周 梅,李增民,鄭煜芳,2,3
(1.復(fù)旦大學(xué) 生命科學(xué)學(xué)院,上海 200438; 2.復(fù)旦大學(xué) 發(fā)育生物學(xué)研究院, 上海 200433;3.復(fù)旦大學(xué)附屬婦產(chǎn)科醫(yī)院 生殖發(fā)育研究院,200090)
ALS相關(guān)突變型σ1R的激活促進(jìn)大鼠施旺細(xì)胞RSC96的凋亡
周 梅1,李增民1,鄭煜芳1,2,3
(1.復(fù)旦大學(xué) 生命科學(xué)學(xué)院,上海 200438; 2.復(fù)旦大學(xué) 發(fā)育生物學(xué)研究院, 上海 200433;3.復(fù)旦大學(xué)附屬婦產(chǎn)科醫(yī)院 生殖發(fā)育研究院,200090)
肌萎縮性側(cè)索硬化癥(ALS)是一種漸進(jìn)的致命的神經(jīng)退行性疾病,癥狀為運(yùn)動(dòng)神經(jīng)元損失所導(dǎo)致的肌肉萎縮和痙攣,大部分病人最后死于呼吸衰竭.對(duì)其致病機(jī)理的研究主要集中于對(duì)神經(jīng)元的影響,而對(duì)施旺細(xì)胞在其中的作用至今仍未有報(bào)道.之前研究發(fā)現(xiàn)在一個(gè)青少年發(fā)病的ALS家族中,SIGMAR1基因編碼區(qū)的一個(gè)堿基存在錯(cuò)位突變,該突變使Sigma-1型受體(σ1R)的102位氨基酸由谷氨酸(E)突變?yōu)楣劝滨0?Q).本文通過在大鼠施旺細(xì)胞系(RSC96細(xì)胞)中過表達(dá)野生型及突變型σ1R來研究該突變對(duì)RSC96細(xì)胞凋亡的影響.實(shí)驗(yàn)結(jié)果表明在毒胡蘿卜素(Thapsigargin)誘導(dǎo)的內(nèi)質(zhì)網(wǎng)壓力和σ1R激動(dòng)劑PRE084的刺激下,突變型σ1R使施旺細(xì)胞更傾向于凋亡,失去了對(duì)胞質(zhì)Ca2+調(diào)節(jié)的能力,并且對(duì)ADAM10具有更強(qiáng)的抑制作用.本研究提示σ1R突變也可能通過施旺細(xì)胞對(duì)ALS的病理過程起到作用.
肌萎縮性側(cè)索硬化癥; Sigma-1型受體; RSC96; 細(xì)胞凋亡; 胞質(zhì) Ca2+; 去整合素金屬蛋白酶10
肌萎縮性側(cè)索硬化癥(Amyotrophic Lateral Sclerosis, ALS)是一種漸進(jìn)性神經(jīng)退行性疾病.該疾病影響腦干和脊髓的下運(yùn)動(dòng)神經(jīng)元(lower motor neurons)和運(yùn)動(dòng)皮層的上運(yùn)動(dòng)神經(jīng)元(upper motor neurons).該疾病的發(fā)病率為 1/105~2/105,其中90~95%為散發(fā)性ALS(Sporadic ALS, SALS),5%~10% 為家族性ALS(Familial ALS, FALS)[1].在FALS病例中,有10%是由于Cu/Zn超氧化物歧化酶編碼基因SOD1的突變而引起的,4%是由于編碼TDP-43蛋白的基因TARDBP突變所引起的,此外ANG,VAPB,F(xiàn)US等基因的突變也都與該疾病有關(guān)聯(lián)[2].2011年Amr Al-Saif等對(duì)一個(gè)青少年發(fā)病的ALS家族進(jìn)行基因檢測(cè)研究,發(fā)現(xiàn)SIGMAR1的編碼區(qū)的1個(gè)堿基存在錯(cuò)位突變與該家族ALS疾病相關(guān).該突變使Sigma-1受體(σ1R)蛋白的102位氨基酸由谷氨酸突變?yōu)楣劝滨0?σ1RE102Q),該位點(diǎn)是跨膜區(qū)域的高度保守氨基酸,也位于配體結(jié)合關(guān)鍵區(qū)[3].研究表明σ1RE102Q在運(yùn)動(dòng)神經(jīng)元細(xì)胞系NSC34及成神經(jīng)細(xì)胞瘤Neuro2A細(xì)胞中表現(xiàn)出異常的亞細(xì)胞分布,并且過表達(dá)σ1RE102Q很可能通過引起線粒體功能紊亂而促進(jìn)內(nèi)質(zhì)網(wǎng)壓力誘導(dǎo)的細(xì)胞凋亡[1,3-4].
