• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Soil Microbial Dynamics Modeling in Fluctuating Ecological Situations by Using Subtractive Clustering and Fuzzy Rule-Based Inference Systems

    2018-01-22 09:51:29SunilKrJhaandZulfiqarAhmad

    Sunil Kr. Jha and Zulfiqar Ahmad

    1 Introduction

    The soil is the lively part of the terrestrial environment that supports all forms of life.Soil condition is the result of continuous conservation and degradation processes and represents its continued capacity to function as vital living ecosystems [Carter, Gregorich and Anderson et al. (1997); Doran, Jones and Arshad et al. (1999); Doran and Zeiss(2000); Ghosh, Palsaniya and Kumar (2017)]. A unique balance of chemical, physical and biological (including microbial) components contribute to maintaining soil strength[Or, Smets and Wraith et al. (2007); Schoenholtz, Van Miegroet and Burger (2000); Doran(2002); Nielsen, Winding and Binnerup et al. (2002)]. Consequently, the assessment of soil strength necessitates the estimations of its components. Microorganisms possess the ability to contribute an integrated measure of soil condition that cannot be obtained with physical/chemical measures [Nielsen, Winding and Binnerup et al. (2002); Winding, Hund-Rinke and Rutgers (2005); Fine, Van Es and Schindelbeck (2017)]. Microorganisms respond quickly to changes, hence they rapidly adapt to environmental conditions. The microorganisms that are best adapted will be the ones that flourish [Singh, Pandey and Singh (2011); Ali, Hayat and Begum et al. (2017)]. This adaptation potentially allows microbial analyses to be discriminating in soil fitness assessment, and changes in microbial populations and activities, therefore, function as an excellent indicator of change in soil condition [Schloter, Dilly and Munch (2003); Gil-Sotres, Trasar-Cepeda and Leiró s et al. (2005); Van Bruggen and Semenov (2000); Hermans, Buckley and Case et al. (2016)]. Microbial indicators of soil condition cover a diverse set of microbial capacities due to the multifunctional properties of microbial communities in the soil ecosystem that support to (i) control plant diseases as well as insect and weed pests; (ii)form beneficial symbiotic associations with plant roots (e.g. nitrogen-fixing bacteria and mycorrhizal fungi); (iii) recycle plant nutrients; (iv) improve soil structure with positive repercussions for its water- and nutrient-holding capacity; and (v) increase crop production [Ros, Goberna and Moreno et al. (2006); Alkorta, Aizpurua and Riga et al.(2003); Havlicek, (2012); Garbach, Milder and DeClerck et al. (2017); Tamez-Hidalgo,Christensen and Lever et al. (2016)]. One of the most important objectives in assessing the condition of a soil is the establishment of indicators for evaluating its current status[Doran, Jones and Arshad et al. (1999); Doran (2002); Schipper and Sparling (2000)].Microbial population and enzyme activity are significant soil microbial condition indicators. These factors can be modeled using statistical and artificial intelligence techniques with significantly less engineering effort [Barberá n, Bates and Casamayor et al. (2012); Hughes, Hellmann and Ricketts et al. (2001); Haider, Pakshirajan and Singh et al. (2008); Liang, Das and McClendon (2003); Tajik, Ayoubi and Nourbakhsh (2012);Kim, Yoo and Ki et al. (2011); Ebrahimi, Sinegani and Sarikhani et al. (2017); Ludwig,Vormstein and Niebuhr et al. (2017); Mukhlisin, El-Shafie and Taha (2012); Taghavifar and Mardani (2014)]; meanwhile, soil microbial, enzyme activity prediction by mathematical models is a tough task. In recent years, the trends towards modeling of machining processes using artificial intelligence methods have been increased due to their advanced computing capability. Researchers have used various intelligent techniques, including artificial neural network (ANN), fuzzy logic, neuro-fuzzy, adaptive neuro-fuzzy inference system (ANFIS) etc., for the prediction of machining parameters and to enhance manufacturing automation [Sen, Mandal and Mondal (2017); Yu, Yu and Wang et al. (2016); Hanafy, Zaini and Shoush et al. (2014)]. ANN and fuzzy logic are two important methods of artificial intelligence in modeling nonlinear problems. For example, ANN model has been implemented in the prediction of biosurfactant production under variable environmental conditions [Ahmad, Crowley and Marina et al.(2016)]. A neural network can learn from the data and feedback, however understanding the knowledge or the pattern is difficult. On the other hand, fuzzy logic models are easy to comprehend because they use linguistic terms in the form ofif-thenrules. A neural network with their learning capabilities can be also used to learn the fuzzy decision rules,to create a hybrid intelligent system. A powerful subtractive clustering (SC) and Wang and Mendel’s (WM) rule-based fuzzy inference systems (FIS) have been implemented in various application domains [Eftekhari and Katebi (2008); Lohani, Goel and Bhatia(2014); Wang (2003); Yang, Yuan and Yuan et al. (2010)]. Both methods use the advantages of fuzzy systems in a different way in efficient predicting and modeling.Though, we hardly noticed the implementation of FIS methods in soil microbial dynamics prediction in published literature. The FIS method in modeling and optimization problems is an effective way for the number of trials, and saving time and materials as well as offering a complete evaluation of the experimental process through creating a regression relation between dependent and independent variables. With this motivation, in the present research, evaluation and comparison of the prediction and simulation efficiency of SC-FIS and WM-FIS methods have been accomplished for estimation of soil microbial dynamics under fluctuating environmental situations.

    2 Fuzzy rule based systems

    Fuzzy logic is based on degrees of truth than completely true or false, which is similar to the functioning of the human brain. Both gather data about an incident, create a number of partial truths, and finally compose them into a higher truth. In data mapping, fuzzy logic assigns partial membership to each data point rather than the complete membership.After that, partial memberships are composed using certainif-thenrules to find out the complete membership [Klir and Yuan (1995)]. Fuzzy inference is the process of constructing the map from a given input to an output using the fuzzy logic approach.Mainly, clustering methods, including the c–means clustering, fuzzy c–means clustering,mountain clustering, and subtractive clustering are used for generating the fuzzy rules in inference system. In the present study, most widely used subtractive clustering method is used in the implementation of fuzzy inference system and their performance is compared with the general fuzzy inference system based on Wang and Mendel’s rule. A short description of both methods is as follows.

