• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic Analysis of Non-Symmetric Functionally Graded (FG)Cylindrical Structure under Shock Loading by Radial Shape Function Using Meshless Local Petrov-Galerkin (MLPG) Method with Nonlinear Grading Patterns

    2018-01-22 09:51:37SadeghiFerezghiSohrabiandMosaviNezhad

    Y. Sadeghi Ferezghi , M.R. Sohrabi and S.M Mosavi Nezhad

    1 Introduce

    Dynamic analyses of cylindrical structure are one of the important engineering problems.In order to optimize the displacements and stresses of structures subjected to loads, is often used Functionally Graded Materials (FGMs) in cylindrical structure. In this paper, the material properties of FGM are defined by nonlinear grading patterns. Stress analysis in a 2D-FGM thick finite length hollow cylinder was studied by Najibi and Shojaeefard [Najibiand Shojaeefard (2016)]. Khosravifard et al. [Khosravifard, Hematiyan and Marin(2011)]focused on nonlinear transient heat conduction analysis of functionally graded materials.Vibration characteristics of FGM cylindrical shells resting on Pasternak elastic foundation were investigated by Park and Kim [Park and Kim (2016)]. Shen et al. [Shen, Paidoussis and Wen et al. (2014)] proposed the beam-mode stability of periodic functionally graded material shells conveying fluid. Vibration analysis of a functionally graded hollow cylinder has been studied by Chen et al. [Chen, Bian and Ding (2004); Chen, Bian and Lv et al. (2004)]. Hosseini et al. [Hosseini and Abolbashari (2010); Hosseini, Akhlaghi and Shakeri (2007)] carried out dynamic analysis of functionally graded thick hollow cylinders.Stochastic wave propagation in functionally graded materials was studied by Hosseini and Shahabian [Hosseini and Shahabian (2011); Hosseini and Shahabian (2011)].

    In recent decade, Meshless method as a new numerical method has been proposed[Jaberzadeh and Azhari (2015); Mirzaei and Hasanpour (2016); Sladek, Sladek and Atluri(2004); Sladek, Stanak and Han et al. (2013); He and Seaid (2016); Tadeu, Stanak and Antonio et al.(2015)]. Meshless Local Petrov-Galerkin (MLPG) method has become a very useful and effective solving method in structures made of Functionally Graded Materials (FGMs) because these materials have variable mechanical properties and this method doesn’t require to the mesh generation on the domain, therefore we can continuously model these materials with this method. Lin and Atluri [Lin and Atluri (2000)]studied Meshless Local Petrov-Galerkin (MLPG) Method for convection-diffusion problems. They, proposed several up winding schemes, and applied to solve steady convection diffusion problems, in one and two dimensions. Meshless Local Petrov-Galerkin (MLPG) method in combination with finite element and boundary element approaches was investigated by Liu and Gu [Liu and Gu (2000)]. Zhang et al. [Zhang,Song and Liu et al. (2000)] carried out meshless methods based on collocation with radial basis functions. They showed that the accuracy of derivatives of interpolating function are usually very poor on boundary of domain when a direct collocation method is used, with Neumann boundary conditions. Analysis of thick plates by using a higher-order shear and normal deformable plate theory and MLPG method with radial basis functions was proposed by Xiao et al. [Xiao, Batra and Gilhooley et al. (2007)]. They analyzed infinitesimal deformations of a homogeneous and isotropic thick elastic plate. They employed Radial Basis Functions (RBF) for constructing trial solutions and two types of RBFs, multiquadrics (MQ) and Thin Plate Splines (TPS), are employed and effects of their shape parameters on the quality of the computed solution are examined for deformations of thick plates under different boundary conditions. Rezaei Mojdehi et al. [Rezaei Mojdehi,Darvizeh and Basti et al. (2011)] investigated 3D static and dynamic analysis of thick functionally graded plates by the Meshless Local Petrov-Galerkin (MLPG) method. In their work, using the kinematics of a three dimensional continuum, the local weak form of the equilibrium equations is derived. A weak formulation for the set of governing equations is transformed into local integral equations on local sub-domains using a Heaviside step function as test function. Analysis of the bending of circular piezoelectric plates with functionally graded material properties by a MLPG method was studied by Sladek et al. [Sladek, Sladek and Stanak et al. (2013)]. In their work, material properties are considered to be continuously varying along the plate thickness, also the axial symmetry of geometry and boundary conditions for a circular plate reduces the original three-dimensional (3-D) boundary value problem into a two-dimensional (2-D) problem.Zhao et al. [Zhao, Liu and Dai et al.(2008)] carried out geometric nonlinear analysis of plates and cylindrical shells via a linearly conforming radial point interpolation method.In their paper, the Sander’s nonlinear shell theory is utilized and the arc-length technique is implemented in conjunction with the modified Newton-Raphson method to solve the nonlinear equilibrium equations. The radial and polynomial basis functions are employed to construct the shape functions with Delta function property using a set of arbitrarily distributed nodes in local support domains. Foroutan and Moradi [Foroutan and Moradi-Dastjerdi (2011)] investigated dynamic analysis of functionally graded material cylinders under an impact load by a mesh-free method. In this analysis, Moving Least Square (MLS)shape functions are used for the approximation of the displacement field in the weak form of motion equation and essential boundary conditions are imposed by the transformation method. The resulting set of time domain differential equations is solved using central difference approximation. Dynamic analysis of functionally graded nanocomposite cylinders reinforced by carbon nanotube by a mesh-free method was proposed by Moradi et al. [Moradi-Dastjerdi, Foroutan and Pourasghar (2013)]. In their paper presented free vibration and stress wave propagation analysis of carbon nanotube reinforced composite(CNTRC) cylinders. In this simulation, an axisymmetric model is used. Material properties are estimated by a micro mechanical model. Moving Least Squares (MLSs) shape functions are used for approximation of displacement field in the weak form of motion equation and the transformation method was used for the imposition of essential boundary conditions.