σ1R在中樞神經(jīng)系統(tǒng)中有較高的表達(dá)量,主要位于線粒體相關(guān)內(nèi)質(zhì)網(wǎng)膜(Mitochondria-Associated endoplasmic reticulum Membrane, MAM).其主要功能之一是調(diào)控細(xì)胞質(zhì),內(nèi)質(zhì)網(wǎng)和線粒體的Ca2+濃度平衡,并且參與細(xì)胞凋亡的調(diào)控[5].除此之外,σ1R還對(duì)細(xì)胞質(zhì)膜上的蛋白有一定的調(diào)控作用.我們前期研究表明過表達(dá)σ1R可以抑制細(xì)胞質(zhì)膜上的金屬蛋白酶ADAM10的活性[6].ADAM10通過參與細(xì)胞表面多種蛋白的剪切,而起著廣泛的作用.例如在BV-2小膠質(zhì)細(xì)胞中,ADAM10參與了與ALS相關(guān)的突變型SOD1(G93A)過表達(dá)所引起的TNF-α分泌增加,提示ADAM10可能參與ALS進(jìn)程中的神經(jīng)炎癥反應(yīng)[7].ADAM10在施旺細(xì)胞中也有較高的表達(dá)量,并且是髓鞘化的先決條件,抑制ADAM10的活性顯著降低了軸突的長(zhǎng)度[8].最近一篇文章報(bào)道ADAM10在受損的神經(jīng)末端軸突的生長(zhǎng)和髓鞘化中起著重要作用[9].
近幾年來,關(guān)于ALS的致病機(jī)制,一種新的“上行性退化”(“dying back”)理論獲得了越來越多的關(guān)注.具體說就是ALS被認(rèn)為是一種遠(yuǎn)端軸突病變的疾病,發(fā)病的最初原因是遠(yuǎn)端的神經(jīng)肌肉接頭(NMJ, neuromuscular junction)發(fā)生了去神經(jīng)化,進(jìn)而引起神經(jīng)元胞體的退化及死亡[10-11].一些在ALS的動(dòng)物模型及ALS病人的研究中的發(fā)現(xiàn)為該理論提供有力的支持.Frey等人發(fā)現(xiàn)神經(jīng)肌肉接頭處的突觸對(duì)去神經(jīng)化有不同的抵抗能力,抵抗能力弱的突觸在ALS疾病的早期階段就發(fā)生退化[12].Fischer及其同事發(fā)現(xiàn)在G93A-hSOD1ALS的小鼠模型中一部分抵抗能力最弱的神經(jīng)肌肉突觸在神經(jīng)元胞體死亡之前就開始發(fā)生去神經(jīng)化,并且在一位意外死亡的sALS病人中發(fā)現(xiàn)在肌肉處發(fā)生去神經(jīng)化,而神經(jīng)元胞體并未發(fā)生病變[13].