    2.1 Wang and Mendel’s fuzzy rule based system

    Wang and Mendel’s (WM) fuzzy rule based system (FRBS) is the simplest type of inference system. It is implemented in the present study by using thefrbspackage in R[Riza, Bergmeir and Herrera et al. (2015)]. For a particular data set,whererepresent the output of input pair, basic steps of method are as follows[Wang and Mendel (1982)]: (a) partitioning of input and output spaces into fuzzy regions by dividing the domain interval of each input and output variable intoregions,wheremay be different for each of the variables with either equal or unequal length,and assigning membership function to each partition; (b) generating fuzzy rules for the data pairs using the training data set after partitioning from the previous step by deciding the degrees of each input-output pairs to different regions, assigning pairs to a maximum degree and obtaining one if-then rule for one pair; (c) assigning a degree to each rule,this is done to avoid the inconsistent rules of similarifpart and differentthenpart for different data pairs; (d) creating a combined rule base, and (e) mapping based on a combined fuzzy rule. The details of the method can be seen in Ref. [Wang and Mendel(1982)].

    2.2 Subtractive clustering fuzzy rule based system

    The Subtractive clustering (SC) finds fuzzy clusters by assigning each data point a potentialfor the likelihood of it according to a Gaussianthe cluster radius. The Euclidean normsignifies the vector distance between data points. The data point with maximum potential is selected as the first cluster center and all the data points within distanceof cluster center are linked to the first cluster. The second cluster center is determined in a similar way after excluding the data points associated with the first cluster. The process is continued until all data points lie withinof a cluster center [Chiu (1994); Chiu (1997)].In this way, the subtractive clustering method produces a number of clusters in the data set for generating fuzzy rules in following steps: (a) degree of fulfillment ofithfuzzy rule fromithcluster center is calculated asfor eachjthinput toithfuzzy rule as;using the fuzzyrule. The details of fuzzy rule extraction are described in [Chiu(1994); Chiu (1997)]. The method is implemented using thefrbspackage in R [Riza,Bergmeir and Herrera et al. (2015)].

    3 Materials and methods

    3.1 Soil sampling

    The rhizospheric soil was collected from the wheat field. For this purpose, wheat plants were uprooted at tillering stage and stored in polythene bags. The non-rhizospheric soil was removed by agitating the roots strongly and the soil strictly adhering to the roots was used for the desired soil sample. Seven different wheat rhizospheric samples were collected and pooled up to make a composite sample and designated wheat root rhizospheric samples (WRS). The measured input experimental parameters using the Taguchi design are summarized in Table 1. Measured values of the bacterial population,rock phosphate solubilization, and ACC deaminase activity is given in Table 2.

    Table 1: Values of different input variables.

    Table 2: Measured average value of rock phosphate solubilization, bacterial population,and ACC deaminase activity.

    ?

    ?

    3.2 Analytical measurements

    3.2.1 Phosphate solubilization activity measurements

    The phosphorus solubilizing activity of bacterial isolates present in soil sample was determined on the basis of the extent of solubilization of rock phosphate in NBRIP broth media [Nautiyal (1999)]. Briefly, 0.1 g rhizospheric soil sample was dissolved in 100 mL Tryptic soy broth in a conical flask and placed in shaking incubator at 100 rpm at 28oC.After 18 hrs incubation, the bacterial growth was observed by turbidity. For rock phosphate solubilization, 20 μL of prepared inoculums was added to 50 mL, modified NBRIP broth (Glucose 10g, Rock phosphate 5g, MgCl2.6H2O 5g, MgSO4.7H2O 0.25g,KCl 0.2g, (NH4)2SO40.1g/L). Respective control was run without inoculums from rhizospheric soil samples. After 72 hrs of incubation, in shaking incubator, broth inoculated media was filtered and available P contents were measured at 410 nm [Olsen and Sommers (1982)]. The experiment was performed in replicate.

    3.2.2 Bacterial population measurement

    Cultivable attached rhizospheric bacteria were counted by the spread plate method on Marine Agar (Difco 2216) sterilized by autoclaving (121°C, 1 atm for 20 min). Dilutions were performed in 34 g/L sterile sodium chloride solution. Plates were set up in duplicate for each dilution. Incubation times were, according to the experimental at 25°C.Bacterial concentrations were expressed as CFU per ml for cultivable bacteria [Leonard,Blancheton and Guiraud (2000)].

    3.2.3 Quantification of ACC deaminase activity measurementACC deaminase activity was assayed according to the method described by Penrose and Glick [Penrose and Glick (2003)], which measures the amount of α-ketobutyrate produced after the enzyme ACC deaminase, cleaves ACC. The quantity of αketobutyrate (Sigma-Aldrich Co., U.S.A.) produced by this reaction was determined by comparing the absorbance of a sample to a standard curve of α-ketobutyrate ranging between 0.1-1.0 nmol at 540 nm. A stock solution of α-ketobutyrate was prepared in 0.1 M Tris-HCl (pH 8.5) and stored at 4oC. In order to measure the specific activity of the cultures, protein estimation was carried out according to the procedure detailed in[Lowly (1951)]. The data were subjected to analysis of variance using Statix software and means were compared by Duncan’s multiple range tests at 5% probability [Steel and Torrie (1980)].

    4 Modeling outcomes of FRBS

    The predicted values of phosphate solubilization (PS), bacterial population (BP), and ACC deaminase activity (ACCA) by WM-FIS and SC-FIS methods are exhibited in Figs.1-3 respectively. The accuracy of both FIS methods has been evaluated in terms of the Pearson correlation coefficient (ρ), root mean square error (RMSE), and coefficient of determination (R2) are computed according to Eq. 1-3 [Steel and Torrie (1980)],respectively and have been summarized in Table 3.

    5 Discussion

    WM-FIS and SC-FIS methods have been implemented in the estimation of phosphate solubilization, bacterial population and ACC deaminase activity and their performance are compared in terms of the Pearson correlation coefficient, root mean square error and coefficient of determination. The Pearson correlation coefficient indicates the strength of the relationship between the actual values of phosphate solubilization, bacterial population and ACC deaminase activity and their estimated values by WM-FIS and SCFIS methods, but the coefficient of determination measures the definite strength.

    Figure 1: Phosphate solubilization estimation results using WM-FIS and SC-FIS methods.

    Figure 2: Bacterial population estimation results using WM-FIS and SC-FIS methods.

    Figure 3: Bacterial population estimation results using WM-FIS and SC-FIS methods.

    Table 3: Values of different input variables.

