• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Stable Explicit Time Stepping Analysis with a New Enrichment Scheme by XFEM

    2018-01-22 09:51:22XuecongLiuQingZhangandXiaozhouXia

    Xue-cong Liu, Qing Zhang,2 and Xiao-zhou Xia

    1 Introduction

    The fracture analysis of structures and components has been widely applied and highly valued in recent years, and modeling discontinuities like crack is one of the important parts in the simulation of failure. In order to model the crack and crack growth behavior, the way of remeshing is used by classic finite element method (FEM) in order to align the mesh with discontinuities. In addition, other solutions such as meshfree method, boundary element method and extended finite element method (XFEM) are available.

    As proposed by Belytschko and Black (1999); Noes, Dolbow and Belytschko (1999);Belytschko and Noes (2001), XFEM based on the concept of partition unity becomes a dominant numerical scheme. The crack can be modeled independent of finite element mesh.All the elements are divided into the normal parts and the enriched parts. Since the elements can be influenced directly by crack, the enrich functions are introduced. Heaviside function and the Westergaard stress function are used frequently for the discontinuities and the tip’s stress singularity, respectively. XFEM is used to simplify the discontinuous problems and perform well in stress analysis concerned with fracture mechanics.

    Dealing with the dynamic fracture, Belytschko, Chen and Xu et al. (2003) proposed a tip element in which the crack opens linearly and developed a propagation criterion with loss of hyperbolic. Later on, a singular tip enrichment function is proposed for the elastodynamiccracks with explicit time integration scheme [Belytschko and Chen (2004)]. In order to deeply study the stability and energy conservation to get a more accurate result, Ré thoré,Gravouil and Combescure (2005a, 2005b) combined Space and Time XFEM (STX-FEM)to obtain a unified space-time discretization, and concluded that the STX-FEM is a suitable technique for dynamic fracture problems. On the other hand, a new lumping technique for mass matrix was proposed in order to be more suitable for dynamic problems by Menouillard, Ré thoré and Combescure et al. (2006); Menouillard, Ré thoré and Noes et al.(2008) and the robustness and stability of the approach has been proved.

    As we noticed, the previous study is all based on the classical enrichment scheme, and a large number of additional degrees of freedom (DOFs) are required. In the meantime,various improved enrichment methods have been studied. Song, Areias and Belytschko(2006) has reinterpreted the conventional displacement field, described discontinuities by using phantom nodes and superimposed extra elements onto the intrinsic grid for dynamic fracture problems. The method doesn’t require subdomain integration for the discontinuous integrand and has a highly efficient but nevertheless quite accurate formulation. Further,Duan, Song and Menouillard et al. (2009) has shown its practicability on the shell problem as well as three-dimension problem [Song and Belytschko (2009)]. Besides, changing the basic enrichment function is another solution. Menouillard, Song and Duan et al. (2010)proposed a new enrichment method with only a singular enrichment, which shows great accuracy for stationary cracks. The similar research has been done by Rabczuk, Zi and Geretenberger et al. (2008). Without crack tip enrichment, the Heaviside function has also been improved. Nistor, Pantale and Caperaa (2008) used only Heaviside function to model the dynamic crack growth. Kumar, Singh and Mishra et al. (2015) presented a new approach based Heaviside function along with a ramp function which contains information like crack length and angle. A similar method was proposed by Wen and Tian (2016); Tian and Wen (2016), which is based on an extra-dof-free partition of unity enrichment technique, and no more extra DOFs are added in the dynamic crack growth simulation.

    For all the study discussed above, the stability of the method is always concerned.Generally, using explicit scheme for dynamic problem, one goes through a very small time stepping that leads to high computation cost, while with a larger one the numerical result may be divergent. So, in the present paper, we will focus on the stability of the numerical scheme. A new enrichment scheme is used for the elements influenced by crack tip based on the analytical solution of the displacement fields near crack tip. The Newmark scheme is adopted for time integration, and different parameters are tested to investigate their influence on the stability. In addition, DSIF is calculated as an important parameter which represents the variation of the stress field around the crack tip, and also can determine the stability of the simulation.

    This paper is organized as following: Section 2 illustrates the governing equations and the XFEM; The explicit time algorithm and the lumping technique are introduced in Section 3; The DSIF is shown in Section 4; In Section 5, in order to verify the feasibility and accuracy of the simulation, several numerical examples are provided.

    2 Governing equations and XFEM formulation

    2.1 Governing equations

    In order to develop the equations governing the problem, a homogeneous two-dimensional domainwith cracks is considered. As described in Fig.1, the domainis bounded bywhich is composed ofThroughout this paper, prescribed displacements are imposedand assumed to be traction-free. The strong form of the linear momentum equation and the boundary conditions are

    2.2 The XFEM formulation

    Consider a typical finite element mesh with four-node elements as shown in Fig.2, in which the geometry of crack is independent of the mesh. As in the classical XFEM, the nodes by Heavisde enrichment are enriched with two addition DOFs, and the shape functions are constructed from the Heaviside function).)is defined as a unit magnitude for the elements cut completely by crack, and takes ±1 on the two sides of the crack. For the nodes with crack tip enrichment, they are enriched frequently by eight addition DOFs. The basic enrichment functions are inspired from the near tip displacement fields of mode I andmode II cracks in FEM, and can be written as the functions [Belytschko and Black (1999)].