    In this paper, dynamic equation of non-symmetric FG cylindrical structure is drawn out using Meshless Local Petrov-Galerkin (MLPG) method. The displacements can be approximated using shape function so that we choose radial functions as the basis in equation. The dynamic behaviors of non-symmetric FG cylindrical structure in time domain obtained with Meshless Local Petrov-Galerkin (MLPG) method is combining with Laplace transform method. The MLPG obtained results compare with analytical and Finite Element Method (FEM). Finally, the non-symmetric FG cylindrical structure is analyzed under harmonic and rectangular shock loading.

    2 MLPG implementation

    Governing dynamic equations of cylindrical structures with asymmetric geometry and boundary conditions in polar coordinates can be written as follows:

    where "ρ(r)" is the mass density, "σr", "σθ" and "τrθ" are radial, hoop and shear stresses respectively. The terms "ur" and "uθ" denote the radial and hoop displacement,respectively.

    In this paper, cylindrical structure made of FGM, and also FG material in this structure is graded through the r-direction. Material properties of FG cylindrical structures can be defined as

    where "l" is a non-negative volume fraction exponent, subscript "m" and "c" stand for metal and ceramic material, "E" and "ρ" are modulus of elasticity and mass density,respectively. Constitutive equations for FG cylindrical are

    where "δij" is Kronecker delta and "ν" is Poisson's ratio. The strain-displacement relations are given by

    where "εr", "εθ" and "γrθ" are radial, hoop and shear strain, respectively. In the analysis of non-symmetric cylindrical structures, for converting points from Cartesian coordinates into cylindrical coordinates is used

    By using equation (12) we developed the weak-form over a local subdomain "ΩQ" instead of constructing the global weak-form for whole domain of dynamic problem. So, we have

    where "WI" is the weight function. The divergence theory is employed for equations (13)and (14) as follows, which "ΩQ" and "ΓQ" are quadrature domain and boundary of quadrature domain, respectively.

    where "nr" and "nθ" are the unit outward normal vector on the boundary for "r" and "θ"direction, respectively. The boundary of quadrature domain is divided to some parts as"ΓQ= ΓQi∪ ΓQu∪ ΓQt". The term "ΓQi" is the internal boundary of the quadrature domain,"ΓQu" is the part of the essential boundary that intersects with the quadrature domain and"ΓQt" is the part of the natural boundary that intersects with the quadrature domain (see Fig. 1).

    Figure 1: The domain and the boundary of cylindrical structure in MLPG method

    We can then change the expression of equations (15) and (16) to

    where "tr" and "tθ" are the radial and hoop tractions, respectively and they are defined as follows:

    The matrix form of equations (17) and (18) is given as:

    The displacements can be approximated using shape function. Shape function defined for each point using the nodes in support domain "Ωs" of a point (see Fig. 1). In this paper,we used the Radial Point Interpolation Method (RPIM) shape function, the advantage of using this shape function is its simplicity and high accuracy. We choose radial functions as the basis in equation

    The matrix form of equations (27) and (28) can be stated as

    Furthermore, shape function "φ(r?)" defined as follow:

    The vector "R" and matrix "RQ" can be written:

    There are a number of forms of radial basis functions used by the mathematics community.In this paper we used the type of a classical form is called multiquadric (MQ) basis. The MQ basis function is following

    where "C" and "q" are constant coefficient.

    Substitution of the equation (5) and (29) into equation (21) gives

    where "k" is the number of nodes. Matrix "D" and "B" defined as follow:

    There are some numerical techniques to solve the governing equations in time domain. In this article, Laplace transform is used for time domain analysis with the initial conditions that are assumed to be zero.

    The time-dependent values of transformed of the quantities in the previous consideration can be obtained through an inverse Laplace transform. There are many inversion methods available for inverse Laplace transform. In the present analysis, the Talbot algorithm for the numerical inversion is used. The Talbot inversion formula to numerically calculate for"uj(t)" is

    where "M" is the number of samples and

    3 Verification

    In numerical methods, ensuring the accuracy of the results obtained is very important. For this purpose, a cylindrical structure is dynamic analyzed using MLPG method and the results of this method compare with results of analytical and FEM methods.

    3.1 Verification with analytical solution

    Figure 2: The geometry and the boundary conditions

    Figs. 3, 4 and 5 show a good agreement in obtained results with this method in comparison of analytical results. Percentage error for radial stress, hoop stress and radial displacement are obtained in Table 1. As can be seen from Table 1, the MLPG method has high accuracy for dynamic analysis of cylindrical structure.

    Figure 3: The comparison of obtained results through the MLPG method with those using analytical method for radial displacement

    Figure 4: The comparison of obtained results through the MLPG method with those using analytical method for radial stress

    Figure 5: The comparison of obtained results through the MLPG method with thoseusing analytical method for hoop stress

    Table 1: The comparison of obtained results from MLPG method with those results using analytical method for middle point of thickness of the cylinder

    3.2 Verification with FEM

    In this section, a FG cylinder using present method under shock loading have been analyzed dynamically. The obtained results compare with FEM [Shakeri, Akhlaghi and Hoseini (2006)]. The boundary conditions are the same as equation (46). The cylinder is under shock loading as follows:

    where P0=4 GPa sec?. FG material properties are showed in Table 2. Obtained results with MLPG method show a good agreement in comparison of results (Figs. 6, 7 and 8).Percentage difference for radial displacement, radial stress and hoop stress are obtained in Table 3. As can be seen from Table 3, the MLPG method has high accuracy for dynamic analysis of cylindrical structure.