神經(jīng)肌肉接頭的去神經(jīng)化不僅涉及神經(jīng)細(xì)胞本身,還涉及到包裹神經(jīng)軸突末端的膠質(zhì)細(xì)胞—施旺細(xì)胞,也被稱為末端施旺細(xì)胞(Terminal Schwann Cell).研究發(fā)現(xiàn)末端施旺細(xì)胞在神經(jīng)肌肉連接處的軸突芽生及再神經(jīng)化過程中起著重要的作用,在神經(jīng)肌肉接頭處選擇性的消除末端施旺細(xì)胞會(huì)引起運(yùn)動(dòng)神經(jīng)元末端軸突的回縮[14-16].
根據(jù)上述研究,我們推測(cè)σ1R可能不僅僅影響了外周運(yùn)動(dòng)神經(jīng)元本身,還影響了包裹的施旺細(xì)胞,所以本工作主要研究了過表達(dá)野生型σ1R(σ1RWT)突變型σ1R(σ1RE102Q)對(duì)大鼠施旺細(xì)胞(RSC96細(xì)胞系)的凋亡的影響.同時(shí),施旺細(xì)胞對(duì)胞內(nèi)Ca2+濃度變化非常敏感,且通過胞內(nèi)IP3(inositol 1,4,5-trisphosphate)來控制Ca2+從內(nèi)質(zhì)網(wǎng)的釋放[11].由于σ1R主要通過與IP3相互作用來調(diào)控細(xì)胞Ca2+濃度,并且其與IP3相互作用的異常在細(xì)胞凋亡過程中也起著重要的作用[4],因此我們還進(jìn)一步研究了該突變對(duì)RSC96細(xì)胞的Ca2+濃度調(diào)控及ADAM10活性的影響.
大腸桿菌EscherichiacoliDH5α購于碧云天生物技術(shù)研究所.RSC96細(xì)胞株購于上海中科院細(xì)胞庫.pAPtag5質(zhì)粒來自Carl P. Blobel博士實(shí)驗(yàn)室,pAPtag5-Btc質(zhì)粒由本實(shí)驗(yàn)室構(gòu)建.pcDNA3.0-Flag-hσ1R質(zhì)粒由復(fù)旦大學(xué)生理學(xué)與生物物理學(xué)系梅巖艾教授實(shí)驗(yàn)室饋贈(zèng).pcDNA3.0-Flag-E102Q-hσ1R、pcDNA3.0-Flag-hσ1R-IRES-mCherry以及pcDNA3.0-Flag-E102Q-hσ1R-IRES-mCherry質(zhì)粒由本實(shí)驗(yàn)室構(gòu)建.
pcDNA3.0-Flag-E102Q-σ1R表達(dá)質(zhì)粒是由pcDNA3.0-Flag-WT-σ1R表達(dá)質(zhì)粒通過點(diǎn)突變構(gòu)建而成(圖1).我們通過3片段連接,通過引物(表1)引入點(diǎn)突變來構(gòu)建Flag-E102Q-σ1R表達(dá)質(zhì)粒,用引物E102Q-1F和E102Q-1R通過PCR,得到含有E102Q突變的片段1;用引物E102Q-2F和E102Q-2R通過PCR,得到片段2.之后,用HindⅢ酶切處理片段1,用EcoR I酶切處理片段2,同時(shí)用HindⅢ和EcoRⅠ雙酶切
圖1 pcDNA3.0-Flag-E102Q-σ1R 表達(dá)質(zhì)粒的構(gòu)建Fig.1 The construction of pcDNA3.0-Flag-E102Q-σ1R plasmid
引物序列酶切位點(diǎn)E102Q-1F5’-CCAAGCTTACCATGGGAG-3’HindⅢE102Q-1R5’-CAGCACATACTGGGACAG-3’E102Q-2F5’-CTCTTCGGCACCGCCTT-3’E102Q-2R5’-CAGAATTCAAGGGTCCTGG-3’EcoRⅠ
注: 引物E102Q-1R中標(biāo)出的G為點(diǎn)突變位點(diǎn).
pcDNA3載體,切膠回收酶切后的3個(gè)片段,用T4DNA連接酶進(jìn)行連接,之后轉(zhuǎn)化E.coliDH5α感受態(tài),挑克隆,通過酶切鑒定得到正確連接的質(zhì)粒.測(cè)序驗(yàn)證并轉(zhuǎn)染細(xì)胞檢驗(yàn)質(zhì)粒能否正常表達(dá)σ1R.