    The correlation coefficient close to one indicates an approximately linear relationship between the actual and model predicted values of a dependent variable as well as better performance of model used for estimation. The RMSE is a significant measure to explain the precision of the model used for prediction, though; it is sensitive to large errors. The coefficient of determination is a significant measure to check the performance of models used in the estimation as it helps to understand the inconsistency of dependent variables.Fig. 1 presents the actual phosphate solubilization vs. WM-FIS and SC-FIS model predicted phosphate solubilization on a log scale. It is obvious that the SC-FIS model predicted values of phosphate solubilization are comparable to the experimental values of phosphate solubilization (except for measurement number 40). Though, the WM-FIS model predicted values of phosphate solubilization exhibit larger deviation to the experimental values. This fact is further confirmed by the minimum value ofand maximum values of the correlation coefficientand the coefficient of determination(Table 3) for the SC-FIS model than the WM-FIS model predicted values of phosphate solubilization. Also, SC-FIS model has a better estimation efficiency for the phosphate solubilization than bacterial population and ACC deaminase activity in terms of,and. The prediction results of the bacterial population using SC-FIS and WM-FIS methods have been shown in Fig. 2. Again, SC-FIS method exhibits better estimation efficiency than the WM-FIS method (except measurement number 2). This is also established with the lesser value ofand higher values of the correlation coefficientand the coefficient of determinationfor the SC-FIS model than the WM-FIS model in the prediction of bacterial population (Table 3). The ACC deaminase activity estimation results are shown in Fig. 3.In most of the measurements, the SC-FIS model estimated values of ACC deaminase activity are closer to their real measured values. This confirms the better performance of the SC-FIS model than the WM-FIS model. This fact is further approved in terms of afor the SC-FIS model than the WMFIS model (Table 3). During the analysis, it is observed that there is some combination of input variables that results in the SC-FIS and WM-FIS model predicted values of phosphate solubilization, bacterial population and ACC deaminase activity close to their actual values. Table 4 summarizes three best combinations of such variables. In case of phosphate solubilization, SC-FIS method for the combination of input parameters:,, andresults in almost 100% accuracy in prediction(actual value of phosphate solubilization 113.59 and SC-FIS method predicted value of phosphate solubilization 113.56). A similar situation is observed for two combinations of input parameters (, and,,) in the estimation of bacterial population using the SC-FIS method (Table 4). For ACC deaminase activity estimation using the SC-FIS method three combinations of input parameters(, and,,) results in almost 100% prediction accuracy. The best combinations of input parameters summarized in Table 4 can be used in searching the optimal environmental conditions that result in the best estimation of microbial dynamics. Fuzzy methods are accurate in the modeling of data while controlling the imprecision. Due to this reason, WM-FIS method has been implemented in several applications, like the prediction of dissolved oxygen in river water [Shaghaghian (2010)], operator performance using electroencephalographic (EEG) variables [Zhang, Xia and Garibaldi et al. (2017)], and energy forecasting [Jozi, Pinto and Pra? a et al. (2016)]. Also, the WM-FIS method has reliable prediction performance than ANN and support vector machine (SVM) methods in the latter application. Though, the application of WM-FIS method in microbial dynamics estimation is not noticed in published literature. Also, the performance of WM-FIS method has been enhanced in some recent studies, like using an evolutionary algorithm in controlling fuzzy sets [Kato, Morandin and Sgavioli et al. (2009)], and inducing cooperation for fuzzy rules [Casillas, Cordó n and Herrera (2000)], etc. Another option is to evaluate the performance of WM-FIS method with some other FIS method like SC-FIS which has better efficiency in several applications like road header performance prediction [Yazdani-Chamzini, Razani and Yakhchali et al. (2013)], fault detection [Chudasama, Shah and Shah (2016)], modeling demand response of smart grid[Pereira, Fagundes and Melicio et al. (2014)], and soil cation exchange capacity[Keshavarzi, Sarmadian and Rahmani et al. (2012)], etc. The better performance of the SC-FIS method is noticed than the WM-FIS method in the present analysis. Since the SC method recognizes similarities in the data set and creates an FIS to model the data behavior using a minimum number of efficient fuzzy rules. The prediction of ACC deaminase is significant as it is an important factor to promote the growth of a plant.

    6 Conclusion

    The study presents the estimation of microbial dynamics, including phosphate solubilization, bacterial population, and ACC-deaminase activity by using SC-FIS and WM-FIS methods and their performance is compared in terms of correlation coefficient,root mean square error and coefficient of determination. The temperature, pH, and incubation period show variation during the measurement and affects microbial dynamics, therefore used as input of SC-FIS and WM-FIS methods. The SC-FIS method has abetter estimation efficiency than the WM-FIS method of estimation of microbial dynamics. Also, the best estimation efficacy is observed for the phosphate solubilization by using the SC-FIS method. Estimation of ACC-deaminase activity by using WM-FIS method results in the least accuracy.

    Acknowledgement:This work is supported by The Startup Foundation for Introducing Talent of NUIST. The authors acknowledge Dr. S.S. Murthy for his motivation and support and reviewers for their valuable comments and suggestions.

    Ahmad, Z.; Crowley; D.; Marina, N.; Jha, S. K.(2016): Estimation of biosurfactant yield produced by Klebseilla sp. FKOD36 bacteria using artificial neural network approach.Measurement, vol. 81, pp. 163-173.

    Ali, S.; Hayat, R.; Begum, F.; Bohannan, B. J. M.; Inebert, L.; Meyer, K.(2017):Variation in soil physical, chemical and microbial parameters under different land uses in Bagrot Valley, Gilgit, Pakistan.Journal of the Chemical Society of Pakistan, vol. 39,no. 1, pp. 97-107.

    Alkorta, I.; Aizpurua, A.; Riga, P.; Albizu, I.; Amé zaga, I.; Garbisu, C.(2003): Soil enzyme activities as biological indicators of soil health.Reviews on Environmental Health, vol. 18, no. 1, pp. 65-73.

    Barberá n, A.; Bates, S. T.; Casamayor, E. O.; Fierer, N.(2012): Using network analysis to explore co-occurrence patterns in soil microbial communities.The ISME Journal, vol. 6, no. 2, pp. 343-351.

    Carter, M. R.; Gregorich, E. G.; Anderson, D. W.; Doran, J. W.; Janzen, H. H.;

    Pierce, F. J.(1997):Concepts of soil quality and their significance, pp. 1-16. In Ed.Gregorich E.G.: Soil Quality for Crop Production and Ecosystem Health, Elsevier,Amsterdam.

    Casillas, J.; Cordó n, O.; Herrera, F.(2000): Improving the Wang and Mendel’s fuzzy rule learning method by inducing cooperation among rules.In Proc. 8th Information Processing and Management of Uncertainty in Knowledge-Based Systems Conference,pp. 1682-1688.

    Chiu, S.(1994): Fuzzy model identification based on cluster estimation.Journal of Intelligent and Fuzzy Systems, vol. 2, no. 3, pp. 267-278.

    Chiu, S.(1997):Extracting fuzzy rules from data for function approximation and pattern classification, Chapter 9. In Ed. Fuzzy Information Engineering: A Guided Tour of Applications, D. Dubois, H. Prade, R. Yager, John Wiley & Sons, New York, USA.