    Figure 1: Domain with cracks and prescribed boundary conditions

    Figure 2: Typical discretization of a domain with crack and enriched nodes by XFEM

    As mentioned above, the enrichment functions are developed based the asymptotic displacement fields of the crack tip, and can take different forms. In the present paper, a new form of enrichment functions is used, which derives from the asymptotic displacement fields directly. By shifting the enrichment functions, we are able to correspond the enriched nodes’ displacement to the true displacement with XFEM. The displacement can be written approximately as

    Without concerning the damping effect, we substitute the displacement field Eq. (4) into the weak form Eq. (2). It then yields a system of linear algebraic matrix equations, which can be expressed as

    where M is the mass matrix, K is the stiffness matrix and f is the force matrix:

    sub-matrices and vectors that come in the foregoing equations are defined as below for four-node element ():

    3 The explicit time integration

    3.1 Time integration

    As the most commonly used for dynamic problems, the Newmark scheme is chosen as the time integration algorithm. As we know, the time integration algorithm can be divided into two types: the explicit and the implicit. With the implicit method, there is no intrinsic limit to the time step. But we need to solve the global equations by iterating in each step. For dynamic problems, lots of iterations are needed, which has many disadvantages such as vast computation and low efficiency by implicit scheme. Compared with the implicit scheme, the explicit scheme solves the equations independently with no iterative, which is chosen in this paper.

    The derived equation is given as

    For a numeric scheme, the stability, consistency and convergence are the main reference standard. As instability is a sufficient condition for non-convergence, the Newmark scheme and their stability are discussed in this paper. The stability conditions of Newmark scheme are deduced in detail by Réthoré, Gravouil and Combescure (2004) with their custom notations. They can concluded as

    Furthermore, due to such a restriction of stability condition, there must be a critical time step. With the time stepbeyond the critical value, the numerical instability and convergence problem will happen at some point. In contrast, the numerical results are very stable within the critical time.

    In this paper, we will focus on figuring out the critical time step, and finding out the factors that can affect it. Thus, tests with different grid densities and different parameters in the Newmark scheme will be conducted.

    3.2 The lumped mass

    The matrix above in Eq. (8) known as the consistent mass matrix, includes standard terms,block-diagonal enriched terms, and coupling terms [Menouillard, Ré thoré and Combescure et al. (2006)]. However, for the problem of dynamic, the mass matrix lumped is used more frequently in order to simplify the numerical calculations. Due to the existence of additional DOFs which have no clear physical significance, the distribution of mass is not just as a simple average as in traditional FEM. Menouillard, Ré thoré and Noes et al. (2008)had in-depth study of the lumping technique for the mass matrix based on the conservation of mass and momentum, and proved its effectiveness with explicit scheme for dynamics by XFEM. Besides, the lumping technique was also researched by Zi, Chen and Xu et al.(2005); Elguedj, Gravouil and Maigre (2009); Song and Belytschko (2009); Jim, Zhang and Fang et al. (2016). In this paper, the lumped mass proposed by Menouillard, Ré thoré and Combescure et al. (2006) is used

    4 DSIF

    As the relevant quantities of crack tip may be questionable on accuracy such as stress fields,the SIF based on energetic consideration is used as a parameter of the strength of singularity.There are a few schemes to calculate the SIF, such as the displacement extrapolation method, the virtual crack extension method, the virtual crack closure method and the interaction integral method. The interaction integral method is used here which has the highest accuracy according to the research of Nagashima, Omoto and Tani (2003). In the interaction integral method, the auxiliary fields are introduced and superimposed onto the actual fields.

    For dynamic loading case, an item related to inertia is added, and the interaction integral with force-free on crack surface can be given as

    The basic algorithm used here for the DSIF is concluded as following:

    (1) Give an integral rangR, then search for all the integral elements;

    (2) Loop through all the integral elements;

    (3) Loop through all the Gauss points in each integral element;

    (4) Calculate the actual state and the auxiliary state of each Gauss point;

    (5) Get the value of DSIF through Eq. (15) and Eq. (16).

    whereRis the ratio between the actual integral radiusrand the minimum sizeLminof all elements as shown in Fig.3.

    Figure 3: The integral elements for DSIF

    5 Numerical examples

    5.1 Stationary mode I crack

    First, let us consider the problem of an infinite plate contains a semi-infinite crack whose geometry is shown in Fig.4. A theoretical solution of the problem was obtained by Freund(1990). To model this configuration, a rectangular plate of sizeL2H=10m4m with an initial edge crack of lengtha=5m under uniaxial tensile stress was used. The tensile stress was a typeof Heaviside step loading, and=500MPa. The material properties Young’s modulus =210Gpa, Poisson’s ratio=0.3 and the density=8000 kg/m3. A mesh of 3999 uniform square was used for tests. The theoretical DSIF of the problem with a stationary crack was given by Freund (1990):

    Fig.6 presents the results of DSIF with different time steppingwhile=5. It shows good consistency and the results are not sensitive to the time step. So, this inspires us to improve the computational efficient with a larger step time which is less than the critical time. With a much larger time stepping, =20, the numerical result is rapidly divergent. As a consequence, there is a critical time stepping, which we will discuss it shortly.

    Figure 4: The geometry and loading of a homogeneous material plate with crack

    Figure 5: The DSIF with different integral path

    Figure 6: The DSIF with different time step

    5.2 Finite size edge plate with an arbitrarily oriented central crack

    Secondly, the central cracks ofdifferent inclined angle are considered. The length of crack is the same, and the angles, =15°, 30°, 45°, 60°, 75° are examined. The problem has been discussed by Phan, Gray and Salvadori (2010) with Symmetric-Galerkin Boundary Element Method and by Liu, Bui and Zhang et al. (2012) with Smoothed Finite Element Method. The results are shown and compared with Phan, Gray and Salvadori (2010) in Fig.10. As depicted in Fig.10a, for the case of mode I, the values in the peak of DSIF curvesfor a small period of time after the stress wave arrive in the tip. Fig.10b reveals that DSIF in mode II are practically the same for the pair of=15°and=75°, and the pair of=30° and=60°. At the meanwhile, the curve of=45°has the highest peak value.

