• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dual Solutions of MHD Boundary Layer Flow of a Micropolar Fluid with Weak Concentration over a Stretching/Shrinking Sheet

    2018-01-22 09:27:25KhanQasimNaeemaIshfaqandKhan
    Communications in Theoretical Physics 2017年4期

    Z.H.Khan,M.Qasim,Naeema Ishfaq,and W.A.Khan

    Department of Mathematics,University of Malakand,Chakdara,Dir(Lower),Khyber Pakhtunkhwa,Pakistan

    2Department of Mathematics,COMSATS Institute of Information Technology,Park Road,Chak Shahzad,Islamabad,Pakistan

    3School of Mathematical Sciences,Peking University,Beijing 100871,China

    4Department of Mechanical and Industrial Engineering College of Engineering,Majmaah University,Majmaah 11952,Kingdom of Saudi Arabia

    1 Introduction

    The boundary layer flows over a stretching surface are encountered in several engineering and industrial applications such as drawing of plastics, films and wires,crystal growing,continuous stretching,extrusion of polymer sheets,rolling and manufacturing plastic films and arti ficial fibers.In a melt spinning process,the extrudate from the die is generally drawn and simultaneously stretched into a sheet which is then solidi fied through quenching or gradually cooling by direct contact with water(Mahapatraet al.[1]).

    In viscous fluid dynamics,the equations governing the flow are called Navier–Stokes equations. These equations are non-linear partial differential equations and exact analytical solutions corresponding to such equations are few.This is because of non-linearity regarding the inertial part of equations in the three-components of velocity,in some special situations,by means of appropriate transformations;the system of partial differential equations is reduced to that of non-linear ordinary differential equations,[2?10]which on few occasions can admit analytical solutions in closed form.[4?7]On the other hand,the resulting equations for flow of non-Newtonian fluids are more complicated and nonlinear with higher order than the Navier–Stokes equations.[11?12]Such complications in fact stem because of extra rheological parameters occurring in constitutive equations of non-Newtonian fluid.Unlike the NS equations the nonlinearity in the governing equations even for incompressible flow of non-Newtonian fluids not only appears in the inertial part but also in the viscosity,elasticity and viscoplastic parts.

    The flow equation of micropolar fluid involves a microrotation vector in addition to classical velocity vector.In micropolar fluids,rigid particles in a small volume element can rotate about the centroid of the volume element.The micropolar fluids in fact can predict behavior at micro scale and rotation is independently explained by a microrotation vector.The fluid motion of the micropolar fluid is characterized by the concentration laws of mass,momentum and constitutive relationships describing the effect of couple stress,spin-inertia and micromotion.[13?17]Khanet al.[18]investigated boundary layer flow and heat transfer of a micropolar ferro fluid over a stretching surface.They considered microrotation of the ferroparticles and examined the effects of pertinent parameters on the dimensionless velocity,temperature,skin friction and Nusselt numbers for both weak and strong concentrations of ferro fluids.

    Turkyilmazoglu[19]studied the flow of micropolar fluid and heat transfer past a porous shrinking sheet. He determined the bounds of multiple existing solutions and proved the presence of dual solutions for the flow field.Later,Turkyilmazoglu[20]obtained the dual solution for the flow due to a permeable stretching sheet.Besides this solution,dual solutions in the boundary layer flow of different fluids have been obtained by manyresearchers.[21?25]In this study,we obtained dual solutions for the heat transfer and flow of a micropolar fluid over stretching/shrinking sheet under the in fluence of the lf ow governing parameters.Closed-form exact solutions for the velocity,temperature and microrotation pro files are also obtained for the case of weak concentration.

    2 Problem Formulation

    2.1 Governing Equations

    Consider the steady MHD boundary layer flow past a stretching/shrinking surface.It is assumed that sheet is stretched with a linearly velocityuw(x)=cx,wherecis a positive constant for stretching and negative for shrinking sheet.The governing boundary layer equations are

    whereuandvare the velocity components parallel to thex-andy-axes,respectively,ρthe fluid density,νthe kinematic viscosity,Nthe microrotation or angular velocity,cpthe speci fic heat,kthe thermal conductivity of the fluid,j=(ν/c)is microinertia per unit mass,γ?=(μ+κ/2)jandκare the spin gradient viscosity and vortex viscosity,respectively.

    2.2 Boundary Conditions

    The boundary conditions for the proposed model are

    wherevwsurface mass transfer velocity withvw<0 corresponds to suction andvw>0 to injection velocity.