    Chudasama, K.; Shah, V.; Shah, S.(2016): Induction Motor Relaying Scheme for External Faults Detection and Classification Using Subtractive Clustering Based Sugeno Fuzzy Inference System.Electric Power Components and Systems, vol. 44, no. 10, pp.1149-1162.

    Doran, J. W.; Jones, A. J.; Arshad, M. A.; Gilley, J. E.(1999):Determinants of soil quality and health. Soil quality and soil erosion, pp. 17-38. In Ed. Lal, R. Soil Quality and Soil Erosion, CRC Press, USA.

    Doran, J. W.(2002): Soil health and global sustainability: translating science into practice. Agriculture,Ecosystems & Environment, vol. 88, no. 2, pp. 119-127.

    Doran, J. W.; Zeiss, M. R.(2000): Soil health and sustainability: managing the biotic component of soil quality.Applied Soil Ecology, vol. 15, no. 1, pp. 3-11.

    Ebrahimi, M.; Sinegani, A. A. S.; Sarikhani, M. R.; Mohammadi, S. A.(2017):Comparison of artificial neural network and multivariate regression models for prediction of Azotobacteria population in soil under different land uses.Computers and Electronics in Agriculture, vol. 140, pp. 409-421.

    Eftekhari, M.; Katebi, S. D.(2008): Extracting compact fuzzy rules for nonlinear system modeling using subtractive clustering, GA and unscented filter.Applied Mathematical Modeling, vol. 32, no. 12, pp. 2634-2651.

    Fine, A. K.; Van Es, H. M.; Schindelbeck, R. R.(2017): Statistics, scoring functions,and regional analysis of a comprehensive soil health database.Soil Science Society of America Journal, vol. 81, no. 3, doi:10.2136/sssaj2016.09.0286.

    Garbach, K., Milder; J. C., DeClerck; F. A., Montenegro de Wit, M.; Driscoll, L.,Gemmill-Herren, B.(2017): Examining multi-functionality for crop yield and ecosystem services in five systems of agroecological intensification.International Journal of Agricultural Sustainability, vol. 15, no. 1, pp. 11-28.

    Ghosh, P. K.; Palsaniya, D. R.; Kumar, T. K.(2017):Resource conservation technologies for sustainable soil health management, pp. 161-187. In Ed. Rakshit A.;Abhilash, P.; Singh H.; Ghosh, S. Adaptive Soil Management: From Theory to Practices,Springer, Singapore.

    Gil-Sotres, F.; Trasar-Cepeda, C.; Leiró s, M. C.; Seoane, S.(2005): Different approaches to evaluating soil quality using biochemical properties.Soil Biology and Biochemistry, vol. 37, no. 5, pp. 877-887.

    Haider, M. A.; Pakshirajan, K.; Singh, A.; Chaudhry, S.(2008): Artificial neural network-genetic algorithm approach to optimize media constituents for enhancing lipase production by a soil microorganism.Applied Biochemistry and Biotechnology, vol. 144,no. 3, pp. 225-235.

    Hanafy, T. O.; Zaini, H.; Shoush, K. A.; Aly, A. A.(2014): Recent trends in soft computing techniques for solving real time engineering problems.International Journal of Control, Automation and Systems, pp. 27-33.

    Havlicek, E.(2012): Soil biodiversity and bioindication: from complex thinking to simple acting.European Journal of Soil Biology, vol. 49, pp. 80-84.

    Hermans, S. M.; Buckley, H. L.; Case, B. S.; Curran-Cournane, F.; Taylor, M.;Lear, G.(2016): Bacteria as emerging indicators of soil condition.Applied and Environmental Microbiology, vol. 83, no. 1, e02826-16.

    Hughes, J. B.; Hellmann, J. J.; Ricketts, T. H.; Bohannan, B. J.(2001): Counting the uncountable: statistical approaches to estimating microbial diversity.Applied and Environmental Microbiology, vol. 67, no. 10, pp. 4399-4406.

    Jozi, A.; Pinto, T.; Pra? a, I.; Silva, F.; Teixeira, B.; Vale, Z.(2016): Wang and Mendel's fuzzy rule learning method for energy consumption forecasting considering the influence of environmental temperature.In Proc. IEEE Global Information Infrastructure and Networking Symposium, pp. 1-6.

    Kato, E. R.; Morandin, O.; Sgavioli, M.; Muniz, B. D.(2009). Genetic tuning for improving Wang and Mendel's fuzzy database.In Proc. IEEE International Conference on Systems, Man and Cybernetics, pp. 1015-1020.

    Keshavarzi, A.; Sarmadian, F.; Rahmani, A.; Ahmadi, A.; Labbafi, R.; Iqbal, M. A.(2012): Fuzzy clustering analysis for modeling of soil cation exchange capacity.Australian Journal of Agricultural Engineering, vol. 3, no. 1, pp. 27-33.

    Kim, K.; Yoo, K.; Ki, D.; Son, I. S.; Oh, K. J.; Park, J.(2011): Decision-Tree-based data mining and rule induction for predicting and mapping soil bacterial diversity.Environmental Monitoring and Assessment, vol. 178, no. 1, pp. 595-610.

    Klir, G.; Yuan, B.(1995):Fuzzy sets and Fuzzy Logic(vol. 4), Prentice Hall, New Jersey, USA.

    Leonard, N.; Blancheton, J. P.; Guiraud, J. P.(2000): Populations of heterotrophic bacteria in an experimental recirculating aquaculture system.Aquacultural Engineering,vol. 22, no. 1, pp. 109-120.

    Liang, C.; Das, K. C.; McClendon, R. W.(2003): Prediction of microbial activity during biosolids composting using artificial neural networks.Transactions of the ASAE,vol. 46, no. 6, pp. 1713.

    Lohani, A. K.; Goel, N. K.; Bhatia, K. K. S.(2014): Improving real time flood forecasting using fuzzy inference system.Journal of Hydrology, vol. 509, pp. 25-41.

    Lowly, O. H.(1951): Protein measurement with folin phenol reagent.J Biol. Chem., vol.193, pp. 265-275.

    Ludwig, B.; Vormstein, S.; Niebuhr, J.; Heinze, S.; Marschner, B.; Vohland, M.(2017): Estimation accuracies of near infrared spectroscopy for general soil properties and enzyme activities for two forest sites along three transects.Geoderma, vol. 288, pp.37-46.

    Mukhlisin, M.; El-Shafie, A.; Taha, M. R.(2012): Regularized versus non-regularized neural network model for prediction of saturated soil-water content on weathered granite soil formation.Neural Computing and Applicationsvol. 21, no. 3, pp. 543-553.

    Nautiyal, C. S.(1999): An efficient microbiological growth medium for screening phosphate solubilizing microorganisms.FEMS Microbiology Letters, vol. 170, no. 1, pp.265-270.