    Figure 7: The rectangular plate with crack of different angle

    Figure 8: The DSIF with different integral path of the left crack tip

    Figure 9: The DSIF of the left crack tip with different time increments

    Figure 10: The DSIF of crack tip with different rotation angle: (a) Mode I; (b) Mode II

    5.3 The stable explicit time stepping analysis

    This part focuses on the main factors that influence the critical time step. The grid density and iteration form are the two main subjects. The experiment configuration model is presented in Fig.7 with =0°. The material’ properties and the other parameters are the same as that used in last example. In order to get the critical time, the method of numerical approximation is used.

    Firstly, the results were obtained with different grid densities. Three uniform meshes are considered, which are of CCT: 4999, CCT1: 2449, CCT2: 1324 elements. WithNewmark scheme, the critical time step of different meshesin Fig.11(a), the critical time we got is about=4.825×10-8s with 4999 elements. When the time stepcalculation results are completely consistent and do not produce divergence. Conversely,divergence is presented in the calculation when. The divergence occur at about 4.750, 7.154, 11.495, 15.141whenis 5.000×10-8s, 4.900×10-8s, 4.850×10-8s, 4.838×10-8s, respectively. As a comparison, Fig.11(b) is presented with the mesh of 2449. It is seen that the critical time is 10.025×10-8s which is improved than the one in Fig.11(a). The divergence occurs at about 4.095, 9.494, 12.090, 17.085whenis 10.500×10-8s, 10.100×10-8s, 10.075×10-8s, 10.050×10-8s, respectively.

    Figure 11: Numerical stability with different time stepping (R=5,=0=1/2): (a) CCT:4999, (b) CCT1: 2449.

    Table 1: The critical time stepping for different densities of grid (R=5=0,=1/2)

    Table 1: The critical time stepping for different densities of grid (R=5=0,=1/2)

    ?

    To clarify this case further, we repeated the above steps with CCT2: 1324 elements, and the comparison results are shown in the Table 1. The critical time step is about 16.568×10-8s in the case of CCT2, which is larger than the case of CCT1. It is hence concluded that the critical time step decreases with the increase of grid density. Besides, the critical time step of thestandard FEM for the lumped mass is also listed. With more elements, the critical time step is decreased, and this is consistent with the case of. The values ofare similar, which range from 88.064% to 91.344%. As Menouillard, Réthoré and Combescure et al. (2006); Elguedj, Gravouil and Maigre (2009) suggested,for the stationary crack, the value 2/3 is within the numerical range listed in this paper. So, the numerical stability can be guaranteed.

    In addition, we took into account the effect of Newmark scheme for the critical time step.Four cases are concerned. Before studying the impact of iterative format on critical time step, all the cases are listed under the same conditions: CCT1, a mesh of 24×49 elements,R=5,=5×10-8s. We listed the first 30 microseconds with different parameter valuesin Fig.12. An approximately identical result can be obtained. The stability conditions of the Newmark scheme are also verified directly.

    In Fig.11(b), we presented the test result with=1/2. As a comparison, the result with=2/3 is shown in Fig.13. The divergence occur at about 6.030, 12.848, 75.168whenis 9.000×10-8s, 8.800×10-8s, 8.700×10-8s, respectively. The critical time we obtained is about=8.685×10-8s, which is smaller than the case of=1/2. For further investigation, the cases of=3/4,=1 are tested. The results are listed in Table.2. The critical time step of the standard FEM for the lumped mass are also listed. In Table.2, it is seen that the critical time step decreases with the increase ofFurthermore, we observed that the values ofand the different parameter

    Figure: 12 Numerical results with different parameters(CCT1: 2449, R=5, =0,=510-8s)

    Figure: 13 Numerical stability with different time stepping (CCT1: 2449, R=5, =0,=2/3)

    Table 2: The critical time stepping for different parameters (CCT1: 2449, R=5=0)

    Table 2: The critical time stepping for different parameters (CCT1: 2449, R=5=0)

    ?

    6 Conclusions

    In the present paper, we carried out some numerical experiments of the stable explicit time stepping within the XFEM framework. A new enrichment scheme for crack tip is proposed and its applicability and availability has been sufficiently verified. The DSIF is used as an important parameter of the dynamic response and is also a parameter of judging the stability of numerical method. Objective to studying the factors that can affect the stability,different densities of grid and different parameters of Newmark scheme have been tested.The conclusions are shown as:

    · The grid density and the form of iterative method have obvious effects on stability;

    · The critical time steppingdecreases with the increase of grid density;

    · The critical time steppingdecreases with the increase of the parameterbetween 0.5 and 1of Newmark scheme;

    Furthermore, the simulation results are found in good agreement with each other when they are stable. Therefore, increasing time stepping appropriately in the range of critical value can improve the computational efficiency.

    Acknowledgment:The authors are grateful to the National Natural Science Foundation of China(No.11672101, No.11372099), the 12th Five-Year Supporting Plan Issue (No.2015BAB07B10),Jiangsu Province Natural Science Fund Project (No. BK20151493) and the Postgraduate Research and Innovation Projects in Jiangsu Province (No.2014B31614) for the financial support.