    Figure 6: The comparison of obtained results through the MLPG method with those using FEM for radial displacement

    Figure 7: The comparison of obtained results through the MLPG method with those using FEM for radial stress

    Figure 8: The comparison of obtained results through the MLPG method with those using FEM for hoop stress

    Table 3: The comparison of obtained results from MLPG method with those using finite element method for middle point of thickness of the cylinder at time step 520

    4 Numerical results and discussion

    To showing capability of the present method for dynamic analysis of the FG cylindrical structure, in the following, we carry out the dynamic analyzed cylinder with different volume fraction exponent using MLPG method under harmonic and rectangular shock loading.

    4.1 harmonic shock loading

    Figure 9: The geometry and the boundary conditions under shock loading

    Figure 10: The time history of radial displacement for l=0.5, l=0.75 and l=1 under harmonic shock loading

    Figure 11: The time history of hoop displacement for l=0.5, l=0.75 and l=1 under harmonic shock loading

    Figure 12: The time history of hoop stress for l=0.5, l=0.75 and l=1 under harmonic shock loading

    Figure 13: The time history of radial stress for l=0.5, l=0.75 and l=1 under harmonic shock loading.

    Figure 14: The time history of shear stress for l=0.5, l=0.75 and l=1 underharmonic shock loading.

    4.2 Rectangular shock loading

    The same geometric and boundary conditions with problem 4.1 are assumed for a nonsymmetric FG cylinder under rectangular shock loading. Table 2 shows material properties for the FG cylinder. The loading is supposed as follow:

    where P0=10 MPa is assumed. Radial displacement, hoop displacement, radial stress,hoop stress, and shear stress are illustrated in Figs. 15 to 19. Maximum amplitude of the radial and hoop displacement (Figs. 15 and 16) by increasing the value of volume fraction exponent has decreased, such that, radial displacement increase after the impact loading within the confines of free vibration for l=0.5 suddenly (Fig.15). The peak hoop displacement escalates after the impact loading in the range of free vibration for l=0.5 and l=0.75 and this trend for l=1 is inverse. Fig. 17 shows radial stress, from this figure can conclude that the maximum radial stress occur for l=0.75. In Fig. 18 is seen by increasing the value of volume fraction exponent, the maximum hoop stress rises.Within the confines of free vibration in comparison with forced vibration, the value of hoop stress has a significant growth. The maximum of shear stress occurs in the range of free vibration for l=0.75 (see Fig. 19).

    Figure 15: The time history of radial displacement for l=0.5, l=0.75 and l=1 under rectangular shock loading

    Figure 16: The time history of hoop displacement for l=0.5, l=0.75 and l=1 under rectangular shock loading

    Figure 18: The time history of hoop stress for l=0.5, l=0.75 and l=1 under rectangular shock loading

    Figure 19: The time history of shear stress for l=0.5, l=0.75 and l=1 under rectangular shock loading

    5 Conclusion

    In this paper, dynamic equation of non-symmetric FG cylindrical structure has been exploited using Meshless Local Petrov-Galerkin (MLPG) method. To simulate the mechanical properties of FGM, nonlinear volume fractions have been used in the direction of radius. To obtain the dynamic behaviors of non-symmetric FG cylindrical structure in the time domain, the Meshless Local Petrov-Galerkin (MLPG) method have been combined with Laplace transform method. The major conclusions that have been obtained through the above analysis can be summarized as follows:

    ? The MLPG method shows that it is a very effective method with high accuracy for dynamic analysis of non-symmetric FG cylindrical structure.

    ? In comparison to the obtained results of analytical method, the achieved results of MLPG method showed a good agreement, that it demonstrates the MLPG method have high accuracy and capability for dynamic analysis of non-symmetric FG cylindrical structure. The maximum percentage errors in the middle point of thickness of the cylinder for radial displacement, radial stress and hoop stress are 9.89×10?3,0.8872 and 0.5399 respectively.

    ? For showing the accuracy and capability of the obtained results through the MLPG method for shock loading, these results were compared with the FEM. In this case, the maximum percentage differences between the results of the MLPG method and the FEM at time step 520 and the middle point of thickness of the cylinder for radial displacement, radial stress and hoop stress are 0.011, 1.072 and 0.819 respectively.

    ? For obtaining the time histories of displacements and stresses for the various values of volume fraction exponent can be used the presented hybrid meshless technique(combined MLPG and Laplace transform method).

    ? The non-symmetric FG cylindrical structure was analyzed under harmonic shock loading with the various values of volume fraction exponent. This analysis showed,by increasing the value of volume fraction exponent, the radial and hoop displacement maximum amplitude decreased and the similar behaviors can be seen for hoop stress.Also the maximum amplitude of radial stress has not much difference. Clear trend cannot be seen for the shear stress with various values volume fraction exponent.

    ? The rectangular shock loading applied to the non-symmetric FG cylindrical structure.This analysis showed, the maximum amplitude of the radial and hoop displacement by increasing the value of volume fraction exponent has decreased. The maximum radial stress occur for l=0.75. Also by increasing the value of volume fraction exponent, the maximum hoop stress rises. The maximum of shear stress occurs in the range of free vibration for l=0.75.