    Nielsen, M. N.; Winding, A.; Binnerup, S.; Hansen, B. M.; Hendriksen, N. B.;Kroer, N.(2002): Microorganisms as indicators of soil health.NERI Technical Report No. 388, National Environmental Research Institute, Copenhagen, Denmark.

    Olsen, S. R.; Sommers, L. E.(1982):Phosphorus. In Methods of Soil Analysis, Part 2-chemical and Microbiological Properties. Am Soc. Agron. and Soil Sci. Soc. A.Madison, Wisconsin, USA.

    Or, D.; Smets, B. F.; Wraith, J. M.; Dechesne, A.; Friedman, S. P.(2007): Physical constraints affecting bacterial habitats and activity in unsaturated porous media–a review.Advances in Water Resources, vol. 30, no. 6, pp. 1505-1527.

    Penrose, D. M.; Glick, B. R.(2003): Methods for isolating and characterizing ACC deaminase‐containing plant growth‐promoting rhizobacteria.Physiologia Plantarum, vol.118, no. 1, pp. 10-15.

    Pereira, R.; Fagundes, A.; Melicio, R.; Mendes, V. M. F.; Figueiredo, J.; Quadrado,J. C.(2014): Fuzzy subtractive clustering technique applied to demand response in a smart grid scope.Procedia Technology, vol. 17, pp. 478-486.

    Riza, L. S.; Bergmeir, C.; Herrera, F.; Ben'itez, J. M.(2015): frbs: Fuzzy Rule-Based Systems for Classification and Regression in R.Journal of Statistical Software, vol. 65,no. 6, pp. 1-30.

    Ros, M.; Goberna, M.; Moreno, J. L.; Hernandez, T.; Garcia, C.; Insam, H.;Pascual, J. A.(2006): Molecular and physiological bacterial diversity of a semi-arid soil contaminated with different levels of formulated atrazine.Applied Soil Ecology, vol. 34,no. 2, pp. 93-102.

    Sen, B.; Mandal, U. K.; Mondal, S. P.(2017): Advancement of an intelligent system based on ANFIS for predicting machining performance parameters of Inconel 690-A perspective of metaheuristic approach.Measurement, vol. 109, pp. 9-17.

    Shaghaghian, M. R.(2010): Prediction of dissolved oxygen in rivers using a Wang-Mendel Method–case study of Au Sable River.World Academy of Science, Engineering and Technology, vol. 38, pp. 795-802.

    Schipper, L. A.; Sparling, G. P.(2000): Performance of soil condition indicators across taxonomic groups and land uses.Soil Science Society of America Journal, vol. 64, no. 1,pp. 300-311.

    Schoenholtz, S. H.; Van Miegroet, H.; Burger, J. A.(2000): A review of chemical and physical properties as indicators of forest soil quality: challenges and opportunities.Forest Ecology & Management, vol. 138, no. 1, pp. 335-356.

    Schloter, M.; Dilly, O.; Munch, J. C.(2003): Indicators for evaluating soil quality.Agriculture, Ecosystems & Environment, vol. 98, no. 1, pp. 255-262.

    Singh, J. S.; Pandey, V.C.; Singh, D.P.(2011): Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development.Agriculture,Ecosystems & Environment, vol. 140, no. 3, pp. 339-353.

    Steel, R. G. D.; Torrie, J. H.(1980):Principle and procedures of statistics 2nd ed.MC.Craw Hill Book Company. Ins. NYUSA.

    Taghavifar, H.; Mardani, A.(2014): Use of artificial neural networks for estimation of agricultural wheel traction force in soil bin.Neural Computing and Applicationsvol. 24,no. 6, pp. 1249-1258.

    Tajik, S.; Ayoubi, S.; Nourbakhsh, F.(2012): Prediction of soil enzymes activity by digital terrain analysis: comparing artificial neural network and multiple linear regression models.Environmental Engineering Science, vol. 29, no. 8, pp. 798-806.

    Tamez-Hidalgo, P.; Christensen, B. T.; Lever, M. A.; Elsgaard, L.; Lomstein, B. A.(2016): Endospores, prokaryotes, and microbial indicators in arable soils from three long-term experiments.Biology and Fertility of Soils, vol. 52, no. 1, pp. 101-112.

    Van Bruggen, A. H. C.; Semenov, A. M.(2000): In search of biological indicators for soil health and disease suppression.Applied Soil Ecology, vol. 15, no. 1, pp. 13-24.

    Wang, L. X.; Mendel, J. M.(1992): Generating fuzzy rules by learning from examples.IEEE Transactions on Systems, Man, and Cybernetics, vol. 22, no. 6, pp. 1414-1427.

    Wang, L. X.(2003): The WM method completed: a flexible fuzzy system approach to data mining.IEEE Transactions on Fuzzy Systems, vol. 11, no. 6, pp. 768-782.

    Winding, A.; Hund-Rinke, K.; Rutgers, M.(2005): The use of microorganisms in ecological soil classification and assessment concepts.Ecotoxicology and Environmental Safety, vol. 62, no. 2, pp. 230-248.

    Yang, X.; Yuan, J.; Yuan, J.; Mao, H.(2010): An improved WM method based on PSO for electric load forecasting.Expert Systems with Applications, vol. 37, no. 12, pp.8036-8041.

    Yazdani-Chamzini, A.; Razani, M.; Yakhchali, S. H.; Zavadskas, E. K.; Turskis, Z.(2013): Developing a fuzzy model based on subtractive clustering for road header performance prediction.Automation in Construction, vol. 35, pp. 111-120.

    Yu, J. B.; Yu, Y.; Wang, L. N.; Yuan, Z.; Ji, X.(2016): The knowledge modeling system of ready-mixed concrete enterprise and artificial intelligence with ANN-GA for manufacturing production.Journal of Intelligent Manufacturing, vol. 27, no. 4, pp. 905-914.

    Zhang, J. H.; Xia, J. J.; Garibaldi, J. M.; Groumpos, P. P.; Wang, R. B.(2017):Modeling and control of operator functional state in a unified framework of fuzzy inference petri nets.Computer Methods and Programs in Biomedicine, vol. 144, pp. 147-163.