    Belytschko, T.; Black, T.(1999): Elastic crack growth in finite elements with minimal remeshing.International Journal for Numerical Methods in Engineering,vol. 45, no. 5,pp. 602-620.

    Belytschko, T.; Chen, H.(2004): Singular Enrichment Finite Element Method for Elastodynamic Crack Propagation.International Journal of Computational Methods, vol.1, no. 1, pp. 1-15.

    Belytschko, T.; Chen, H.; Xu, J.; Zi, G.(2003): Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment.International Journal for Numerical Methods in Engineering,vol. 58, no. 12, pp. 1873-1905.

    Belytschko, T.; Moes, N.; Usui, S.; Parimi, C.(2001): Arbitrary discontinuities infinite elements,International Journal for Numerical Methods in Engineering, vol. 50, no. 4, pp.993-1013.

    Dolbow, J.; Moes, N.; Belytschko, T.(2000): Discontinuous enrichment in finite elements with a partition of unity method.Finite Elements in Analysis and Design,vol. 365, no. 3-4, pp. 235-260.

    Duan, Q.; Song, J. H.; Menouillard, T.(2009): Belytschko. Element-local level set method for three-dimensional dynamic crack growth.International Journal for Numerical Methods in Engineering, vol. 80, no. 12, pp. 1520-1543.

    Elguedj, T.; Gravouil, A.; Maigre, H.(2009): An explicit dynamic extended finite element method. Part 1: Mass lumping for arbitrary enrichment functions.Computer Methods in Applied Mechanics and Engineering, vol. 198 no. 30-32, pp. 2297-2317.

    Freund, L. B.(1990): Dymamic fracture mechanics.Cambridge Monographs on Mechanics and Applied Mathematics.

    Jim, L.; Zhang, T.; Fang, E.; Song, J. H.(2016): Explicit phantom paired shell element approach for crack branching and impact damage prediction of aluminum structures.International Journal of Impact Engineering,vol. 87, pp. 28-43.

    Kumar, S.; Singh, I. V.; Mishra, B. K.; Singh, A.(2015): New enrichments in XFEM to model dynamic crack response of 2-D elastic solids,International Journal of Impact Engineering, vol. 87, pp. 198-211.

    Liu, P.; Bui, T.; Zhang, C.; Yu, T.T.; Liu, G. R.; Golub, M. V.(2012): The singular edgebased smoothed finite element method for stationary dynamic crack problems in 2D elastic solids.Computer Methods in Applied Mechanics & Engineering,vol. 233-236, no. 4, pp.68-80.

    Moes, N.; Dolbow, J.; Belytschko, T.(1999): A finite element method for crack growth without remeshing.International Journal for Numerical Methods in Engineering, vol. 46,no. 1, pp. 131-150.

    Menouillard, T.; Réthoré, J.; Combescure, A. et al.(2006): Efficient explicit time stepping for the eXtended Finite Element Method(X-FEM).International Journal for Numerical Methods in Engineering, vol. 68, no. 9, pp. 911-939.

    Menouillard, T.; Réthoré, J.; Moes, N. et al.(2008): Mass lumping strategies for X-FEM explicit dynamics: Application to crack propagation.International Journal for Numerical Methods in Engineering, vol. 74, no. 3, pp. 447-474.

    Menouillard, T.; Song, J. H.; Duan, Q. et al.(2010): Time dependent crack tip enrichment for dynamic crack propagation.International Journal of Fracture, vol. 62, no.1-2, pp.33-69.

    Nagashima, T.; Omoto, Y.; Tani, S.(2003): Stress intensity factor analysis of interface cracks using X-FEM,International Journal for Numerical Methods in Engineering,vol.56, no. 8, pp. 1151-1173.

    Nistor, I.; Pantale, O.; Caperaa, S.(2008): Numerical implementation of the extended finite element method for dynamic crack analysis.Advances in Engineer Software,vol. 39,no. 7, pp. 573-587

    Phan, A. V.; Gray, L. J.; Salvadori, A.(2010): Transient analysis of the dynamic stress intensity factors using SGBEM for frequency-domain elastodynamics.Computer Methods in Applied Mechanics & Engineering,vol. 199, no. 45-28, pp. 3039-3050.

    Rabczuk, T.; Zi, G.; Gerstenberger, A. et al.(2008): A new crack tip element for the phantom-node method with arbitrary cohesive cracks,International Journal for Numerical Methods in Engineering, vol. 75, no. 5, pp. 577-599.

    Réthoré, J.; Gravouil, A.; Combescure, A.(2004): A stable numerical scheme for the finite element simulation of dynamic crack propagation with remeshing.Computer Methods in Applied Mechanics & Engineering, vol. 193, no. 42-44, pp. 4493-4510.

    Réthoré, J.; Gravouil, A.; Combescure, A.(2005a): An energy-conserving scheme for dynamic crack growth using the eXtended finite element method,International Journal for Numerical Methods in Engineering, vol. 63, no. 5, pp. 631-659.

    Réthoré, J.; Gravouil, A.; Combescure, A.(2005b): A combined space-time extended Finite Element Method.International Journal for Numerical Methods in Engineering, vol.64, no. 2, pp. 260-284.

    Song, J. H.; Belytschko, T.(2009): Dynamic fracture of shells subjected to impulsive loads.Journal of Applied Mechanics, vol. 76, no. 5, pp. 051301-1-9.