    The boundary parameternin Eq.(6)varies in the range 0≤n≤1.Heren=0 corresponds to the situation when microelements at the stretching sheet are unable to rotate and denotes weak concentrations of the microelements at sheet.The casen=1/2 corresponds to the vanishing of anti-symmetric part of the stress tensor and it shows weak concentration of microelements and the casen=1 is for turbulent boundary layer flows.[13?15]

    2.3 Similarity Transformations

    In order to transform the governing partial differential equations into a system of non-linear ordinary differential equations,we introduce the following dimensionless and similarity variables into Eqs.(2)–(4)

    Using the transformations in Eq.(8),the governing boundary layer equations can be written as

    where primes denote differentiation with respect toη,Kis the microrotation parameter,Pris the Prandtl number,andMis the Hartman number.These parameters and dimensionless numbers are defined as follows

    The transformed boundary conditions become

    whereSis the suction/injection parameter andαis the stretching/shrinking parameter.The quantities of practical interest,are the local skin friction coeきcientCfx,and the local Nusselt numberNuxwhich are defined as

    In dimensionless form,local skin friction coeきcient and the reduced local Nusselt can be written as

    whereRex=ax2/νdenotes the local Reynolds number.

    3 Method of Solution

    3.1 Solution of Momentum Equation

    For weak concentration i.e.,whenn=1/2,Eqs.(9)and(10)along with boundary conditions(13)and(14)has the exact solutions of the form

    Substituting(17)in Eq.(9),we get

    Solving Eq.(18)we have

    Thus,the exact solution of Eq.(9)and(10)subject to the corresponding boundary conditions(13)and(14)are given by

    The velocity pro file is determined after differentiating Eq.(20)once,

    The skin friction coeきcient in closed form is obtained as

    3.2 Solution of Energy Equation

    To obtain the solution of Eq.(11),we introduce intermediate variableχas follows

    Substituting(20)and(22)into Eq.(11),we get a secondorder decoupled boundary value problem

    whereA=1 ?Pr(α+βS)/β2and the corresponding boundary conditions take the form

    Asχ=0 is the regular singular point of Eq.(22),we can apply the Frobenius method to seek an in finite power series solution of the form,

    Differentiating(25)twice,we get

    Substituting Eq.(26)in Eq.(23),we obtain

    From Eq.(28),we get the indicial polynomial

    which is quadratic inmand having the indicial roots

    From Eq.(28),the recurrence relation takes the form

    Form=0,Eq.(29)becomes

    Above relation givesC1=C2= ···=Cr=0.Indicial rootm=0 gives constant solution,i.e.,θ1=constant.For the indicial rootm=1?Athe relation in Eq.(29)becomes

    which on expanding gives

    Using Pochhammer symbol,we can have

    similarly,we can also have

    Using the above so-called Pochhammer symbols,Eq.(30)takes the form

    Hence the solution for indicial rootm=1?Abecomes

    whereH(1?A,2?A,?αχ)is the con fluent hypergeometric function.Thus,the general solution of Eq.(25)is

    The boundary conditionθ(0)=0 givesB1=0 and the second boundary conditionθ(Pr/β2)=1 gives

    Finally,substitutingB1,B2and the intermediate variableχin Eq.(32),we obtained the exact solution of energy equation

    4 Results and Discussion

    The solution domain forβis determined by different parameters,as shown in Figs.1 and 2.In each case,interesting behavior is observed.For the selected range of mass suction/injection,micropolar fluid parameter,stretching/shrinking parameters,and Hartman number,two solution branches(dual solutions)are found in each case.The characteristic polynomial of nonlinear boundary value problem possesses at least two distinct real roots.The upper branch corresponds to positive sign(+)and lower branch corresponds to negative sign(?)in Eq.(19).

    Fig.1 The solution domain for β as function of(a)mass suction/injection parameter,S,(b)micropolar fluid parameter,K.

    Fig.2 The solution domain for β as function of(a)stretching/shrinking parameter α and magnetic field parameter,M.

    Fig.3 Variations of skin friction with suction/injection and stretching/shrinking parameters.

    Fig.4 Variations of skin friction with microrotation fluid parameter and magnetic field parameter.

    Fig.5 Variations of velocity pro files with suction and stretching/shrinking parameters.

    Figures 3 and 4 illustrate the variations of skin friction coeきcient with different physical parameters.Skin friction coeきcient decreases by increasingα(for shrinking case).Further it is noticed that by increasing the velocity ratio parameters skin friction coeきcient increases for both upper and lower branch cases(Fig.3(a)).From Fig.4(a),it is noticed that the values of skin friction coeきcient are larger for the suction case as compared to injection case.This figure also shows that the skin friction coeきcient also increases by increasing the micropolar fluid parameterK.Skin friction coeきcient increases by increasing Hartman number for both suction and injection cases(Fig.4(b)).