為了在RSC96中表達(dá)WT/E102Q-σ1R,我們構(gòu)建了pCAG-flag-WT/E102Q-σ1R-IRES-mCherry表達(dá)質(zhì)粒.首先,通過PCR從mCherry表達(dá)質(zhì)粒上克隆出帶有XbaI和NotI酶切位點(diǎn)的mCherry片段,之后用XbaI和NotI限制性內(nèi)切酶雙酶切mCherry片段和pIRES載體,回收后進(jìn)行雙片段連接,轉(zhuǎn)化E.coliDH5α感受態(tài),然后涂板,挑克隆,最后篩選出測(cè)序正確的pIRES-mCherry陽性克?。笥肊coR I和NotI雙酶切上步得到的pIRES-mCherry質(zhì)粒,從而獲得IRES-mCherry片段.用帶有EcoR I酶切位點(diǎn)的上下游引物從pcDNA3.0-Flag-WT/E102Q-σ1R表達(dá)質(zhì)粒上克隆出兩端帶有EcoR I酶切位點(diǎn)的Flag-WT/E102Q-σ1R片段,并且用EcoR I單酶切該片段.同時(shí),用EcoR I和NotI雙酶切pCAG-YFP質(zhì)粒,部分與IRES-mCherry片段進(jìn)行雙片段連接,部分與帶有EcoR I限制性內(nèi)切酶粘性末端的Flag-WT/E102Q-σ1R片段及IRES-mCherry片段進(jìn)行3片段連接,經(jīng)過轉(zhuǎn)化,篩選,最終獲得pCAG-mCherry質(zhì)粒和pCAG-flag-WT/E102Q-σ1R-IRES-mCherry質(zhì)粒.
表2 mCherry及Flag-WT/E102Q-σ1R引物序列Tab.2 PCR primers for mCherry and Flag-WT/E102Q-σ1R
實(shí)驗(yàn)中RSC96細(xì)胞使用含10%胎牛血清(購于四季青公司)及1%青霉素/鏈霉素的高糖DMEM培養(yǎng)基(購于GIBCO公司),并置于條件為37℃、5% CO2的培養(yǎng)箱中進(jìn)行培養(yǎng).將RSC96細(xì)胞培養(yǎng)后接種至六孔板或者是35mm小皿內(nèi),細(xì)胞密度為70%時(shí)開始轉(zhuǎn)染.培養(yǎng)的細(xì)胞去培養(yǎng)基,用PBS洗一遍,加入1mL DMEM,之后將準(zhǔn)備好的轉(zhuǎn)染復(fù)合物(Lipo2000∶質(zhì)粒=4μL∶1μg)小心加入培養(yǎng)的細(xì)胞中,小心混勻,將細(xì)胞放回培養(yǎng)箱中培養(yǎng)5h后,換成含10% FBS的DMEM繼續(xù)培養(yǎng)19~44h后,收集上清或細(xì)胞做下一步實(shí)驗(yàn).
將細(xì)胞接種到24孔板,待細(xì)胞密度達(dá)到70%左右轉(zhuǎn)染.轉(zhuǎn)染24h后,吸掉培養(yǎng)液,用PBS洗一遍,每孔加入500μL含有9μmol/L毒胡蘿卜素(Thapsigargin,TG)或者含有9μmol/L TG及PRE084的DMEM.孵育24h之后,用100μL 0.05%胰酶消化細(xì)胞,之后加培養(yǎng)液中和胰酶.收集細(xì)胞到1.5mL離心管中,1000g離心3min,再用PBS洗兩遍,最后每管細(xì)胞用110μL染料溶液(5μL PI+5μL Annexin V+100μL 1×Binding Buffer)重懸,避光孵育15min.每孔加入400μL 1× Binding Buffer,吹吸,使細(xì)胞混勻,用濾網(wǎng)過濾除去細(xì)胞團(tuán)塊,之后加入流式細(xì)胞儀專用管中,進(jìn)行檢測(cè).