    Song, J. H.; Belytschko, T.(2009): Cracking ong node method for dynamic fracture with finite elements,International Journal for Numerical Methods in Engineering,vol. 77, no.3, pp. 360-385.

    Song, J. H.; Areias, P. M. A.; Belytschko, T.(2006): A method for dynamic crack and shear band propagation with nodes phantom nodes.International Journal for Numerical Methods in Engineering, vol. 67, no. 6, pp. 868-893.

    Tian, R.; Wen, L.(2016): Improved XFEM: An extra-dof free,well-conditioning, and interpolating XFEM.Computer Methods in Applied Mechanics & Engineering,vol. 285,no. 3, pp. 639-658.

    Wen, L.; Tian, R.(2016): Improved XFEM: Accurate and robust dynamic crack growth simulation.Computer Methods in Applied Mechanics & Engineering,vol. 308, pp. 256-285.

    Zi, G.; Chen, H.; Xu, J.; Belytschko, T.(2005): The extended finite element method for dynamic fractures.Shock and Vibration,vol. 12, no. 1, pp. 9-23.

    丁香欧美五月| 亚洲熟妇熟女久久| 国产又色又爽无遮挡免费看| a级片在线免费高清观看视频| 乱人伦中国视频| 老汉色∧v一级毛片| 久久人妻av系列| 成人三级做爰电影| e午夜精品久久久久久久| 久99久视频精品免费| 亚洲一区高清亚洲精品| e午夜精品久久久久久久| 午夜老司机福利片| 久久久久久亚洲精品国产蜜桃av| 18在线观看网站| 欧美日韩成人在线一区二区| 免费高清在线观看日韩| 高清视频免费观看一区二区| 天天影视国产精品| 欧美亚洲日本最大视频资源| 欧美精品啪啪一区二区三区| 黑人猛操日本美女一级片| 一区在线观看完整版| 国产精品偷伦视频观看了| 后天国语完整版免费观看| 人成视频在线观看免费观看| av网站免费在线观看视频| 黄频高清免费视频| 国产精品自产拍在线观看55亚洲 | 精品免费久久久久久久清纯 | 国产成人av激情在线播放| 最新在线观看一区二区三区| 久久久精品国产亚洲av高清涩受| 精品无人区乱码1区二区| 男人的好看免费观看在线视频 | svipshipincom国产片| 国产色视频综合| 免费少妇av软件| 国产不卡一卡二| 久久精品aⅴ一区二区三区四区| 国产精品.久久久| 啪啪无遮挡十八禁网站| 中文字幕人妻丝袜制服| 国产色视频综合| 一进一出抽搐动态| 欧美乱妇无乱码| 久久精品91无色码中文字幕| 亚洲人成电影免费在线| 一区二区三区精品91| 国产精品久久久久久人妻精品电影| 国产一区二区激情短视频| 婷婷丁香在线五月| 亚洲av欧美aⅴ国产| 久久国产精品大桥未久av| 女人精品久久久久毛片| 电影成人av| 在线观看一区二区三区激情| a级毛片黄视频| 成人特级黄色片久久久久久久| 国产精品久久久av美女十八| 久久国产精品男人的天堂亚洲| 亚洲片人在线观看| 国产一区二区激情短视频| 男女下面插进去视频免费观看| 精品无人区乱码1区二区| 最近最新中文字幕大全电影3 | 欧美在线一区亚洲| 一级,二级,三级黄色视频| 三级毛片av免费| 成人18禁高潮啪啪吃奶动态图| 亚洲精品av麻豆狂野| 97人妻天天添夜夜摸| 建设人人有责人人尽责人人享有的| 激情视频va一区二区三区| 国产区一区二久久| 日韩大码丰满熟妇| 色婷婷久久久亚洲欧美| xxx96com| 国产在视频线精品| 久久婷婷成人综合色麻豆| 国产真人三级小视频在线观看| av线在线观看网站| 日韩欧美一区视频在线观看| 在线天堂中文资源库| 国产99白浆流出| 国产亚洲av高清不卡| 国产高清视频在线播放一区| 女人高潮潮喷娇喘18禁视频| 久久狼人影院| 亚洲av美国av| 少妇被粗大的猛进出69影院| 亚洲精品粉嫩美女一区| 男女下面插进去视频免费观看| 热99re8久久精品国产| 亚洲avbb在线观看| 王馨瑶露胸无遮挡在线观看| 侵犯人妻中文字幕一二三四区| 久久久久国产精品人妻aⅴ院 | 狂野欧美激情性xxxx| x7x7x7水蜜桃| 操美女的视频在线观看| 精品国产国语对白av| av免费在线观看网站| 99国产极品粉嫩在线观看| 精品人妻熟女毛片av久久网站| 一级片免费观看大全| 免费在线观看亚洲国产| 亚洲avbb在线观看| netflix在线观看网站| 中文字幕制服av| 欧美激情极品国产一区二区三区| 一区二区三区精品91| 超色免费av| 久久香蕉激情| 不卡一级毛片| 国产亚洲一区二区精品| 午夜福利乱码中文字幕| 国产成人精品无人区| 人人妻人人澡人人看| 国产精品电影一区二区三区 | 亚洲人成77777在线视频| 视频在线观看一区二区三区| 欧美丝袜亚洲另类 | 91国产中文字幕| 青草久久国产| 婷婷成人精品国产| 色在线成人网| 亚洲欧美一区二区三区黑人| 亚洲免费av在线视频| 国产成人免费无遮挡视频| 婷婷成人精品国产| 欧美av亚洲av综合av国产av| 精品一品国产午夜福利视频| av在线播放免费不卡| 51午夜福利影视在线观看| 色婷婷av一区二区三区视频| 女人爽到高潮嗷嗷叫在线视频| 无遮挡黄片免费观看| а√天堂www在线а√下载 | 中文字幕色久视频| av电影中文网址| 久久久国产欧美日韩av| 亚洲av熟女| 色尼玛亚洲综合影院| 女同久久另类99精品国产91| 日本精品一区二区三区蜜桃| 日本一区二区免费在线视频| 精品少妇久久久久久888优播| 不卡一级毛片| 亚洲av美国av| 后天国语完整版免费观看| 亚洲在线自拍视频| 中文亚洲av片在线观看爽 | 午夜久久久在线观看| 757午夜福利合集在线观看| 村上凉子中文字幕在线| 国产av精品麻豆| 欧美黄色淫秽网站| 亚洲欧美一区二区三区久久| 天天躁夜夜躁狠狠躁躁| 大香蕉久久网| 桃红色精品国产亚洲av| 在线av久久热| 两个人看的免费小视频| 如日韩欧美国产精品一区二区三区| 久久亚洲真实| 99久久综合精品五月天人人| netflix在线观看网站| 成人av一区二区三区在线看| 五月开心婷婷网| 精品国产一区二区久久| 超碰成人久久| 日韩成人在线观看一区二区三区| 亚洲七黄色美女视频| 人妻久久中文字幕网| 老司机在亚洲福利影院| 久久精品熟女亚洲av麻豆精品| 在线看a的网站| 国产成人啪精品午夜网站| 黑人巨大精品欧美一区二区mp4| 宅男免费午夜| 男人的好看免费观看在线视频 | 久久精品aⅴ一区二区三区四区| 精品国产乱码久久久久久男人| 最近最新免费中文字幕在线| 久久人妻熟女aⅴ| 国产精品国产av在线观看| 国产精品.久久久| 国产黄色免费在线视频| 99久久综合精品五月天人人| 国产亚洲精品一区二区www | 成年人免费黄色播放视频| 久久性视频一级片| 一级片'在线观看视频| 免费日韩欧美在线观看| 免费少妇av软件| 亚洲九九香蕉| 电影成人av| 99热网站在线观看| 精品卡一卡二卡四卡免费| 人人妻,人人澡人人爽秒播| 日韩欧美一区视频在线观看| 亚洲精品美女久久久久99蜜臀| 18禁美女被吸乳视频| 大香蕉久久成人网| 人人澡人人妻人| 国产欧美日韩一区二区三区在线| 免费高清在线观看日韩| 免费在线观看亚洲国产| 中文字幕av电影在线播放| 中文字幕制服av| 亚洲熟妇熟女久久| 91国产中文字幕| 国产精品一区二区免费欧美| 免费日韩欧美在线观看| 午夜影院日韩av| 午夜福利免费观看在线| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美最黄视频在线播放免费 | 国产无遮挡羞羞视频在线观看| 99精国产麻豆久久婷婷| 黄片播放在线免费| 在线观看一区二区三区激情| cao死你这个sao货| 无人区码免费观看不卡| 亚洲人成77777在线视频| aaaaa片日本免费| 欧美久久黑人一区二区| 真人做人爱边吃奶动态| 亚洲欧美日韩另类电影网站| 丰满的人妻完整版| 亚洲精品中文字幕一二三四区| 国产免费av片在线观看野外av| 深夜精品福利| 久久精品国产亚洲av高清一级| 一级作爱视频免费观看| 久久人妻av系列| 老司机在亚洲福利影院| 国产av一区二区精品久久| 黄频高清免费视频| 校园春色视频在线观看| 午夜日韩欧美国产| 日韩中文字幕欧美一区二区| 欧美黑人精品巨大| 日本黄色日本黄色录像| 中文字幕人妻熟女乱码| 色综合婷婷激情| 国产视频一区二区在线看| 亚洲国产欧美日韩在线播放| 色在线成人网| 国产亚洲精品一区二区www | 成年动漫av网址| 久久中文字幕一级| 午夜老司机福利片| 看免费av毛片| 欧美日韩精品网址| 国产精品自产拍在线观看55亚洲 | 国产免费男女视频| 欧美精品高潮呻吟av久久| 国产无遮挡羞羞视频在线观看| 久久精品亚洲精品国产色婷小说| 亚洲成人免费电影在线观看| 精品电影一区二区在线| 欧美老熟妇乱子伦牲交| 久久99一区二区三区| e午夜精品久久久久久久| 在线观看免费高清a一片| 成人特级黄色片久久久久久久| www.