妇久久久久久888优播| 亚洲精品第二区| 亚洲第一av免费看| av天堂中文字幕网| 欧美日韩精品成人综合77777| 欧美一区二区亚洲| 最近2019中文字幕mv第一页| 亚洲美女搞黄在线观看| 久久久久久久亚洲中文字幕| h日本视频在线播放| 美女主播在线视频| 国产精品欧美亚洲77777| 亚洲综合精品二区| 亚洲精品乱码久久久v下载方式| 日韩在线高清观看一区二区三区| 免费观看av网站的网址| 日韩精品有码人妻一区| 久久久精品94久久精品| 美女cb高潮喷水在线观看| 嘟嘟电影网在线观看| 欧美老熟妇乱子伦牲交| 日韩欧美 国产精品| 九九在线视频观看精品| 日韩成人伦理影院| 免费观看在线日韩| www.色视频.com| 色哟哟·www| 日韩不卡一区二区三区视频在线| 国产探花极品一区二区| 在线观看美女被高潮喷水网站| 国产成人freesex在线| 少妇丰满av| 亚洲精品国产av成人精品| 联通29元200g的流量卡| 日韩av在线免费看完整版不卡| 欧美国产精品一级二级三级 | 好男人视频免费观看在线| 亚洲国产精品国产精品| 欧美最新免费一区二区三区| 国产一区二区三区av在线| 久久久久人妻精品一区果冻| 欧美一区二区亚洲| a 毛片基地| 一级毛片aaaaaa免费看小| 亚洲成人av在线免费| 国产极品天堂在线| 亚洲国产高清在线一区二区三| 久久久久久久久久久丰满| 欧美一级a爱片免费观看看| 身体一侧抽搐| 又粗又硬又长又爽又黄的视频| 亚洲国产最新在线播放| 99热这里只有精品一区| 精品酒店卫生间| 亚洲伊人久久精品综合| 18禁在线无遮挡免费观看视频| 如何舔出高潮| 岛国毛片在线播放| 黄片wwwwww| 国产免费视频播放在线视频| 亚洲美女搞黄在线观看| .国产精品久久| 成人国产av品久久久| 日本午夜av视频| av女优亚洲男人天堂| 亚洲色图av天堂| 偷拍熟女少妇极品色| 亚洲丝袜综合中文字幕| 亚洲精品乱久久久久久| 99久久人妻综合| 国产精品福利在线免费观看| 久久人人爽人人片av| 欧美三级亚洲精品| 久久 成人 亚洲| 亚洲国产精品999| 亚洲内射少妇av| 亚洲精品一区蜜桃| 国产精品秋霞免费鲁丝片| 国产69精品久久久久777片| av网站免费在线观看视频| 一区二区三区免费毛片| 九草在线视频观看| 国产黄片视频在线免费观看| 尾随美女入室| 亚洲av.av天堂| 男人和女人高潮做爰伦理| 伊人久久精品亚洲午夜| 久久综合国产亚洲精品| 国产伦在线观看视频一区| 久久久国产一区二区| 亚洲av在线观看美女高潮| 观看av在线不卡| 久久99热6这里只有精品| 22中文网久久字幕| 男人爽女人下面视频在线观看| 免费av不卡在线播放| 黄色怎么调成土黄色| 欧美变态另类bdsm刘玥| 一级a做视频免费观看| 最近最新中文字幕大全电影3| 一区在线观看完整版| a级毛色黄片| 中文天堂在线官网| 男人爽女人下面视频在线观看| 日本免费在线观看一区| 一区二区三区乱码不卡18| 国产在线免费精品| 久久精品久久精品一区二区三区| 99re6热这里在线精品视频| 伦理电影免费视频| 人人妻人人看人人澡| 中文精品一卡2卡3卡4更新| 精品亚洲成a人片在线观看 | 精品一区二区三卡| 国产亚洲欧美精品永久| 国产色婷婷99| 777米奇影视久久| 最近最新中文字幕大全电影3| 九九久久精品国产亚洲av麻豆| 国产v大片淫在线免费观看| 国产极品天堂在线| 成年免费大片在线观看| 亚洲真实伦在线观看| 在线免费观看不下载黄p国产| 在线看a的网站| 国语对白做爰xxxⅹ性视频网站| 亚洲成色77777| 免费观看无遮挡的男女| 一个人看的www免费观看视频| 欧美zozozo另类| 亚洲国产日韩一区二区| 精品少妇久久久久久888优播| 国产伦在线观看视频一区| 