    Fig.6 Variations of velocity pro files with microrotation fluid parameter and magnetic field.

    Fig.7 Variations of dimensionless microrotation pro file with suction and stretching/shrinking parameters.

    Fig.8 Variations of dimensionless microrotation pro file with microrotation fluid parameter and magnetic field parameter.

    The effects of suction,stretching/shrinking parameter on the dimensionless velocity(for shrinking case)are displayed in Figs.5(a)and 5(b)for both upper and lower branches.In the upper branch solution,suction parameter decreases the dimensionless velocity and thus the hydrodynamic boundary layer thickness decreases.The lower branch solution shows the opposite behavior.Similar,effects are observed from Fig.5(b)for the shrinking parameter on velocity.Figures 6(a)and 6(b)boundary layer thickness decreases by increasing the micropolar fluid parameter and Hartman number.The effects of microrotation parameter and Hartman number on the dimensionless velocity pro files are depicted in Figs.7(a)and 7(b)respectively.Figures 7(a)and 7(b)show that the behavior of micropolar fluid parameter and Hartman number are same.Inside the hydrodynamic boundary layer thickness,the effects of parameters are just opposite in both branch solutions.Boundary layer thickness increases by increasing the Harman number.Microrotation pro file decreases by increasing the microrotation fluid parameterKwhere as it increases by increasing the Hartman numberM.In Fig.9,Stream lines are plotted for different values ofS(for shrinking sheet).Flow pattern is different for upper branch case as compared to lower branch case.Figures 10 and 11 are plotted for the variation of local Nusselt number with stretching/shrinking,suction,Harman number and micropolar fluid parameter.Nusselt number increases by increasing the microrotation parameter(for both upper and lower branch).Further,we observed that Nusselt number is larger for the mass suction parameter.The effects of suction parameter,microrotation parameter and stretching/shrinking parameter on the dimensionless temperature are presented in Figs.12(a)and 12(b)respectively.The suction parameter reduces the dimensionless temperature within the thermal boundary layer,as shown in Fig.12(b)for both branch solutions.The same effect is observed for the stretching/shrinking parameter(Fig.13(a)).Thermal boundary layer increases by increasing the Hartman number(Fig.13(b)).

    Fig.9 Streamlines for different values of Suction parameter(shrinking case).

    Fig.10 Variations of Nusselt number with fluid flow parameters.

    Fig.11 Variations of Nusselt number with fluid flow parameters.

    Fig.12 Variations of temperature pro file with suction and microrotation fluid parameters.

    Fig.13 Variations of temperature pro file with stretching/shrinking and magnetic field parameters.

    5 Conclusions

    In this paper,we have studied the dual nature of MHD micropolar fluid flow and heat transfer over stretching/shrinking under the in fluence of suction and injection.Exact solutions for velocity,temperature,skin friction and Nusselt number have been developed and discussed along with a detailed graphical visualization.We have shown that velocity,temperature pro files exhibits dual solutions for stretching/shrinking,suction/injection,micropolar fluid and magnetic field parameters.It is also observed that the suction and stretching/shrinking parameters reduce the dimensionless temperature within the thermal boundary layer,whereas the Hartman number increases both hydrodynamic and thermal boundary layer thickness and hence increases the overall resistance.

    [1]T.R.Mahapatra,S.Dholey,and A.S.Gupta,Int.J.Non-Linear Mech.42(2007)4849.

    [2]A.Ishak,R.Nazar,and I.Pop,Heat Mass Transf.44(2008)921.

    [3]M.Z.Salleh,R.Nazar,and I.Pop,J.Taiwan Inst.Chem.Eng.41(2010)651.

    [4]T.Fang and J.Zhang,Commun.Nonlinear Sci.Numer.Simul.14(2009)2853.

    [5]S.Yao,T.Fang,and Y.Zhong,Commun.Nonlinear Sci.Numer.Simul.16(2011)752.

    [6]T.Fang,S.Yao,and I.Pop,Int.J.Non-Linear Mech.46(2011)1116.

    [7]M.Qasim,Alexandria Eng.J.52(2013)571.

    [8]M.Qasim and S.Noreen,Eur.Phys.J.Plus 129(2014)1.

    [9]S.Nadeem,R.Haq,and Z.Hayat,Alexandria Eng.J.53(2014)219–224.