精华液| 两性午夜刺激爽爽歪歪视频在线观看 | 美女视频免费永久观看网站| 日本欧美视频一区| 满18在线观看网站| 一边摸一边做爽爽视频免费| 国产在线观看jvid| 成人免费观看视频高清| 青草久久国产| 亚洲精品av麻豆狂野| 女人被躁到高潮嗷嗷叫费观| 黄频高清免费视频| 午夜成年电影在线免费观看| 免费在线观看影片大全网站| 黄色视频,在线免费观看| 国产97色在线日韩免费| 亚洲国产欧美网| 亚洲精品在线观看二区| 狠狠婷婷综合久久久久久88av| 777米奇影视久久| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精华国产精华精| 久久天躁狠狠躁夜夜2o2o| 欧美久久黑人一区二区| 一进一出抽搐gif免费好疼 | 97人妻天天添夜夜摸| 国产精品久久久人人做人人爽| 国产精品.久久久| 国产区一区二久久| av不卡在线播放| 久久狼人影院| 久久久久国内视频| 精品卡一卡二卡四卡免费| 另类亚洲欧美激情| 亚洲成a人片在线一区二区| 亚洲一区中文字幕在线| 一区二区日韩欧美中文字幕| 成人手机av| 久久热在线av| 日韩免费av在线播放| 亚洲男人天堂网一区| 黄片大片在线免费观看| 精品国产乱子伦一区二区三区| 悠悠久久av| 欧美午夜高清在线| 欧美乱妇无乱码| 丝袜美足系列| 天天影视国产精品| 男人的好看免费观看在线视频 | 丰满人妻熟妇乱又伦精品不卡| 国产野战对白在线观看| 黄色片一级片一级黄色片| 999精品在线视频| 高清毛片免费观看视频网站 | 亚洲三区欧美一区| 一区二区三区精品91| 久热爱精品视频在线9| 大型av网站在线播放| 亚洲专区字幕在线| 精品免费久久久久久久清纯 | a级毛片在线看网站| 亚洲国产精品合色在线| 亚洲欧美一区二区三区黑人| 日日夜夜操网爽| 久久精品熟女亚洲av麻豆精品| 97人妻天天添夜夜摸| 亚洲少妇的诱惑av| 电影成人av| 在线观看免费高清a一片| 日韩成人在线观看一区二区三区| 18禁美女被吸乳视频| 人人妻人人添人人爽欧美一区卜| 乱人伦中国视频| 久久中文字幕人妻熟女| 国产高清videossex| 97人妻天天添夜夜摸| 丝瓜视频免费看黄片| 亚洲aⅴ乱码一区二区在线播放 | 嫩草影视91久久| 91精品三级在线观看| 欧美色视频一区免费| 少妇猛男粗大的猛烈进出视频| 日本欧美视频一区| a在线观看视频网站| 亚洲av片天天在线观看| 日韩成人在线观看一区二区三区| 老鸭窝网址在线观看| 亚洲欧美日韩高清在线视频| 国产一区有黄有色的免费视频| 午夜精品久久久久久毛片777| 国产乱人伦免费视频| 国产精品国产av在线观看| 精品国产一区二区久久| 国产精品免费视频内射| 国产精品自产拍在线观看55亚洲 | 飞空精品影院首页| 免费观看人在逋| 欧美大码av| 丁香欧美五月| 后天国语完整版免费观看| 成年版毛片免费区| 久久中文字幕一级| 99国产精品99久久久久| 日韩欧美一区二区三区在线观看 | 亚洲欧美一区二区三区久久| 亚洲aⅴ乱码一区二区在线播放 | 男女之事视频高清在线观看| 国产高清videossex| 纯流量卡能插随身wifi吗| 最新的欧美精品一区二区| 国产成人精品久久二区二区免费| 久久久精品免费免费高清| 午夜老司机福利片| 又黄又爽又免费观看的视频| 十八禁高潮呻吟视频| 亚洲熟妇中文字幕五十中出 | 俄罗斯特黄特色一大片| 亚洲人成电影免费在线| xxx96com| 亚洲五月色婷婷综合| 日本欧美视频一区| 欧美日韩乱码在线| 久久国产亚洲av麻豆专区| 亚洲第一青青草原| 亚洲avbb在线观看| 国产野战对白在线观看| 久久精品亚洲av国产电影网| 精品高清国产在线一区| 精品人妻在线不人妻| 国产精华一区二区三区| 成年人午夜在线观看视频| 国产精品.久久久| 成人三级做爰电影| 亚洲精品成人av观看孕妇| 国产成人精品无人区| 久久精品亚洲精品国产色婷小说| 露出奶头的视频| 国产欧美日韩综合在线一区二区| 水蜜桃什么品种好| 精品人妻熟女毛片av久久网站| 久久ye,这里只有精品| 亚洲国产精品sss在线观看 | 国产欧美亚洲国产| 久久精品国产99精品国产亚洲性色 | 亚洲色图综合在线观看| 好男人电影高清在线观看| av超薄肉色丝袜交足视频| 一本大道久久a久久精品| 亚洲成av片中文字幕在线观看| 亚洲国产中文字幕在线视频| 欧美精品高潮呻吟av久久| 日本vs欧美在线观看视频| 欧美成人午夜精品| 日韩欧美免费精品| 亚洲av成人一区二区三| 日韩三级视频一区二区三区| 日韩欧美在线二视频 | 老司机影院毛片| 欧美日韩亚洲国产一区二区在线观看 | 成熟少妇高潮喷水视频| 国产一区二区三区视频了| 久久99一区二区三区| 午夜免费鲁丝| av在线播放免费不卡| 桃红色精品国产亚洲av| 黄网站色视频无遮挡免费观看| 最新的欧美精品一区二区| 久久国产精品影院| 超色免费av| 亚洲精品中文字幕在线视频| 99精品久久久久人妻精品| 12—13女人毛片做爰片一| 国产欧美日韩一区二区精品| 久久婷婷成人综合色麻豆| 国产av又大| 国产成人欧美| 欧美日韩福利视频一区二区| 飞空精品影院首页| a在线观看视频网站| 欧美国产精品va在线观看不卡| 久久中文看片网| 性少妇av在线| 在线观看66精品国产| 午夜福利免费观看在线| 午夜久久久在线观看| 中文字幕制服av| 国产精品自产拍在线观看55亚洲 | 午夜精品久久久久久毛片777| 久久草成人影院| 久久国产乱子伦精品免费另类| 久久精品亚洲av国产电影网| 超碰成人久久| 久久精品人人爽人人爽视色| 亚洲 欧美一区二区三区| 亚洲成av片中文字幕在线观看| 91老司机精品| 国产精品.