我要看日韩黄色一级片| 国产成人一区二区在线| 久久99热这里只频精品6学生| 亚洲,欧美,日韩| 久久ye,这里只有精品| 午夜视频国产福利| 丰满乱子伦码专区| 久久久欧美国产精品| 色哟哟·www| 久久婷婷青草| 亚洲精品国产色婷婷电影| 99久久精品一区二区三区| 777米奇影视久久| 一级爰片在线观看| 中文精品一卡2卡3卡4更新| 欧美一级a爱片免费观看看| 国产精品人妻久久久影院| 乱码一卡2卡4卡精品| 七月丁香在线播放| 一个人免费看片子| 大码成人一级视频| 午夜免费观看性视频| 大片电影免费在线观看免费| h视频一区二区三区| 亚洲av福利一区| 一个人免费看片子| 高清av免费在线| 欧美一级a爱片免费观看看| 亚洲av福利一区| 青春草视频在线免费观看| 2018国产大陆天天弄谢| 国产伦精品一区二区三区四那| 亚洲国产欧美人成| 中文资源天堂在线| 日韩成人av中文字幕在线观看| 精品少妇黑人巨大在线播放| av在线播放精品| 日韩国内少妇激情av| 久久人人爽av亚洲精品天堂 | 亚洲高清免费不卡视频| 成人亚洲欧美一区二区av| 亚洲婷婷狠狠爱综合网| 最近中文字幕2019免费版| 能在线免费看毛片的网站| 高清午夜精品一区二区三区| 亚洲国产色片| 国产亚洲5aaaaa淫片| 久久久久性生活片| 美女主播在线视频| 亚洲精品一区蜜桃| 亚洲国产欧美在线一区| 久久这里有精品视频免费| 成人特级av手机在线观看| 日韩在线高清观看一区二区三区| 嫩草影院新地址| 亚洲最大成人中文| 97热精品久久久久久| 色网站视频免费| 国语对白做爰xxxⅹ性视频网站| 美女高潮的动态| 永久免费av网站大全| 成年人午夜在线观看视频| 午夜福利网站1000一区二区三区| 狂野欧美激情性bbbbbb| 精品人妻视频免费看| 国产欧美日韩一区二区三区在线 | 汤姆久久久久久久影院中文字幕| 亚洲精品456在线播放app| 久久精品久久久久久噜噜老黄| 免费看日本二区| av国产免费在线观看| 亚洲av不卡在线观看| 在线观看一区二区三区| 97在线人人人人妻| 一边亲一边摸免费视频| 国产精品人妻久久久久久| 观看美女的网站| 性高湖久久久久久久久免费观看| 成人无遮挡网站| 高清午夜精品一区二区三区| 水蜜桃什么品种好| 国产一区二区三区av在线| 久久久久久久国产电影| 97超视频在线观看视频| 精品一品国产午夜福利视频| 激情 狠狠 欧美| 色5月婷婷丁香| 久久99热这里只频精品6学生| h日本视频在线播放| 最近手机中文字幕大全| 午夜福利网站1000一区二区三区| 青春草国产在线视频| 最黄视频免费看| 丝瓜视频免费看黄片| 久久久久久伊人网av| 国产高清三级在线| 91久久精品国产一区二区三区| 亚洲久久久国产精品| 六月丁香七月| 日韩欧美 国产精品| 麻豆乱淫一区二区| 视频区图区小说| 国产色爽女视频免费观看| 国产精品三级大全| 伊人久久精品亚洲午夜| 国语对白做爰xxxⅹ性视频网站| 国产女主播在线喷水免费视频网站| 99热全是精品| 少妇被粗大猛烈的视频| 国产亚洲av片在线观看秒播厂| 九色成人免费人妻av| 免费看不卡的av| 久久97久久精品| 国产av码专区亚洲av| 18禁裸乳无遮挡免费网站照片| 国产精品.