    中文字幕制服av| 日韩在线高清观看一区二区三区| 在线观看免费视频网站a站| 亚洲第一av免费看| 日韩电影二区| 午夜福利乱码中文字幕| 蜜桃在线观看..| 91精品三级在线观看| 欧美日本中文国产一区发布| 国产一区二区三区综合在线观看 | 国产熟女午夜一区二区三区| 26uuu在线亚洲综合色| 亚洲国产av影院在线观看| 极品人妻少妇av视频| 久久久久久伊人网av| www.色视频.com| 爱豆传媒免费全集在线观看| 大码成人一级视频| 97在线视频观看| 欧美另类一区| 欧美日韩视频高清一区二区三区二| 一区二区三区四区激情视频| 大片免费播放器 马上看| 亚洲高清免费不卡视频| 欧美人与性动交α欧美软件 | 纵有疾风起免费观看全集完整版| 亚洲精品视频女| 亚洲色图 男人天堂 中文字幕 | 最后的刺客免费高清国语| 亚洲精品日本国产第一区| 一级黄片播放器| 如何舔出高潮| 国产高清三级在线| 80岁老熟妇乱子伦牲交| 亚洲精品美女久久久久99蜜臀 | www.色视频.com| 国产激情久久老熟女| 成人18禁高潮啪啪吃奶动态图| 国产av国产精品国产| 一本大道久久a久久精品| 秋霞在线观看毛片| 韩国精品一区二区三区 | 午夜久久久在线观看| 欧美日韩视频高清一区二区三区二| 美女内射精品一级片tv| av女优亚洲男人天堂| 久久久精品区二区三区| 国产乱人偷精品视频| h视频一区二区三区| 精品人妻熟女毛片av久久网站| 色94色欧美一区二区| 成人毛片60女人毛片免费| 中文欧美无线码| 少妇人妻久久综合中文| 国产精品三级大全| 亚洲色图综合在线观看| 欧美 亚洲 国产 日韩一| 天堂俺去俺来也www色官网| 亚洲图色成人| 精品人妻在线不人妻| 亚洲国产日韩一区二区| 欧美日韩一区二区视频在线观看视频在线| 1024视频免费在线观看| 久久精品久久久久久噜噜老黄| 777米奇影视久久| 国产成人av激情在线播放| 午夜福利影视在线免费观看| 欧美xxxx性猛交bbbb| 午夜精品国产一区二区电影| 国产又爽黄色视频| 亚洲成av片中文字幕在线观看 | 国产探花极品一区二区| 国产熟女欧美一区二区| 国产黄色免费在线视频| 日韩制服骚丝袜av| √禁漫天堂资源中文www| 黄色毛片三级朝国网站| 欧美日韩av久久| 久久久久久久国产电影| 久久狼人影院| 日韩,欧美,国产一区二区三区| av.在线天堂| 街头女战士在线观看网站| 久久久久视频综合| 色视频在线一区二区三区| 热99国产精品久久久久久7| 久久精品久久久久久久性| 在线观看人妻少妇| 亚洲,欧美,日韩| 亚洲第一区二区三区不卡| 香蕉国产在线看| 黑人高潮一二区| 日本av手机在线免费观看| 国产精品久久久久成人av| 韩国高清视频一区二区三区| 精品亚洲成国产av| 国产毛片在线视频| 满18在线观看网站| 亚洲一区二区三区欧美精品| 国产一区二区三区av在线| 亚洲av福利一区| 最近中文字幕高清免费大全6| 日韩制服骚丝袜av| 免费久久久久久久精品成人欧美视频 | 精品福利永久在线观看| 日韩中字成人| 欧美少妇被猛烈插入视频| 美女内射精品一级片tv| 天堂俺去俺来也www色官网| 欧美精品高潮呻吟av久久| 欧美激情国产日韩精品一区| 男女免费视频国产| 成人国产麻豆网| 久久久久人妻精品一区果冻| 大香蕉97超碰在线| 成年av动漫网址| 久久狼人影院| 夫妻性生交免费视频一级片| 亚洲国产精品一区二区三区在线| 亚洲第一区二区三区不卡| av福利片在线| 国产片内射在线| 国产精品久久久久成人av| 中文字幕免费在线视频6| 午夜免费男女啪啪视频观看| 国产av码专区亚洲av| 成人黄色视频免费在线看| 男女边吃奶边做爰视频| 精品久久久精品久久久| 丝袜在线中文字幕| 久久毛片免费看一区二区三区| 国产精品久久久久久久电影| 免费观看a级毛片全部| 欧美少妇被猛烈插入视频| 我要看黄色一级片免费的| 三上悠亚av全集在线观看| kizo精华| 午夜福利网站1000一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 久久综合国产亚洲精品| 久久久久精品性色| 男女午夜视频在线观看 | 久久 成人 亚洲| 韩国高清视频一区二区三区| 久热这里只有精品99| 欧美日韩一区二区视频在线观看视频在线| 26uuu在线亚洲综合色| 久久综合国产亚洲精品| 狂野欧美激情性bbbbbb| 在线观看一区二区三区激情| 亚洲人成77777在线视频| 精品人妻偷拍中文字幕| av免费在线看不卡| 好男人视频免费观看在线| 丰满饥渴人妻一区二区三| 如日韩欧美国产精品一区二区三区| 精品久久蜜臀av无| 日韩欧美精品免费久久| 在线亚洲精品国产二区图片欧美| 18+在线观看网站| 91午夜精品亚洲一区二区三区| 国产极品粉嫩免费观看在线| 日韩大片免费观看网站| 国产片内射在线| 欧美日韩视频高清一区二区三区二| 毛片一级片免费看久久久久| 欧美成人精品欧美一级黄| 国产有黄有色有爽视频| 国产视频首页在线观看| 亚洲美女搞黄在线观看| 久久久亚洲精品成人影院| 在线观看美女被高潮喷水网站| 国产老妇伦熟女老妇高清| 日韩电影二区| 日韩av不卡免费在线播放| 少妇的丰满在线观看| 秋霞在线观看毛片| 日本-黄色视频高清免费观看| 激情五月婷婷亚洲| 国产深夜福利视频在线观看| 亚洲av欧美aⅴ国产| 久久人人爽av亚洲精品天堂| 精品一区二区三卡| 精品国产一区二区久久| 曰老女人黄片| 亚洲精品美女久久久久99蜜臀 | 成年动漫av网址| 欧美日韩视频精品一区| 成人无遮挡网站| 国产av一区二区精品久久| 一区在线观看完整版| 久久国内精品自在自线图片| 国产探花极品一区二区| 国产亚洲午夜精品一区二区久久| 亚洲伊人色综图| 美女大奶头黄色视频| 天美传媒精品一区二区| 免费少妇av软件| 国产精品无大码| 