    ? The present analysis furnishes a ground for natural frequency analysis of FGMs with two dimensional grading patterns.

    Chen, W. Q.; Bian, Z. G.; Ding,H. J.(2004): Three-dimensional vibration analysis of fluid-filled orthotropic FGM cylindrical shells,International Journal of Mechanical Sciences, vol. 46, pp. 159-171.

    Chen, W. Q.; Bian, Z. G.; Ding, H. J.(2004): 3D free vibration analysis of a functionally graded piezoelectric hollow cylinder filled with compressible fluid,International Journal of Solids and Structures, vol. 41, pp. 947-964.

    Foroutan, M.; Moradi-Dastjerdi, R.(2011): Dynamic analysis of functionally graded material cylinders under an impact load by a mesh-free method,Acta Mechanica, vol. 219,pp. 281-290.

    Hosseini, S. M.; Abolbashari,M. H.(2010): General analytical solution for elastic radial wave propagation and dynamic analysis of functionally graded thick hollow cylinders subjected to impact loading,Acta Mechanica, vol. 212, pp. 1-19.

    Hosseini, S. M.; Akhlaghi, M.; Shakeri,M.(2007): Dynamic response and radial wave propagation velocity in thick hollow cylinder made of functionally graded materials,Engineering Computations, vol. 24, pp. 288-303.

    Hosseini, S. M.; Shahabian, F.(2011): Stochastic assessment of thermo-elastic wave propagation in functionally graded materials (FGMs) with Gaussian uncertainty in constitutive mechanical properties,Journal Thermal Stresses, vol. 34, pp. 1071-1099.

    Hosseini, S. M.; Shahabian,F.(2011): Transient analysis of thermo-elastic waves in thick hollow cylinders using a stochastic hybrid numerical method, considering Gaussian mechanical properties,Applied Mathematical Modelling, vol. 35, pp. 4697-4714.

    He, L.; Seaid, M.(2016): A Runge-Kutta-Chebyshev SPH algorithm for elastodynamics,Acta Mechanica, vol. 227, pp. 1813-1835.

    Jaberzadeh, E.; Azhari, M.(2015): Local buckling of moderately thick stepped skew viscoelastic composite plates using the element-free Galerkin method,Acta Mechanica,vol. 226, pp. 1011-1025.

    Khosravifard, A.; Hematiyan, M. R.; Marin,L.(2011): Nonlinear transient heat conduction analysis of functionally graded materials in the presence of heat sources using an improved meshless radial point interpolation method,Applied Mathematical Modelling,vol. 35, pp. 4157-4174.

    Lin, H.; Atluri,S. N.(2000): Meshless local Petrov-Galerkin (MLPG) method for convection-diffusion problems,Computer Modeling in Engineering and Sciences, vol. 1,pp. 45-60.

    Liu, G. R.; Gu, Y. T.(2000): Meshless local Petrov-Galerkin (MLPG) method in combination with finite element and boundary element approaches,Computational Mechanics, vol. 26, pp. 536-546.

    Moradi-Dastjerdi, R.; Foroutan, M.; Pourasghar, A.(2013): Dynamic analysis of functionally graded nanocomposite cylinders reinforced by carbon nanotube by a meshfree method,Materials and Design, vol. 44, pp. 256-266.

    Mirzaei, D.; Hasanpour, K.(2016): Direct meshless local Petrov-Galerkin method for elastodynamic analysis,Acta Mechanica, vol. 227, pp. 619-632.

    Najibi, A.; Shojaeefard, M. H.(2016): Elastic mechanical stress analysis in a 2D-FGM thick finite length hollow cylinder with newly developed material model,Acta Mechanica Solida Sinica, vol. 29, pp. 178-191.

    Park, K. J.; Kim, Y. W.(2016): Vibration characteristics of fluid-conveying FGM cylindrical shells resting on Pasternak elastic foundation with an oblique edge,Thin-Walled Structures, vol. 106, pp. 407-419.

    Rezaei Mojdehi, A.; Darvizeh, A.; Basti, A. et al.(2011): Three dimensional static and dynamic analysis of thick functionally graded plates by the meshless local Petrov–Galerkin (MLPG) method,Engineering Analysis with Boundary Elements, vol. 35, pp.1168-1180.

    Shakeri, M.; Akhlaghi, M.; Hoseini, S. M.(2006): Vibration and radial wave propagation velocity in functionally graded thick hollow cylinder,Composite Structures,vol. 76, pp. 174-181.

    Shen, H.; Paidoussis, M. P.; Wen, J. et al.(2014): The beam-mode stability of periodic functionally graded material shells conveying fluid,Journal of Sound and Vibration, vol.333, pp. 2735-2749.

    Sladek, J.; Sladek, V.; Atluri,S. N.(2004): Meshless local Petrov-Galerkin method in anisotropic elasticity,Computer Modeling in Engineering and Sciences, vol. 6, pp. 477-489.

    Sladek, J.; Stanak, P.; Han, Z. et al.(2013): Applications of the MLPG method in engineering and sciences: a review,Computer Modeling in Engineering and Sciences, vol.92, pp. 423-475.

    Sladek, J.; Sladek, V.; Stanak, P. et al.(2013): Analysis of the bending of circular piezoelectric plates with functionally graded material properties by a MLPG method,Engineering Structures, vol. 47, pp. 81-89.

    Tadeu, A.; Stanak, P.; Antonio, J. et al.(2015): 2.5D elastic wave propagation in nonhomogeneous media coupling the BEM and MLPG methods,Engineering Analysis with Boundary Elements, vol. 53, pp. 86-99.