    [10]O.D.Makinde,W.A.Khan,and Z.H.Khan,Int.J.Heat Mass Transf.62(2013)526.

    [11]Y.Lin,L.Zheng,X.Zhang,L.Ma,and G.Chen,Int.J.Heat Mass Transf.84(2015)903.

    [12]Y.Lin,L.Zheng,and G.Chen,Powder Technol.274(2015)324.

    [13]R.Nazar,N.Amin,D.Filip,and I.Pop,Int.J.Nonlinear Mech.39(2004)1227.

    [14]A.Ishak,R.Nazar,and I.Pop,Can.J.Phys.84(2006)399.

    [15]A.Ishak,R.Nazar,and I.Pop,Phys.Lett.A 372(2008)559.

    [16]N.A.Yacob and A.Ishak,Meccanica 47(2012)293.

    [17]M.Qasim,I.Khan,and S.Sha fie,PloS One 4(2013)e59393.

    [18]W.A.Khan,Z.H.Khan,and M.Qasim,J.Nano fluids,5(2016)567.

    [19]M.Turkyilmazoglu,Int.J.Heat Mass Transf.72(2014)388.

    [20]M.Turkyilmazoglu,Int.J.Non-Linear Mech.83(2016)59.

    [21]K.Bhattacharyya,Int.J.Heat Mass Transf.7(2011)917.

    [22]N.S.Akbar,S.Nadeem,R.Ul Haq,and S.Ye,Ain Shams Eng.J.5(2014)1233.

    [23]S.V.Subhashini and R.Sumathi,Int.J.Heat Mass Transf.71(2014)117.

    [24]M.A.El-Aziz,Journal of the Egyptian Mathematical Society 24(2016)479.

    [25]N.Freidoonimehr and A.B.Rahimi,Adv.Powder Technol.28(2016)685.