將細(xì)胞接種到35mm小皿中.轉(zhuǎn)染20h后,加入DMSO或PRE084,孵育24h之后,用0.05%胰酶消化細(xì)胞.然后取1/4細(xì)胞接種到35mm玻璃底細(xì)胞培養(yǎng)皿中,使其均勻分散.待細(xì)胞完全貼壁后,吸掉細(xì)胞液,用PBS洗一遍,每孔加入1mL含有5μmol/L Fura-2/AM(購于Life Technologies公司)和0.02% Pluronic F-127(質(zhì)量濃度)的Opti-MEM,37℃,避光孵育30min.吸掉孵育液,用1×HEPES buffer洗3次,之后每孔加入1mL HEPES buffer.將待檢樣品放在顯微鏡載物臺(tái)上觀察,找到有表達(dá)mCherry的細(xì)胞(即過表達(dá)WT/E102Q-hσ1R),之后通過鈣離子檢測(cè)系統(tǒng)(CCD相機(jī)+尼康倒置顯微鏡+MetaFluor軟件系統(tǒng))實(shí)時(shí)監(jiān)測(cè)測(cè)定340nm和380nm激發(fā)的熒光值及其比值.在開始記錄1min后,加入Ionomycin,使其終濃度為2.5μmol/L,繼續(xù)記錄,總記錄時(shí)間為5min.
細(xì)胞接種至六孔板中,待細(xì)胞密度達(dá)到70%左右進(jìn)行轉(zhuǎn)染,pAPtag5-BTC與pcDNA3.0、pcDNA3.0-Flag-hσ1R、pcDNA3.0-Flag-E102Q-hσ1R、pCAG-IRES-mCherry、pCAG-Flag-hσ1R-IRES-mCherry或pCAG-Flag-E102Q-hσ1R-IRESmCherry共轉(zhuǎn).轉(zhuǎn)染24h后,用PBS清洗.每孔細(xì)胞加入1mL Opti-MEM,孵育1h,收集上清,作為對(duì)照組(Control);再加入1mL含2.5μmol/L Ionomycin(IM)的Opti-MEM孵育1h.若進(jìn)行PRE084刺激,則在第2個(gè)小時(shí)里先加入1mL含50μmol/L PRE084的Opti-MEM孵育15min;然后補(bǔ)充加入IM,IM和PRE084共孵育45min,收集上清.將收集的上清于12000g離心10min,吸取100μL上清,加入100μL反應(yīng)底物(2mg/mL 4-NPP(購于AMRESCO公司),100mmol/L Tris-HCl(pH 9.5),100mmol/L NaCl,20mmol/L MgCl2),混勻后加入到96孔板內(nèi),于37℃進(jìn)行反應(yīng),之后用酶標(biāo)儀檢測(cè)405nm處的吸光值.各組ADAM10的活性值=刺激1h的AP值/對(duì)照1h的AP值.