    Ugural, A. C.; Fenster, S. K.(2003):Advanced strength and applied elasticity, Fourth Edition, Prentice Hall.

    Xiao, J. R.; Batra, R. C.; Gilhooley, D. F. et al.(2007): Analysis of thick plates by using a higher-order shear and normal deformable plate theory and MLPG method with radial basis functions,Computer Methods in Applied Mechanics and Engineering, vol. 196, pp.979-987.

    Zhao, X.; Liu, G. R.; Dai, K. Y. et al.(2008): Geometric nonlinear analysis of plates and cylindrical shells via a linearly conforming radial point interpolation method,Computational Mechanics, vol. 42, pp. 133-144.

    Zhang, X.; Song, K. Z.; Lu, M. W. et al.(2000): Meshless methods based on collocation with radial basis functions,Computational Mechanics, vol. 26, pp. 333-343.

    欧美 亚洲 国产 日韩一| 亚洲色图综合在线观看| 菩萨蛮人人尽说江南好唐韦庄| 如日韩欧美国产精品一区二区三区| 五月伊人婷婷丁香| 99香蕉大伊视频| 成人国产麻豆网| 国产精品一国产av| 少妇人妻久久综合中文| 一本色道久久久久久精品综合| 亚洲综合色网址| 久久人人爽av亚洲精品天堂| 一二三四中文在线观看免费高清| videossex国产| 欧美日韩av久久| 秋霞在线观看毛片| 中文字幕免费在线视频6| tube8黄色片| 久久亚洲国产成人精品v| 国产成人精品一,二区| 欧美精品高潮呻吟av久久| 日本欧美视频一区| 色5月婷婷丁香| 国产高清不卡午夜福利| 成人毛片a级毛片在线播放| 国产黄频视频在线观看| 中文字幕人妻熟女乱码| 少妇的丰满在线观看| 国产高清国产精品国产三级| 成人漫画全彩无遮挡| 国产1区2区3区精品| 中文字幕精品免费在线观看视频 | 两个人免费观看高清视频| 在线观看www视频免费| 尾随美女入室| 国产一级毛片在线| 国产欧美日韩一区二区三区在线| 999精品在线视频| 欧美日韩亚洲高清精品| 亚洲图色成人| 黑人巨大精品欧美一区二区蜜桃 | 欧美人与善性xxx| 精品少妇黑人巨大在线播放| 欧美日本中文国产一区发布| 日本黄色日本黄色录像| videosex国产| 国产精品一区二区在线观看99| 美女脱内裤让男人舔精品视频| 精品人妻熟女毛片av久久网站| 成人免费观看视频高清| 丝袜脚勾引网站| 18禁观看日本| 秋霞在线观看毛片| 国产亚洲一区二区精品| 女人被躁到高潮嗷嗷叫费观| 新久久久久国产一级毛片| 在线亚洲精品国产二区图片欧美| 秋霞伦理黄片| 国产一区二区三区综合在线观看 | 交换朋友夫妻互换小说| 国产高清不卡午夜福利| 国产av精品麻豆| 国产在线免费精品| 免费观看av网站的网址| av网站免费在线观看视频| 只有这里有精品99| 蜜臀久久99精品久久宅男| 99热网站在线观看| 日本猛色少妇xxxxx猛交久久| 高清不卡的av网站| 最后的刺客免费高清国语| 亚洲 欧美一区二区三区| 丰满迷人的少妇在线观看| 一本大道久久a久久精品| 亚洲精品成人av观看孕妇| 男人舔女人的私密视频| 亚洲丝袜综合中文字幕| 欧美激情 高清一区二区三区| 成年人免费黄色播放视频| 制服丝袜香蕉在线| 汤姆久久久久久久影院中文字幕| 亚洲欧美成人综合另类久久久| 两性夫妻黄色片 | av在线播放精品| 久久国内精品自在自线图片| 日韩 亚洲 欧美在线| 久久久久精品性色| 女性被躁到高潮视频| 少妇 在线观看| 另类精品久久| 国产无遮挡羞羞视频在线观看| 女的被弄到高潮叫床怎么办| 久久精品aⅴ一区二区三区四区 | 久久毛片免费看一区二区三区| 全区人妻精品视频| 日本午夜av视频| 久久久国产一区二区| 亚洲 欧美一区二区三区| 女性被躁到高潮视频| av线在线观看网站| 看免费成人av毛片| 一区二区三区精品91| 亚洲欧洲日产国产| 亚洲欧美清纯卡通| 亚洲国产欧美日韩在线播放| 免费看不卡的av| 国产女主播在线喷水免费视频网站| 最近中文字幕2019免费版| 