    内地一区二区视频在线| 欧美bdsm另类| 国内毛片毛片毛片毛片毛片| 日韩精品青青久久久久久| 老司机在亚洲福利影院| 窝窝影院91人妻| 国产成人欧美在线观看| 国产精品嫩草影院av在线观看 | 国产高清激情床上av| 看片在线看免费视频| 亚洲av熟女| 欧美在线黄色| 久久精品91蜜桃| 色综合婷婷激情| 国产色婷婷99| 美女被艹到高潮喷水动态| 成人一区二区视频在线观看| 99久久成人亚洲精品观看| 亚洲av不卡在线观看| 久久久久久国产a免费观看| 国产高清视频在线播放一区| 国产亚洲精品一区二区www| 日韩欧美在线二视频| 一本一本综合久久| av在线天堂中文字幕| 在线视频色国产色| 国产精品一及| 又紧又爽又黄一区二区| 久久精品国产亚洲av涩爱 | 国产欧美日韩精品一区二区| 最后的刺客免费高清国语| 一区福利在线观看| 又粗又爽又猛毛片免费看| 两个人看的免费小视频| 最后的刺客免费高清国语| a级毛片a级免费在线| 亚洲av电影在线进入| 床上黄色一级片| 成人国产一区最新在线观看| 欧美精品啪啪一区二区三区| 高潮久久久久久久久久久不卡| 女人被狂操c到高潮| 精品久久久久久久末码| 禁无遮挡网站| 免费电影在线观看免费观看| 村上凉子中文字幕在线| 嫩草影视91久久| 午夜免费成人在线视频| 99国产极品粉嫩在线观看| 国内精品美女久久久久久| 麻豆成人av在线观看| 亚洲av五月六月丁香网| 精品久久久久久久久久久久久| e午夜精品久久久久久久| 美女cb高潮喷水在线观看| 最近最新免费中文字幕在线| 噜噜噜噜噜久久久久久91| 国产一区二区激情短视频| 久久久久久久久久黄片| 男女床上黄色一级片免费看| 国产精品一区二区三区四区久久| 天堂√8在线中文| 长腿黑丝高跟| 亚洲内射少妇av| 琪琪午夜伦伦电影理论片6080| 亚洲av日韩精品久久久久久密| 亚洲精品在线观看二区| 日韩精品中文字幕看吧| 成人欧美大片| 最近最新中文字幕大全电影3| 欧美成狂野欧美在线观看| 国产精品女同一区二区软件 | 欧美在线一区亚洲| 人人妻,人人澡人人爽秒播| 小蜜桃在线观看免费完整版高清| 色综合欧美亚洲国产小说| 一级黄片播放器| 搡老妇女老女人老熟妇| av在线天堂中文字幕| 五月伊人婷婷丁香| 一区二区三区激情视频| 亚洲 国产 在线| 久久欧美精品欧美久久欧美| 久久久久久人人人人人| 成人一区二区视频在线观看| 精品一区二区三区av网在线观看| 国产欧美日韩一区二区精品| 国模一区二区三区四区视频| 国产黄a三级三级三级人| 黄色女人牲交| 亚洲欧美日韩无卡精品| 亚洲专区中文字幕在线| 亚洲电影在线观看av| 欧美精品啪啪一区二区三区| 看黄色毛片网站| 国产在视频线在精品| 国产v大片淫在线免费观看| 午夜精品久久久久久毛片777| 欧美黑人巨大hd| 99国产综合亚洲精品| 19禁男女啪啪无遮挡网站| 欧美午夜高清在线| 国产一区在线观看成人免费| 久久欧美精品欧美久久欧美| 我的老师免费观看完整版| 亚洲精品一卡2卡三卡4卡5卡| 亚洲中文日韩欧美视频| 国产成人av激情在线播放| 欧美日韩亚洲国产一区二区在线观看| 成人性生交大片免费视频hd| 日韩亚洲欧美综合| 给我免费播放毛片高清在线观看| 成人一区二区视频在线观看| 中文在线观看免费www的网站| 三级毛片av免费| 国产美女午夜福利| xxxwww97欧美| 色av中文字幕| 人妻久久中文字幕网| 很黄的视频免费| 亚洲欧美激情综合另类| a在线观看视频网站| 香蕉丝袜av| 亚洲狠狠婷婷综合久久图片| 波多野结衣高清作品| 亚洲激情在线av| 男女床上黄色一级片免费看| 色哟哟哟哟哟哟| 成人av一区二区三区在线看| 97碰自拍视频| 女同久久另类99精品国产91| 欧美激情久久久久久爽电影| 可以在线观看毛片的网站| 亚洲欧美日韩高清在线视频| 高潮久久久久久久久久久不卡| 国产又黄又爽又无遮挡在线| 99久久成人亚洲精品观看| 国内久久婷婷六月综合欲色啪| 观看免费一级毛片| 啦啦啦观看免费观看视频高清| 午夜日韩欧美国产| 免费看光身美女| 手机成人av网站| 小蜜桃在线观看免费完整版高清| 国产色婷婷99| 亚洲av成人精品一区久久| 亚洲国产中文字幕在线视频| 亚洲七黄色美女视频| 哪里可以看免费的av片| 国产高清激情床上av| 免费在线观看影片大全网站| 真实男女啪啪啪动态图| 尤物成人国产欧美一区二区三区| 