性色avwww在线观看| 国产精品国产av在线观看| 国产欧美日韩综合在线一区二区| 三级国产精品片| 欧美最新免费一区二区三区| 美女xxoo啪啪120秒动态图| 日日啪夜夜爽| 日韩中字成人| 人妻系列 视频| 夫妻性生交免费视频一级片| 午夜免费鲁丝| 久久久精品免费免费高清| 少妇被粗大猛烈的视频| 少妇熟女欧美另类| 成年美女黄网站色视频大全免费| 高清不卡的av网站| 精品人妻在线不人妻| 少妇人妻 视频| 国产黄色视频一区二区在线观看| 中文字幕另类日韩欧美亚洲嫩草| 亚洲欧美日韩卡通动漫| 尾随美女入室| √禁漫天堂资源中文www| 免费黄网站久久成人精品| 美女大奶头黄色视频| 少妇猛男粗大的猛烈进出视频| 久热这里只有精品99| 搡女人真爽免费视频火全软件| 国产在视频线精品| 日韩视频在线欧美| 在线天堂最新版资源| 两性夫妻黄色片 | 精品少妇久久久久久888优播| 国产成人aa在线观看| av视频免费观看在线观看| 日韩av不卡免费在线播放| 中文字幕最新亚洲高清| 欧美丝袜亚洲另类| 国产欧美亚洲国产| 国产麻豆69| 一本大道久久a久久精品| 国产色婷婷99| 天天躁夜夜躁狠狠久久av| 丰满乱子伦码专区| 日韩一区二区三区影片| 精品少妇黑人巨大在线播放| 日本色播在线视频| 中文字幕av电影在线播放| 九九爱精品视频在线观看| 久久久久久久久久人人人人人人| av片东京热男人的天堂| a 毛片基地| 久热这里只有精品99| 日产精品乱码卡一卡2卡三| 视频中文字幕在线观看| 熟妇人妻不卡中文字幕| 精品国产一区二区三区久久久樱花| 一本—道久久a久久精品蜜桃钙片| 大片免费播放器 马上看| 免费黄频网站在线观看国产| 亚洲欧美一区二区三区黑人 | 国产成人av激情在线播放| 晚上一个人看的免费电影| 五月开心婷婷网| 亚洲av.av天堂| 国产乱来视频区| 考比视频在线观看| 亚洲美女黄色视频免费看| 久久精品久久精品一区二区三区| 丝瓜视频免费看黄片| 熟女电影av网| 高清av免费在线| 国产精品国产三级国产专区5o| 国产在线视频一区二区| 少妇人妻 视频| 国产精品熟女久久久久浪| 国产午夜精品一二区理论片| 亚洲精品,欧美精品| 亚洲,一卡二卡三卡| 精品人妻一区二区三区麻豆| 亚洲国产精品一区二区三区在线| 精品一区在线观看国产| 亚洲国产欧美日韩在线播放| 久久久久久久久久人人人人人人| 欧美精品国产亚洲| a级毛色黄片| 黄色配什么色好看| 亚洲精品乱久久久久久| 熟女人妻精品中文字幕| 人妻一区二区av| 日本wwww免费看| 亚洲精品日本国产第一区| a级片在线免费高清观看视频| 中文字幕人妻熟女乱码| 性色avwww在线观看| 成年动漫av网址| 男人操女人黄网站| 美女内射精品一级片tv| 欧美97在线视频| 男女边摸边吃奶| av国产精品久久久久影院| 99热这里只有是精品在线观看| 久久精品熟女亚洲av麻豆精品| 亚洲av欧美aⅴ国产| 亚洲国产av影院在线观看| 一级毛片我不卡| 免费人成在线观看视频色| 91国产中文字幕| 亚洲高清免费不卡视频| 精品一区二区三卡| 中文欧美无线码| 最后的刺客免费高清国语| 精品视频人人做人人爽| 中文欧美无线码| 日韩欧美精品免费久久| h视频一区二区三区| 国产一区二区三区av在线| av国产久精品久网站免费入址| 国产xxxxx性猛交| 中文欧美无线码| av国产久精品久网站免费入址| 亚洲三级黄色毛片| av在线观看视频网站免费| 日日摸夜夜添夜夜爱| 国产色婷婷99| 亚洲天堂av无毛| 亚洲av免费高清在线观看| 免费在线观看完整版高清| 国产成人91sexporn| 免费黄色在线免费观看| 国产白丝娇喘喷水9色精品| 国产男人的电影天堂91| 蜜桃国产av成人99| 免费观看在线日韩| 成人漫画全彩无遮挡| av在线app专区| 亚洲av国产av综合av卡| 午夜福利视频精品| 在线观看免费视频网站a站| 观看av在线不卡| 老司机亚洲免费影院| 亚洲,欧美,日韩| 各种免费的搞黄视频| 性色av一级| av.在线天堂| 观看美女的网站| 精品一品国产午夜福利视频| 观看av在线不卡| 色婷婷久久久亚洲欧美| 久久久久精品人妻al黑| 免费不卡的大黄色大毛片视频在线观看| 国产日韩欧美视频二区| 免费av不卡在线播放| av一本久久久久| 精品亚洲乱码少妇综合久久| 视频在线观看一区二区三区| 99久久综合免费| 人妻 亚洲 视频| 欧美日韩精品成人综合77777| 免费日韩欧美在线观看| 久久久久国产网址| 亚洲综合色网址| 中文字幕制服av| 久久久久久久久久久久大奶| 亚洲,一卡二卡三卡| 亚洲精品久久成人aⅴ小说| 国产极品粉嫩免费观看在线| 黄色视频在线播放观看不卡| 国产成人精品福利久久| 国产精品三级大全| 99久久人妻综合| 18在线观看网站| 日日爽夜夜爽网站| 亚洲三级黄色毛片| 视频区图区小说| 麻豆乱淫一区二区| 99国产综合亚洲精品| 熟女av电影| av片东京热男人的天堂| 妹子高潮喷水视频| 国产成人精品久久久久久| 91在线精品国自产拍蜜月| 亚洲三级黄色毛片| 久久久久精品久久久久真实原创| 国产精品一区www在线观看| 性高湖久久久久久久久免费观看| 亚洲欧洲日产国产| av黄色大香蕉| 欧美日韩视频精品一区| 男人爽女人下面视频在线观看| 大香蕉久久网| 男女国产视频网站| 一个人免费看片子| 国产一区二区在线观看日韩| 一二三四在线观看免费中文在 | 色吧在线观看| 婷婷成人精品国产| 亚洲av欧美aⅴ国产| 国产免费一区二区三区四区乱码| 尾随美女入室| 2018国产大陆天天弄谢| 欧美人与性动交α欧美软件 | 久久精品国产亚洲av天美| 国产精品 国内视频| 午夜福利影视在线免费观看| 国产在线视频一区二区| av一本久久久久| 亚洲欧美色中文字幕在线| 最新中文字幕久久久久| 日韩一区二区三区影片| 成人毛片60女人毛片免费| 9191精品国产免费久久| 捣出白浆h1v1| 国产高清国产精品国产三级| 国产日韩欧美在线精品| 少妇人妻 视频| 成人二区视频| 午夜日本视频在线| www日本在线高清视频| 国产白丝娇喘喷水9色精品| 久久综合国产亚洲精品| 成人午夜精彩视频在线观看| 我的女老师完整版在线观看| 久久久久久久大尺度免费视频| a级毛片在线看网站| 欧美 亚洲 国产 日韩一| videosex国产| 黑人欧美特级aaaaaa片| 亚洲精品久久成人aⅴ小说| 亚洲一级一片aⅴ在线观看| 熟妇人妻不卡中文字幕| 午夜av观看不卡| 秋霞在线观看毛片| 人成视频在线观看免费观看| 夜夜骑夜夜射夜夜干| 国产在线视频一区二区| 色哟哟·www| 又黄又爽又刺激的免费视频.