中文字幕人妻丝袜制服| 精品国产乱码久久久久久小说| 9色porny在线观看| 九色亚洲精品在线播放| 亚洲精品一区蜜桃| 日韩熟女老妇一区二区性免费视频| 男女下面插进去视频免费观看 | 久久久精品区二区三区| 国产淫语在线视频| 免费大片黄手机在线观看| 亚洲国产精品一区二区三区在线| 国产熟女午夜一区二区三区| 亚洲内射少妇av| 久久 成人 亚洲| 老司机亚洲免费影院| 亚洲欧洲精品一区二区精品久久久 | 男女边吃奶边做爰视频| 有码 亚洲区| 日韩成人av中文字幕在线观看| 国产精品嫩草影院av在线观看| 国产无遮挡羞羞视频在线观看| 新久久久久国产一级毛片| 久久久久精品人妻al黑| a级毛片在线看网站| 日日撸夜夜添| av国产精品久久久久影院| 国产片特级美女逼逼视频| 久久久久精品性色| 午夜激情av网站| 99热这里只有是精品在线观看| 9热在线视频观看99| 老熟女久久久| 国产成人a∨麻豆精品| 看免费av毛片| 一边摸一边做爽爽视频免费| 国产精品久久久av美女十八| 亚洲精品美女久久久久99蜜臀 | 免费人妻精品一区二区三区视频| 我的女老师完整版在线观看| 国产成人免费无遮挡视频| 婷婷色av中文字幕| 宅男免费午夜| 成人亚洲精品一区在线观看| 国产熟女午夜一区二区三区| 亚洲av电影在线观看一区二区三区| 一二三四在线观看免费中文在 | 亚洲激情五月婷婷啪啪| 中国三级夫妇交换| 亚洲精品久久午夜乱码| 亚洲国产精品成人久久小说| 亚洲精品国产av蜜桃| 国产又色又爽无遮挡免| 人体艺术视频欧美日本| 婷婷色综合大香蕉| 男女高潮啪啪啪动态图| 在线 av 中文字幕| 国产色爽女视频免费观看| 久久久久国产网址| 免费人妻精品一区二区三区视频| 日本猛色少妇xxxxx猛交久久| 一本久久精品| 韩国精品一区二区三区 | 精品第一国产精品| 97精品久久久久久久久久精品| 亚洲伊人色综图| 伦精品一区二区三区| 亚洲精品日韩在线中文字幕| 777米奇影视久久| 美女内射精品一级片tv| 国产在线一区二区三区精| 成人免费观看视频高清| 少妇人妻 视频| 一区二区三区四区激情视频| 亚洲国产欧美日韩在线播放| 成年人免费黄色播放视频| 成人黄色视频免费在线看| 日本爱情动作片www.在线观看| 久久精品夜色国产| 久久这里有精品视频免费| 久久久久久久久久久久大奶| 97在线视频观看| 一级黄片播放器| 免费看不卡的av| 亚洲精品久久久久久婷婷小说| 男女国产视频网站| 亚洲五月色婷婷综合| 国产精品人妻久久久久久| 国产精品国产三级专区第一集| 黑人猛操日本美女一级片| 水蜜桃什么品种好| 欧美变态另类bdsm刘玥| 这个男人来自地球电影免费观看 | 免费观看在线日韩| 国产精品人妻久久久影院| 亚洲精品国产av成人精品| tube8黄色片| 街头女战士在线观看网站| 人人澡人人妻人| 亚洲精品456在线播放app| 亚洲精品美女久久久久99蜜臀 | 啦啦啦中文免费视频观看日本| 国产69精品久久久久777片| 欧美变态另类bdsm刘玥| 一级,二级,三级黄色视频| 国产精品国产三级国产av玫瑰| 99久久综合免费| 久久久久久人妻| 捣出白浆h1v1| 久久99蜜桃精品久久| 久久影院123| 国产精品国产三级国产专区5o| 少妇的逼水好多| 一级,二级,三级黄色视频| 日韩成人伦理影院| www日本在线高清视频| 久久精品国产鲁丝片午夜精品| 九九爱精品视频在线观看| 捣出白浆h1v1| 日本午夜av视频| 亚洲欧美日韩卡通动漫| 国产69精品久久久久777片| 免费黄频网站在线观看国产| 亚洲人成77777在线视频| av福利片在线| 最近中文字幕高清免费大全6| 国产亚洲一区二区精品| 99re6热这里在线精品视频| 亚洲色图 男人天堂 中文字幕 | 性色avwww在线观看| 日本91视频免费播放| 看十八女毛片水多多多| 男的添女的下面高潮视频| 国产成人免费观看mmmm| 亚洲成人手机| 黑人巨大精品欧美一区二区蜜桃 | 国产精品女同一区二区软件| 国产精品一区www在线观看| 在线天堂最新版资源| kizo精华| 日韩电影二区| 在线看a的网站| 国产欧美另类精品又又久久亚洲欧美| 亚洲欧美清纯卡通| 精品国产一区二区三区四区第35| 天堂中文最新版在线下载| 久久久久视频综合| av不卡在线播放| 精品视频人人做人人爽| 亚洲一区二区三区欧美精品| av天堂久久9| 在线亚洲精品国产二区图片欧美| 国产亚洲av片在线观看秒播厂| 久久97久久精品| 精品亚洲乱码少妇综合久久| 在线天堂最新版资源| 国产欧美另类精品又又久久亚洲欧美| av不卡在线播放| 国产av一区二区精品久久| 久久99蜜桃精品久久| 久久青草综合色| 最近2019中文字幕mv第一页| 97在线人人人人妻| 一区二区三区乱码不卡18| 夜夜骑夜夜射夜夜干| 内地一区二区视频在线| 大香蕉久久网| 中文字幕人妻熟女乱码| 亚洲成人手机| 久久久久国产精品人妻一区二区| 