法律面前人人平等表现在哪些方面| 老司机福利观看| 蜜桃亚洲精品一区二区三区| 久99久视频精品免费| 1024手机看黄色片| 黄片大片在线免费观看| 亚洲精品影视一区二区三区av| 欧美成人a在线观看| 亚洲av第一区精品v没综合| 99国产精品一区二区蜜桃av| 高清毛片免费观看视频网站| 又爽又黄无遮挡网站| 午夜久久久久精精品| netflix在线观看网站| 久久久久免费精品人妻一区二区| 精品福利观看| 老熟妇仑乱视频hdxx| 午夜福利欧美成人| 九色成人免费人妻av| 91在线精品国自产拍蜜月 | 中文字幕av在线有码专区| 欧美激情久久久久久爽电影| 一区二区三区高清视频在线| 久久精品国产亚洲av香蕉五月| 两个人的视频大全免费| 国产精品综合久久久久久久免费| www日本黄色视频网| АⅤ资源中文在线天堂| 欧美成人性av电影在线观看| 麻豆国产av国片精品| 成熟少妇高潮喷水视频| 成人欧美大片| 波野结衣二区三区在线 | or卡值多少钱| 午夜免费激情av| 亚洲一区高清亚洲精品| 久久久精品大字幕| 国产精品国产高清国产av| 亚洲 国产 在线| 高清日韩中文字幕在线| 深爱激情五月婷婷| 18美女黄网站色大片免费观看| 国内精品久久久久久久电影| 精品久久久久久久久久久久久| 国产熟女xx| 亚洲 欧美 日韩 在线 免费| 精品国产三级普通话版| 噜噜噜噜噜久久久久久91| 国产精品久久久久久人妻精品电影| 午夜精品在线福利| 亚洲人成网站在线播| 麻豆一二三区av精品| 熟女电影av网| 亚洲精品成人久久久久久| 欧美一区二区国产精品久久精品| 中亚洲国语对白在线视频| 国产亚洲欧美98| 中文字幕久久专区| 国产精品1区2区在线观看.| 国产精品影院久久| 国产av不卡久久| 欧美日韩精品网址| 国产乱人视频| 久久久久久久久久黄片| 日韩av在线大香蕉| 狂野欧美白嫩少妇大欣赏| 中文在线观看免费www的网站| 天天一区二区日本电影三级| 日本免费一区二区三区高清不卡| 国产伦精品一区二区三区视频9 | 在线观看日韩欧美| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 在线观看免费午夜福利视频| 国产精品永久免费网站| 欧美乱色亚洲激情| 中文字幕av成人在线电影| 亚洲av美国av| 欧美黑人巨大hd| 欧美3d第一页| 真人做人爱边吃奶动态| 久久香蕉精品热| 亚洲精品成人久久久久久| 久久香蕉国产精品| 毛片女人毛片| www.熟女人妻精品国产| 亚洲欧美日韩东京热| 欧美+亚洲+日韩+国产| 中文字幕人妻丝袜一区二区| 国产精品 国内视频| 欧美3d第一页| 在线国产一区二区在线| 老汉色∧v一级毛片| 久久婷婷人人爽人人干人人爱| 日本免费a在线| 久久久久性生活片| 脱女人内裤的视频| 欧美日韩精品网址| 18禁黄网站禁片免费观看直播| 综合色av麻豆| 亚洲成人久久爱视频| 国产精品久久电影中文字幕| 久久精品国产亚洲av涩爱 | 久久久精品大字幕| 国产老妇女一区| 国产精品av视频在线免费观看| 亚洲精品粉嫩美女一区| 国产亚洲av嫩草精品影院| 国产av一区在线观看免费| 又紧又爽又黄一区二区| 一a级毛片在线观看| 啦啦啦免费观看视频1| 露出奶头的视频| 99国产综合亚洲精品| 狠狠狠狠99中文字幕| 欧美xxxx黑人xx丫x性爽| 久久久久九九精品影院| 毛片女人毛片| 亚洲人与动物交配视频| 日本黄色片子视频| 精品午夜福利视频在线观看一区| 亚洲国产精品久久男人天堂| av黄色大香蕉| 99热精品在线国产| 9191精品国产免费久久| www日本在线高清视频| 在线观看66精品国产| 欧美一区二区精品小视频在线| 最新中文字幕久久久久| 久久久久久久午夜电影| 欧美成人一区二区免费高清观看| 午夜激情福利司机影院| 精品人妻一区二区三区麻豆 | 俺也久久电影网| 操出白浆在线播放| 亚洲第一电影网av| 欧美日韩国产亚洲二区| 夜夜看夜夜爽夜夜摸| 91av网一区二区| 成年女人永久免费观看视频| 天天躁日日操中文字幕| 久久久久性生活片| 淫妇啪啪啪对白视频| 婷婷亚洲欧美| av天堂在线播放| 国产精品一区二区三区四区久久| 成人午夜高清在线视频| 在线免费观看不下载黄p国产 | 国产精品,欧美在线| 国产伦人伦偷精品视频| avwww免费| 男女做爰动态图高潮gif福利片| 两个人的视频大全免费| 亚洲片人在线观看| 