久久久| 热re99久久国产66热| 国产亚洲欧美在线一区二区| 搡老熟女国产l中国老女人| 深夜精品福利| 在线av久久热| 欧美 日韩 精品 国产| 在线观看免费视频网站a站| 最新的欧美精品一区二区| 热re99久久国产66热| 午夜福利乱码中文字幕| 精品久久久久久电影网| 一边摸一边做爽爽视频免费| 在线观看66精品国产| 一区福利在线观看| 操出白浆在线播放| 午夜福利视频在线观看免费| 日韩人妻精品一区2区三区| 黄色毛片三级朝国网站| 在线永久观看黄色视频| 99热国产这里只有精品6| 欧美性长视频在线观看| 亚洲av成人av| 亚洲精品av麻豆狂野| 精品久久久久久久毛片微露脸| 好看av亚洲va欧美ⅴa在| 欧美激情高清一区二区三区| 在线观看免费视频日本深夜| 免费在线观看黄色视频的| 波多野结衣av一区二区av| 亚洲,欧美精品.| 国产高清videossex| 国产三级黄色录像| 久久精品亚洲熟妇少妇任你| a在线观看视频网站| www.自偷自拍.com| 欧美国产精品一级二级三级| 最新的欧美精品一区二区| 91字幕亚洲| 精品午夜福利视频在线观看一区| 黄片小视频在线播放| 一级毛片高清免费大全| 18禁美女被吸乳视频| 国产亚洲一区二区精品| 国产成人免费观看mmmm| 18禁国产床啪视频网站| 色综合婷婷激情| av超薄肉色丝袜交足视频| 午夜精品国产一区二区电影| 亚洲avbb在线观看| 国产精品九九99| 一边摸一边抽搐一进一出视频| 国产色视频综合| 亚洲成人免费av在线播放| 麻豆乱淫一区二区| 久久久精品国产亚洲av高清涩受| 久久久精品免费免费高清| 黄色毛片三级朝国网站| 久久亚洲真实| 大型黄色视频在线免费观看| 夫妻午夜视频| 露出奶头的视频| 亚洲专区国产一区二区| 久久久精品国产亚洲av高清涩受| av视频免费观看在线观看| 丁香六月欧美| 久久久久久久久久久久大奶| 国产精品综合久久久久久久免费 | 精品乱码久久久久久99久播| 亚洲在线自拍视频| 欧美激情 高清一区二区三区| √禁漫天堂资源中文www| 两个人看的免费小视频| 国产精品久久久人人做人人爽| 色综合欧美亚洲国产小说| 男女午夜视频在线观看| 制服诱惑二区| 久久久久久免费高清国产稀缺| 国产精品久久久久久人妻精品电影| 在线十欧美十亚洲十日本专区| 亚洲七黄色美女视频| 不卡av一区二区三区| 亚洲av熟女| 高清欧美精品videossex| 91av网站免费观看| 免费在线观看视频国产中文字幕亚洲| 中文字幕另类日韩欧美亚洲嫩草| 欧美激情久久久久久爽电影 | 国产色视频综合| 美女福利国产在线| 国产免费现黄频在线看| 夜夜躁狠狠躁天天躁| 男女床上黄色一级片免费看| 人人澡人人妻人| 欧美黑人欧美精品刺激| xxx96com| 久久久久精品人妻al黑| 一级毛片女人18水好多| 美女高潮到喷水免费观看| 丝袜美足系列| 久久中文字幕一级| 不卡av一区二区三区| 欧美精品人与动牲交sv欧美| 亚洲国产精品合色在线| 91av网站免费观看| 又黄又爽又免费观看的视频| 久久人妻熟女aⅴ| 啦啦啦视频在线资源免费观看| 人人妻人人爽人人添夜夜欢视频| 一级毛片女人18水好多| 人人妻人人澡人人爽人人夜夜| 一本综合久久免费| 中亚洲国语对白在线视频| 精品国产超薄肉色丝袜足j| 在线观看日韩欧美| 午夜免费成人在线视频| 久久久久视频综合| 国产主播在线观看一区二区| 精品一区二区三区av网在线观看| 国产免费现黄频在线看| 欧美 亚洲 国产 日韩一| 久久天躁狠狠躁夜夜2o2o| 亚洲国产欧美日韩在线播放| 亚洲人成伊人成综合网2020| 久久亚洲精品不卡| xxxhd国产人妻xxx| 99国产综合亚洲精品| 一边摸一边抽搐一进一出视频| 桃红色精品国产亚洲av| 亚洲国产欧美日韩在线播放| 亚洲一区高清亚洲精品| av在线播放免费不卡| 亚洲在线自拍视频| 国产有黄有色有爽视频| 欧美日韩精品网址| 久久精品亚洲av国产电影网| 日本五十路高清| svipshipincom国产片| 99re6热这里在线精品视频| 韩国av一区二区三区四区| a级毛片在线看网站| 国产高清视频在线播放一区| 中出人妻视频一区二区| 国产精品免费一区二区三区在线 | 亚洲全国av大片| 老司机福利观看| 中文字幕人妻丝袜一区二区| 亚洲国产欧美网| 国产精品 国内视频| 黄色 视频免费看| 女人精品久久久久毛片|