欧美精品国产亚洲| 久久99热这里只频精品6学生| 亚洲欧美日韩另类电影网站| 欧美人与善性xxx| av在线观看视频网站免费| 2018国产大陆天天弄谢| av国产精品久久久久影院| 国产欧美日韩综合在线一区二区| 9色porny在线观看| 97人妻天天添夜夜摸| 欧美少妇被猛烈插入视频| 97人妻天天添夜夜摸| 亚洲久久久国产精品| 亚洲国产av新网站| 国产片特级美女逼逼视频| 免费在线观看完整版高清| 精品国产一区二区久久| 老司机影院成人| 国产毛片在线视频| 精品久久久久久电影网| 曰老女人黄片| 精品人妻熟女毛片av久久网站| 国产成人免费观看mmmm| 少妇 在线观看| 日韩熟女老妇一区二区性免费视频| 久久久久视频综合| 国产日韩欧美视频二区| 亚洲在久久综合| 91国产中文字幕| 精品少妇久久久久久888优播| 久久久久久人人人人人| 日本免费在线观看一区| 91久久精品国产一区二区三区| 欧美日韩亚洲高清精品| 免费观看av网站的网址| 亚洲av电影在线观看一区二区三区| 韩国精品一区二区三区 | 精品一区在线观看国产| 蜜桃国产av成人99| 99re6热这里在线精品视频| 中文欧美无线码| 18禁在线无遮挡免费观看视频| 午夜福利视频在线观看免费| 男女啪啪激烈高潮av片| 日日摸夜夜添夜夜爱| 精品国产一区二区三区四区第35| av播播在线观看一区| 亚洲国产最新在线播放| 久久久精品免费免费高清| 亚洲天堂av无毛| 中文字幕精品免费在线观看视频 | 亚洲精品国产色婷婷电影| 狠狠精品人妻久久久久久综合| 亚洲一码二码三码区别大吗| 亚洲精品久久午夜乱码| 亚洲国产毛片av蜜桃av| 国产精品成人在线| 9191精品国产免费久久| h视频一区二区三区| 哪个播放器可以免费观看大片| 中文字幕精品免费在线观看视频 | 视频中文字幕在线观看| 国产精品麻豆人妻色哟哟久久| 亚洲精品,欧美精品| 久久午夜福利片| 亚洲人成网站在线观看播放| 国产国语露脸激情在线看| 国产精品一区www在线观看| 成年人免费黄色播放视频| 在线观看三级黄色| 如何舔出高潮| 最近最新中文字幕大全免费视频 | 丝瓜视频免费看黄片| 成人毛片a级毛片在线播放| 综合色丁香网| 免费黄频网站在线观看国产| 国产精品成人在线| 99久久精品国产国产毛片| 日韩成人伦理影院| 免费不卡的大黄色大毛片视频在线观看| 欧美成人午夜精品| 99国产综合亚洲精品| 亚洲国产精品一区三区| 又黄又爽又刺激的免费视频.| 91aial.com中文字幕在线观看| 18禁在线无遮挡免费观看视频| 亚洲精华国产精华液的使用体验| 一区二区av电影网| 一边摸一边做爽爽视频免费| 日本免费在线观看一区| 久久精品久久精品一区二区三区| 午夜福利乱码中文字幕| 婷婷色麻豆天堂久久| 看免费av毛片| 韩国精品一区二区三区 | 黄色视频在线播放观看不卡| 九草在线视频观看| 少妇的丰满在线观看| 99热6这里只有精品| 免费看光身美女| 一区二区av电影网| 午夜激情av网站| 亚洲人成77777在线视频| 伦理电影免费视频| 久久精品国产鲁丝片午夜精品| 国产永久视频网站| 嫩草影院入口| 日韩成人伦理影院| 少妇的丰满在线观看| 国产精品久久久久久久久免| 在线看a的网站| 久久 成人 亚洲| av视频免费观看在线观看| www.色视频.com| 麻豆精品久久久久久蜜桃| 香蕉丝袜av| xxxhd国产人妻xxx| 人妻 亚洲 视频| 日韩大片免费观看网站| 香蕉精品网在线| 母亲3免费完整高清在线观看 | av国产精品久久久久影院| 久久这里有精品视频免费| 色吧在线观看| 欧美成人精品欧美一级黄| 日韩一本色道免费dvd| 丰满少妇做爰视频| 国产成人一区二区在线| 我的女老师完整版在线观看| 超碰97精品在线观看| 热99久久久久精品小说推荐| 熟女电影av网| 国产精品久久久久久av不卡| 欧美日本中文国产一区发布| 日本av手机在线免费观看| 午夜免费男女啪啪视频观看| 高清av免费在线| 女人被躁到高潮嗷嗷叫费观| 日韩一本色道免费dvd| 老司机亚洲免费影院| 精品国产一区二区三区久久久樱花| 久久韩国三级中文字幕| 国产一区二区激情短视频 | 日韩一区二区视频免费看| 欧美日韩综合久久久久久| 亚洲国产精品专区欧美| 在线观看www视频免费| 亚洲av欧美aⅴ国产| 久久久久精品久久久久真实原创| 国产一区二区在线观看av| 好男人视频免费观看在线| 国产淫语在线视频| 国产国语露脸激情在线看| 人妻系列 视频| 九色亚洲精品在线播放| 国产淫语在线视频| 国产熟女午夜一区二区三区| 中文字幕精品免费在线观看视频 | 国产av码专区亚洲av| 天堂8中文在线网| 熟妇人妻不卡中文字幕| 欧美xxⅹ黑人| 成人漫画全彩无遮挡| 老女人水多毛片| 日产精品乱码卡一卡2卡三| 中文字幕亚洲精品专区| 日本av手机在线免费观看| 伊人久久国产一区二区| 精品福利永久在线观看| 