久久久久久久午夜电影| 午夜免费激情av| 欧美日韩亚洲国产一区二区在线观看| 可以在线观看毛片的网站| 小说图片视频综合网站| 精品人妻1区二区| 天堂√8在线中文| 午夜老司机福利剧场| 99久国产av精品| 欧美高清成人免费视频www| 99久久99久久久精品蜜桃| 亚洲一区二区三区色噜噜| 久久精品国产亚洲av香蕉五月| 18禁在线播放成人免费| av女优亚洲男人天堂| 中文在线观看免费www的网站| 成人高潮视频无遮挡免费网站| 亚洲专区中文字幕在线| 亚洲av美国av| 国产精品久久视频播放| 99久国产av精品| 久久精品国产综合久久久| 两个人的视频大全免费| 国产精品久久久久久精品电影| 一个人免费在线观看电影| 51国产日韩欧美| 免费在线观看日本一区| 又紧又爽又黄一区二区| 在线观看一区二区三区| 国产精品自产拍在线观看55亚洲| 成年免费大片在线观看| 国产探花在线观看一区二区| 成年版毛片免费区| 97人妻精品一区二区三区麻豆| or卡值多少钱| 国产美女午夜福利| 国产成人av激情在线播放| 熟女电影av网| 草草在线视频免费看| 久久久久久久精品吃奶| 中出人妻视频一区二区| 欧美日韩国产亚洲二区| 午夜免费成人在线视频| 淫秽高清视频在线观看| 久久久国产成人免费| 国内精品久久久久精免费| 亚洲国产高清在线一区二区三| 亚洲激情在线av| 最后的刺客免费高清国语| 尤物成人国产欧美一区二区三区| 网址你懂的国产日韩在线| 一级a爱片免费观看的视频| 欧美日韩乱码在线| 又爽又黄无遮挡网站| 欧美乱色亚洲激情| 日韩欧美精品v在线| 天美传媒精品一区二区| 又爽又黄无遮挡网站| 国产熟女xx| 村上凉子中文字幕在线| 超碰av人人做人人爽久久 | 麻豆一二三区av精品| 日本免费一区二区三区高清不卡| 免费观看人在逋| 精品一区二区三区av网在线观看| 欧美av亚洲av综合av国产av| 日本a在线网址| 成年人黄色毛片网站| 狂野欧美白嫩少妇大欣赏| 亚洲欧美日韩高清在线视频| 中文亚洲av片在线观看爽| 人妻夜夜爽99麻豆av| 午夜福利欧美成人| 日本精品一区二区三区蜜桃| 欧美一区二区亚洲| 狂野欧美白嫩少妇大欣赏| 国产欧美日韩精品一区二区| 三级国产精品欧美在线观看| 欧美黄色片欧美黄色片| 一本久久中文字幕| 国产又黄又爽又无遮挡在线| 日本成人三级电影网站| www.色视频.com| 中国美女看黄片| 国产av一区在线观看免费| 欧美最新免费一区二区三区 | 欧美乱色亚洲激情| 久久久成人免费电影| 99riav亚洲国产免费| 一卡2卡三卡四卡精品乱码亚洲| 午夜两性在线视频| 国产一区二区亚洲精品在线观看| 非洲黑人性xxxx精品又粗又长| 国产色婷婷99| 亚洲中文字幕日韩| 久久99热这里只有精品18| 欧美激情在线99| 国产精品久久久久久久久免 | 日韩高清综合在线| 亚洲不卡免费看| 少妇高潮的动态图| 丰满人妻一区二区三区视频av | 内地一区二区视频在线| 少妇高潮的动态图| 久久精品综合一区二区三区| 国内久久婷婷六月综合欲色啪| 国产极品精品免费视频能看的| av欧美777| 国产精品久久久久久人妻精品电影| 99久国产av精品| 亚洲欧美日韩东京热| 啦啦啦免费观看视频1| 岛国在线免费视频观看| 午夜福利成人在线免费观看| 欧美激情久久久久久爽电影| 午夜福利欧美成人| 免费搜索国产男女视频| 亚洲久久久久久中文字幕| 网址你懂的国产日韩在线| 欧美bdsm另类| 免费搜索国产男女视频| 蜜桃久久精品国产亚洲av| 亚洲色图av天堂| 亚洲片人在线观看| 欧美黑人巨大hd| 成人18禁在线播放| 欧美最新免费一区二区三区 | 在线国产一区二区在线| 神马国产精品三级电影在线观看| 露出奶头的视频| 91麻豆av在线| 国产伦在线观看视频一区| 最新中文字幕久久久久| 久久性视频一级片| 中文字幕av在线有码专区| 搡老岳熟女国产| 十八禁人妻一区二区| av专区在线播放| 日韩成人在线观看一区二区三区| 免费搜索国产男女视频| 久久久久久久亚洲中文字幕 | 99久久久亚洲精品蜜臀av| av在线天堂中文字幕| 欧美国产日韩亚洲一区| 久久久久久人人人人人| 天美传媒精品一区二区| 国产又黄又爽又无遮挡在线| 好男人电影高清在线观看| 欧美成人性av电影在线观看| 国产高清三级在线| 97碰自拍视频| 母亲3免费完整高清在线观看| 国产在线精品亚洲第一网站| 