久久久| 噜噜噜噜噜久久久久久91| 精品一区二区三卡| 国国产精品蜜臀av免费| 亚洲性久久影院| 国产成人免费无遮挡视频| 最近中文字幕2019免费版| 丝袜脚勾引网站| 亚洲欧美日韩无卡精品| 国产大屁股一区二区在线视频| 一级a做视频免费观看| 麻豆成人av视频| 91精品伊人久久大香线蕉| 国产熟女欧美一区二区| 秋霞在线观看毛片| 日本wwww免费看| 欧美一级a爱片免费观看看| 久久影院123| 三级经典国产精品| 女性被躁到高潮视频| 色视频在线一区二区三区| 国产一区有黄有色的免费视频| av免费在线看不卡| 久久精品国产亚洲av天美| 日韩av在线免费看完整版不卡| 亚洲伊人久久精品综合| 欧美3d第一页| freevideosex欧美| 熟女人妻精品中文字幕| 在线看a的网站| 国产精品免费大片| 欧美极品一区二区三区四区| 日本色播在线视频| 欧美 日韩 精品 国产| 视频区图区小说| 国产亚洲一区二区精品| 亚洲精品aⅴ在线观看| 日本av手机在线免费观看| 欧美人与善性xxx| 久久综合国产亚洲精品| kizo精华| 国产精品三级大全| 秋霞伦理黄片| 一级毛片电影观看| 高清视频免费观看一区二区| 久久久久久久精品精品| 日韩国内少妇激情av| 啦啦啦中文免费视频观看日本| 欧美激情国产日韩精品一区| 丰满迷人的少妇在线观看| 极品少妇高潮喷水抽搐| 哪个播放器可以免费观看大片| 亚洲欧美一区二区三区国产| 亚洲欧美一区二区三区黑人 | 在现免费观看毛片| 欧美极品一区二区三区四区| 亚洲精品日韩av片在线观看| 亚洲国产精品一区三区| 精品人妻一区二区三区麻豆| 亚洲熟女精品中文字幕| 建设人人有责人人尽责人人享有的 | 国模一区二区三区四区视频| 中国美白少妇内射xxxbb| 黑人猛操日本美女一级片| 大又大粗又爽又黄少妇毛片口| 国产成人免费观看mmmm| 成年免费大片在线观看| 欧美精品一区二区免费开放| 人妻少妇偷人精品九色| 91久久精品电影网| 国产精品熟女久久久久浪| av福利片在线观看| 亚洲色图综合在线观看| 十八禁网站网址无遮挡 | 我要看日韩黄色一级片| 国产在线男女| 高清av免费在线| 秋霞伦理黄片| 男女国产视频网站| 国产成人午夜福利电影在线观看| 丰满乱子伦码专区| 久久久欧美国产精品| 我要看日韩黄色一级片| 日韩成人伦理影院| 观看美女的网站| 国产成人一区二区在线| 国产精品精品国产色婷婷| 赤兔流量卡办理| 欧美少妇被猛烈插入视频| 午夜免费观看性视频| 中文精品一卡2卡3卡4更新| 男女无遮挡免费网站观看| 亚洲av男天堂| 欧美极品一区二区三区四区| 国内揄拍国产精品人妻在线| 国产爽快片一区二区三区| 欧美bdsm另类| 新久久久久国产一级毛片| 2018国产大陆天天弄谢| 色综合色国产| 国产精品99久久99久久久不卡 | 在线观看av片永久免费下载| 亚洲av不卡在线观看| 国产精品欧美亚洲77777| 夫妻性生交免费视频一级片| a级毛色黄片| 日韩中文字幕视频在线看片 | 国产亚洲精品久久久com| av免费观看日本| 黄色欧美视频在线观看| 卡戴珊不雅视频在线播放| 制服丝袜香蕉在线| 亚洲精品国产av蜜桃| 伦理电影免费视频| av.在线天堂| 18禁动态无遮挡网站| 97在线视频观看| 国产精品一区二区在线观看99| 国产乱来视频区| 我的女老师完整版在线观看| 日日摸夜夜添夜夜添av毛片| 国产在视频线精品| 91aial.com中文字幕在线观看| 尤物成人国产欧美一区二区三区| 在线观看国产h片| 插逼视频在线观看| 嘟嘟电影网在线观看| 夫妻午夜视频| 国产熟女欧美一区二区| 女的被弄到高潮叫床怎么办| 男女国产视频网站| 精品熟女少妇av免费看| 国产精品久久久久久久久免| 九色成人免费人妻av| 国产高清不卡午夜福利| 青春草国产在线视频| 亚洲av福利一区| 人人妻人人澡人人爽人人夜夜| 天堂俺去俺来也www色官网| 美女国产视频在线观看| 人人妻人人爽人人添夜夜欢视频 | 国产一级毛片在线| 欧美国产精品一级二级三级 | 大码成人一级视频| 成人免费观看视频高清| 色视频www国产| 日本猛色少妇xxxxx猛交久久| 成人亚洲精品一区在线观看 | 亚洲精品aⅴ在线观看| 久久精品国产鲁丝片午夜精品| 欧美日韩视频高清一区二区三区二| 人妻夜夜爽99麻豆av| 精品亚洲乱码少妇综合久久|