9色porny在线观看| 国产成人午夜福利电影在线观看| 精品久久久久久电影网| 最近的中文字幕免费完整| 亚洲中文av在线| 色哟哟·www| 成年av动漫网址| 交换朋友夫妻互换小说| 免费观看性生交大片5| 久久国产精品男人的天堂亚洲 | 久久 成人 亚洲| 人妻 亚洲 视频| 精品一区二区三区四区五区乱码 | 美女福利国产在线| 秋霞伦理黄片| 日本wwww免费看| 青春草国产在线视频| 中文字幕另类日韩欧美亚洲嫩草| 在线观看国产h片| 精品亚洲成国产av| 日本av免费视频播放| www日本在线高清视频| 欧美激情极品国产一区二区三区 | 亚洲欧美色中文字幕在线| 亚洲天堂av无毛| 黄色视频在线播放观看不卡| 久久女婷五月综合色啪小说| 97在线视频观看| 新久久久久国产一级毛片| 街头女战士在线观看网站| 老司机影院成人| 国产白丝娇喘喷水9色精品| 男女高潮啪啪啪动态图| 91成人精品电影| av免费观看日本| 亚洲欧美一区二区三区国产| 久久久久久久久久人人人人人人| 亚洲情色 制服丝袜| 男女无遮挡免费网站观看| 国产精品秋霞免费鲁丝片| 国产亚洲一区二区精品| 成人毛片60女人毛片免费| 日日摸夜夜添夜夜爱| 考比视频在线观看| 亚洲av男天堂| 国产精品蜜桃在线观看| 亚洲精品日韩在线中文字幕| 国产精品久久久久成人av| 女人久久www免费人成看片| 在线观看国产h片| 欧美97在线视频| 极品人妻少妇av视频| 国产成人欧美| 最新的欧美精品一区二区| 在现免费观看毛片| 肉色欧美久久久久久久蜜桃| 9191精品国产免费久久| 国产精品一区二区在线观看99| 免费大片18禁| 欧美变态另类bdsm刘玥| 亚洲高清免费不卡视频| 免费在线观看完整版高清| 有码 亚洲区| 久久久a久久爽久久v久久| 久久久久精品久久久久真实原创| 国产精品国产三级国产专区5o| 亚洲一码二码三码区别大吗| 王馨瑶露胸无遮挡在线观看| 亚洲精品美女久久久久99蜜臀 | 中文字幕av电影在线播放| 亚洲国产精品999| 黑人猛操日本美女一级片| 亚洲欧美色中文字幕在线| 草草在线视频免费看| 亚洲精品中文字幕在线视频| 91午夜精品亚洲一区二区三区| 久久国内精品自在自线图片| 成人亚洲精品一区在线观看| 校园人妻丝袜中文字幕| 亚洲精品一二三| 国产精品三级大全| 国产日韩欧美在线精品| 亚洲av.av天堂| 天天躁夜夜躁狠狠躁躁| 亚洲色图 男人天堂 中文字幕 | 国产不卡av网站在线观看| 一边亲一边摸免费视频| 国产一区有黄有色的免费视频| 亚洲国产av新网站| 狠狠精品人妻久久久久久综合| 国产精品一国产av| 久久久精品区二区三区| 视频在线观看一区二区三区| 丝袜脚勾引网站| 男女下面插进去视频免费观看 | 久久久久久久久久人人人人人人| 国产av国产精品国产| 国产精品国产av在线观看| 国产男女内射视频| 青春草视频在线免费观看| 大码成人一级视频| tube8黄色片| 中国三级夫妇交换| 国产亚洲av片在线观看秒播厂| 少妇人妻久久综合中文| 日韩制服丝袜自拍偷拍| 国产极品粉嫩免费观看在线| 国产精品久久久久久久久免| 亚洲熟女精品中文字幕| 蜜桃国产av成人99| 波多野结衣一区麻豆| 国产成人欧美| 69精品国产乱码久久久| 欧美成人精品欧美一级黄| 亚洲熟女精品中文字幕| 亚洲精品456在线播放app| 欧美精品一区二区免费开放| 性色av一级| 午夜av观看不卡| 丝袜在线中文字幕| 中文字幕人妻熟女乱码| 久久久久久久大尺度免费视频| 观看av在线不卡| 三上悠亚av全集在线观看| 99热国产这里只有精品6| 精品99又大又爽又粗少妇毛片| 国产极品粉嫩免费观看在线| 久久人人97超碰香蕉20202| 一区二区av电影网| 高清在线视频一区二区三区| 精品一区二区免费观看| 97在线人人人人妻| 色吧在线观看| 国产日韩欧美在线精品| 午夜激情久久久久久久| 秋霞伦理黄片| 亚洲欧洲精品一区二区精品久久久 | 中文字幕制服av| 亚洲av成人精品一二三区| 亚洲伊人色综图| 一本—道久久a久久精品蜜桃钙片| 久久久a久久爽久久v久久| 各种免费的搞黄视频| 成人综合一区亚洲| 男女边吃奶边做爰视频| 日韩在线高清观看一区二区三区| 两个人看的免费小视频| 亚洲精品美女久久av网站| 中文字幕av电影在线播放| 国产精品一区二区在线观看99| 一级毛片我不卡| 日本黄大片高清| 国产精品久久久久久精品电影小说| 欧美精品人与动牲交sv欧美| 亚洲精品成人av观看孕妇| 两性夫妻黄色片 | 久久鲁丝午夜福利片| 亚洲成人手机| 全区人妻精品视频| 久久久久精品性色| 汤姆久久久久久久影院中文字幕| 天堂俺去俺来也www色官网| 免费观看a级毛片全部| 久久精品国产亚洲av天美| 99久久中文字幕三级久久日本| 精品国产一区二区三区四区第35| 欧美少妇被猛烈插入视频| 高清视频免费观看一区二区| 国产免费视频播放在线视频|