人人妻,人人澡人人爽秒播| 99久久无色码亚洲精品果冻| 中文字幕久久专区| 男女之事视频高清在线观看| 亚洲avbb在线观看| 免费在线观看影片大全网站| 制服丝袜大香蕉在线| 观看免费一级毛片| 午夜免费成人在线视频| 中国美女看黄片| 午夜日韩欧美国产| 黄色女人牲交| 中文字幕精品亚洲无线码一区| 国产极品精品免费视频能看的| 中亚洲国语对白在线视频| 成人高潮视频无遮挡免费网站| 亚洲国产欧美人成| 亚洲在线观看片| 国产精品一及| 免费在线观看亚洲国产| 久久香蕉精品热| 国产高清有码在线观看视频| 国产成人av激情在线播放| 不卡一级毛片| 18禁美女被吸乳视频| 成人一区二区视频在线观看| 国产私拍福利视频在线观看| 欧美黄色淫秽网站| 国产一区二区三区视频了| 欧美zozozo另类| 成人欧美大片| 色吧在线观看| 免费看日本二区| 成人特级黄色片久久久久久久| 听说在线观看完整版免费高清| 亚洲欧美精品综合久久99| 精品人妻偷拍中文字幕| 欧美成人一区二区免费高清观看| 国产亚洲精品av在线| 五月玫瑰六月丁香| 亚洲精品456在线播放app | 亚洲精品亚洲一区二区| 亚洲国产欧洲综合997久久,| 99久久综合精品五月天人人| 久久久久久九九精品二区国产| 嫩草影院入口| 国产熟女xx| 十八禁网站免费在线| 亚洲av电影不卡..在线观看| ponron亚洲| 国产成人影院久久av| 一个人看视频在线观看www免费 | 99久国产av精品| 日韩免费av在线播放| 在线观看午夜福利视频| 久久精品国产综合久久久| 88av欧美| 久久伊人香网站| 国产三级在线视频| 欧美色视频一区免费| 国产精品99久久99久久久不卡| 国产亚洲欧美在线一区二区| xxx96com| 搡女人真爽免费视频火全软件 | 亚洲精品粉嫩美女一区| www.熟女人妻精品国产| 色噜噜av男人的天堂激情| 午夜激情欧美在线| 特级一级黄色大片| 亚洲精品色激情综合| 欧美日韩亚洲国产一区二区在线观看| 老熟妇仑乱视频hdxx| 给我免费播放毛片高清在线观看| 亚洲av二区三区四区| 偷拍熟女少妇极品色| 99热精品在线国产| 久久久成人免费电影| 精品欧美国产一区二区三| 免费av不卡在线播放| 一夜夜www| 日韩欧美在线乱码| 国产成人福利小说| 欧美一级a爱片免费观看看| 国产主播在线观看一区二区| 成人鲁丝片一二三区免费| 午夜福利高清视频| 99精品久久久久人妻精品| 三级男女做爰猛烈吃奶摸视频| 51午夜福利影视在线观看| 久久精品亚洲精品国产色婷小说| 成年女人永久免费观看视频| 亚洲在线自拍视频| 一进一出好大好爽视频| 中文在线观看免费www的网站| 亚洲精品成人久久久久久| 99久久精品国产亚洲精品| av在线蜜桃| 午夜福利视频1000在线观看| av福利片在线观看| 搡老妇女老女人老熟妇| 国产伦在线观看视频一区| 琪琪午夜伦伦电影理论片6080| 亚洲在线自拍视频| 久久中文看片网| 成人18禁在线播放| 午夜a级毛片| 欧美黄色淫秽网站| 亚洲成人精品中文字幕电影| 美女 人体艺术 gogo| 老熟妇仑乱视频hdxx| 99在线视频只有这里精品首页| 黄色日韩在线| 久久久久九九精品影院| 白带黄色成豆腐渣| 日韩av在线大香蕉| 日韩精品中文字幕看吧| а√天堂www在线а√下载| 真人做人爱边吃奶动态| 变态另类丝袜制服| 精品国内亚洲2022精品成人| 久久香蕉国产精品| 啦啦啦观看免费观看视频高清| 日韩欧美三级三区| 久久人妻av系列| 欧美黑人欧美精品刺激| 久久久久久久亚洲中文字幕 | 亚洲美女黄片视频| 97超级碰碰碰精品色视频在线观看| 男人舔奶头视频| x7x7x7水蜜桃| 国产男靠女视频免费网站| 老司机午夜十八禁免费视频| 男人舔奶头视频| 亚洲欧美激情综合另类| 日韩精品青青久久久久久| 国产视频内射| 午夜免费成人在线视频| 欧美中文日本在线观看视频| 国产午夜精品久久久久久一区二区三区 | 色视频www国产| av天堂在线播放| av片东京热男人的天堂| 在线视频色国产色| 少妇的丰满在线观看| 午夜福利18| 蜜桃亚洲精品一区二区三区| 亚洲精品成人久久久久久| 亚洲男人的天堂狠狠| 国产免费av片在线观看野外av| 国产av一区在线观看免费| 香蕉av资源在线| 久久久精品大字幕| 久久精品影院6| 小蜜桃在线观看免费完整版高清| 亚洲无线在线观看| 搡老熟女国产l中国老女人|