研究表明過表達(dá)σ1RWT可以抑制內(nèi)質(zhì)網(wǎng)壓力誘導(dǎo)的凋亡[4].毒胡蘿卜素是內(nèi)質(zhì)網(wǎng)Ca2+-ATP酶選擇性抑制劑,可以不可逆地使內(nèi)質(zhì)網(wǎng)鈣池排空,使胞質(zhì)內(nèi)Ca2+濃度持續(xù)升高,從而誘導(dǎo)細(xì)胞發(fā)生內(nèi)質(zhì)網(wǎng)應(yīng)激反應(yīng)并最終發(fā)生凋亡[17].因此我們就選用TG作為凋亡藥物來誘導(dǎo)RSC96細(xì)胞的凋亡,然后用PI和Annexin V雙染色法結(jié)合流式細(xì)胞儀進(jìn)行檢測(cè).我們用處于早期凋亡狀態(tài)(Annexin V+/PI-)及晚期凋亡狀態(tài)(Annexin V+/PI+)細(xì)胞所占的比例來代表細(xì)胞的凋亡程度(圖2(b)中Q2+Q3).結(jié)果顯示9μmol/L TG處理24h可以顯著誘導(dǎo)RSC96細(xì)胞的凋亡(圖2).然而過表達(dá)σ1RWT或σ1RE102Q均對(duì)TG誘導(dǎo)的凋亡沒有影響(圖2).
圖2 毒胡蘿卜素可誘導(dǎo)RSC96細(xì)胞的凋亡Fig.2 Thapsigargin induced apoptosis of RSC96 cells(a)顯示的是圈選的細(xì)胞;(b)和(c)為轉(zhuǎn)染了pCAG后,分別DMSO組和TG組處理的Annexin V和PI信號(hào)示意圖,Q1是死亡的細(xì)胞的比例,Q2是晚期凋亡細(xì)胞的比例,Q3是早期凋亡細(xì)胞的比例,Q4是正常細(xì)胞的比例;細(xì)胞凋亡比例為(Q2+Q3)/(Q1+Q2+Q3+Q4).(d)為9μmol/L TG處理24h對(duì)RSC96細(xì)胞凋亡影響統(tǒng)計(jì)圖.各組細(xì)胞分別用DMSO處理時(shí)的細(xì)胞凋亡比例為基礎(chǔ)值進(jìn)行標(biāo)準(zhǔn)化,誤差為±S.E.M,n=4,**P<0.01,***P<0.001.
在體內(nèi),σ1R的作用受其激動(dòng)劑及抑制劑的調(diào)控[18-22],而σ1RE102Q突變位點(diǎn)位于配體結(jié)合關(guān)鍵區(qū),所以我們檢測(cè)了σ1R的激動(dòng)劑PRE084作用下,E102Q突變是否會(huì)影響σ1R的功能.令人驚訝的是PRE84顯著增強(qiáng)了TG所誘導(dǎo)的RSC96細(xì)胞的凋亡(圖3(a)).過表達(dá)σ1RWT對(duì)TG+PRE84刺激誘導(dǎo)的RSC96細(xì)胞的凋亡沒有影響,而過表達(dá)σ1RE102Q增強(qiáng)了TG+PRE84刺激誘導(dǎo)的RSC96細(xì)胞的凋亡(圖3(b)).
圖3 PRE084可以顯著增強(qiáng)毒胡蘿卜素所誘導(dǎo)的RSC96細(xì)胞的凋亡Fig.3 PRE084 significantly increased TG-induced apoptosis of RSC96 cells(a)為PRE084對(duì)TG誘導(dǎo)的RSC96凋亡的影響,n=4,**P<0.01;(b)為PRE084對(duì)過表達(dá)WT-σ1R或E102Q-σ1R細(xì)胞TG誘導(dǎo)凋亡的促進(jìn)作用,各組為(TG+PRE084)/TG誘導(dǎo)的凋亡比例.誤差為±S.E.M,n=4,*P<0.05.