| 中文字幕人妻熟女乱码| a级毛色黄片| 男女啪啪激烈高潮av片| 美女xxoo啪啪120秒动态图| av一本久久久久| 亚洲美女搞黄在线观看| 久久99精品国语久久久| 国产精品熟女久久久久浪| 尾随美女入室| 桃花免费在线播放| 飞空精品影院首页| 交换朋友夫妻互换小说| 91在线精品国自产拍蜜月| 午夜免费观看性视频| 欧美精品av麻豆av| 精品酒店卫生间| 一本久久精品| 交换朋友夫妻互换小说| 亚洲成人一二三区av| 亚洲美女视频黄频| 夜夜爽夜夜爽视频| 亚洲av电影在线观看一区二区三区| 欧美日本中文国产一区发布| 最近手机中文字幕大全| 亚洲精品日韩在线中文字幕| 国产精品女同一区二区软件| 91精品三级在线观看| 一二三四中文在线观看免费高清| 在线天堂最新版资源| 黄色视频在线播放观看不卡| 午夜av观看不卡| 精品亚洲乱码少妇综合久久| 夫妻午夜视频| 亚洲精品美女久久av网站| 亚洲精品av麻豆狂野| av.在线天堂| 侵犯人妻中文字幕一二三四区| 一区在线观看完整版| 国产日韩欧美亚洲二区| av一本久久久久| 成年人免费黄色播放视频| av卡一久久| 午夜福利网站1000一区二区三区| 国产无遮挡羞羞视频在线观看| 国产一区二区在线观看av| 久久狼人影院| 看免费av毛片| 亚洲欧美精品自产自拍| 亚洲五月色婷婷综合| 久久久亚洲精品成人影院| 熟女人妻精品中文字幕| 男的添女的下面高潮视频| 国产精品国产三级专区第一集| 国产成人a∨麻豆精品| 赤兔流量卡办理| 日日撸夜夜添| 丝袜在线中文字幕| 成人黄色视频免费在线看| 欧美3d第一页| 蜜臀久久99精品久久宅男| 99热6这里只有精品| 亚洲av中文av极速乱| 亚洲欧美日韩另类电影网站| 亚洲精品乱码久久久久久按摩| 久久久久国产精品人妻一区二区| 欧美精品一区二区大全| 人妻少妇偷人精品九色| 成人毛片a级毛片在线播放| 欧美国产精品va在线观看不卡| 成年美女黄网站色视频大全免费| 久久国内精品自在自线图片| 中文字幕另类日韩欧美亚洲嫩草| 一区二区三区乱码不卡18| 人体艺术视频欧美日本| 精品少妇内射三级| 国产男女超爽视频在线观看| 好男人视频免费观看在线| 国产高清不卡午夜福利| 久久精品国产综合久久久 | 97在线视频观看| 热99久久久久精品小说推荐| 搡老乐熟女国产| 中国美白少妇内射xxxbb| 亚洲情色 制服丝袜| 日本黄色日本黄色录像| 黄色毛片三级朝国网站| 性高湖久久久久久久久免费观看| 亚洲成人手机| 精品国产一区二区三区久久久樱花| 国产在视频线精品| 永久网站在线| 欧美日韩av久久| freevideosex欧美| 丰满饥渴人妻一区二区三| 欧美日韩视频精品一区| 久久久久久人人人人人| 亚洲美女视频黄频| 亚洲少妇的诱惑av| 亚洲精品乱久久久久久| 精品国产一区二区三区四区第35| 有码 亚洲区| 18+在线观看网站| 天堂8中文在线网| 国产成人精品福利久久| 18禁在线无遮挡免费观看视频| 99国产综合亚洲精品| 免费日韩欧美在线观看| 22中文网久久字幕| 少妇人妻精品综合一区二区| 国产黄频视频在线观看| 飞空精品影院首页| 国产精品秋霞免费鲁丝片| 久久久a久久爽久久v久久| 大片电影免费在线观看免费| 秋霞伦理黄片| 亚洲av电影在线观看一区二区三区| 亚洲精品美女久久久久99蜜臀 | 日韩制服丝袜自拍偷拍| 久久久久久伊人网av| 国产免费又黄又爽又色| √禁漫天堂资源中文www| 亚洲国产精品999| 啦啦啦视频在线资源免费观看| 亚洲人成77777在线视频| 日本欧美国产在线视频| 男女边摸边吃奶| 蜜桃国产av成人99| 搡女人真爽免费视频火全软件| 久久久国产欧美日韩av| 国产激情久久老熟女| 亚洲国产精品999| 91精品国产国语对白视频| 久久国产精品大桥未久av| 免费日韩欧美在线观看| 视频在线观看一区二区三区| 亚洲精品456在线播放app| 一区二区av电影网| 天天影视国产精品| www.熟女人妻精品国产 | av国产精品久久久久影院| 国产高清不卡午夜福利| 国产 精品1| 日韩中字成人| 免费黄频网站在线观看国产| 97在线视频观看| 日韩,欧美,国产一区二区三区| 18禁在线无遮挡免费观看视频| 亚洲国产精品一区二区三区在线| 侵犯人妻中文字幕一二三四区| 观看av在线不卡| 久久久a久久爽久久v久久| 欧美国产精品一级二级三级| 91精品三级在线观看| 久久精品国产综合久久久 | 亚洲人与动物交配视频| 日本色播在线视频| 日韩制服丝袜自拍偷拍| 欧美精品国产亚洲| 国产毛片在线视频| 久久 成人 亚洲| 岛国毛片在线播放| xxxhd国产人妻xxx| 99国产综合亚洲精品| 亚洲欧美中文字幕日韩二区| 天堂中文最新版在线下载| 日韩免费高清中文字幕av| 亚洲精品aⅴ在线观看| 啦啦啦啦在线视频资源| 少妇人妻久久综合中文| 久久精品aⅴ一区二区三区四区 | 亚洲内射少妇av| 亚洲成av片中文字幕在线观看 | 观看美女的网站| 最近中文字幕2019免费版| 最近2019中文字幕mv第一页| av福利片在线| 国产免费又黄又爽又色| 人人澡人人妻人|