σ1R的主要功能之一是平衡細(xì)胞質(zhì)的Ca2+的濃度,而Ca2+濃度的調(diào)控不僅影響細(xì)胞的凋亡,并且也影響著施旺細(xì)胞對(duì)軸突釋放的神經(jīng)遞質(zhì)的響應(yīng).為了研究過表達(dá)σ1RWT或σ1RE102Q對(duì)細(xì)胞質(zhì)Ca2+濃度的影響,我們使用Ionomycin誘導(dǎo)RSC96細(xì)胞細(xì)胞質(zhì)Ca2+濃度的迅速上升[23-25],通過實(shí)時(shí)檢測(cè)胞質(zhì)Ca2+濃度的變化發(fā)現(xiàn)過表達(dá)σ1RWT可以顯著抑制Ionomycin誘導(dǎo)的RSC96細(xì)胞胞質(zhì)Ca2+濃度的上升(圖4),而過表達(dá)σ1RE102Q對(duì)Ionomycin誘導(dǎo)的RSC96細(xì)胞胞質(zhì)Ca2+濃度的上升沒有顯著影響(圖4).這說明E102Q突變使σ1R喪失了對(duì)胞質(zhì)Ca2+濃度的調(diào)控作用.PRE084的刺激顯著促進(jìn)了Ionomycin誘導(dǎo)的細(xì)胞質(zhì)Ca2+濃度的上升(圖4).該結(jié)果暗示PRE084可能是通過促進(jìn)細(xì)胞質(zhì)Ca2+濃度的上升來促進(jìn)內(nèi)質(zhì)網(wǎng)
圖4 過表達(dá)σ1RWT或σ1RE102Q及PRE084對(duì)Ionomycin引起的細(xì)胞質(zhì)Ca2+濃度上升的影響Fig.4 The effects of overexpression of σ1RWT or σ1RE102Q and PRE084 on Ionomycin-induced up-regulation of cytoplasmic [Ca2+] in RSC96 cells(a),(b),(c) 圖依次為pCAG組,過表達(dá)σ1RWT組和過表達(dá)σ1RE102Q組的Ca2+濃度變化時(shí)間曲線,對(duì)照組的一個(gè)代表性細(xì)胞的細(xì)胞質(zhì)Ca2+濃度隨時(shí)間的變化以及PRE084組的一個(gè)代表性細(xì)胞的細(xì)胞質(zhì)Ca2+濃度隨時(shí)間的變化;(d) 為Ionomycin刺激后的峰值與基準(zhǔn)值之比的統(tǒng)計(jì)圖.其中誤差為±S.E.M,n=6,每次細(xì)胞數(shù)平均大于10,*P<0.05,****P<0.0001.
壓力下RSC96細(xì)胞的凋亡.然而過表達(dá)σ1RWT或σ1RE102Q均不影響PRE084對(duì)胞質(zhì)Ca2+濃度上調(diào)的促進(jìn)作用,說明在胞質(zhì)Ca2+濃度調(diào)控方面,E102Q突變對(duì)PRE084的作用并沒有影響.
ADAM(A Disintegrin And Metalloprotease)家族的成員是一類錨定在膜上的金屬蛋白酶,在蛋白胞外域的剪切過程中起著重要作用[26].ADAM10的活性主要受到胞質(zhì)Ca2+濃度的調(diào)控;此外ADAM10在施旺細(xì)胞中有較高的表達(dá)量,被發(fā)現(xiàn)是髓鞘化的一個(gè)先決條件,在軸突生長(zhǎng)中起著重要作用,并且在軸突受損后,在末端軸突的髓鞘化和生長(zhǎng)中起著重要作用[8-9],所以接下來下來我們檢測(cè)了過表達(dá)σ1RWT或σ1RE102Q對(duì)ADAM10活性的影響,并且檢測(cè)了PRE084對(duì)ADAM10活性的影響.在ADAMs的眾多底物中,β-細(xì)胞素(betacellulin, BTC)是ADAM10專屬底物[27].為了檢測(cè)ADAM10的活性,我們?cè)诩?xì)胞中過表達(dá)定量的胞外域末端帶有堿性磷酸酶(Alkaline Phosphatase, AP)標(biāo)簽的BTC,ADAM10活性越強(qiáng),切割釋放到細(xì)胞培養(yǎng)液中帶AP標(biāo)記的成熟BTC的含量就越多,然后通過AP酶聯(lián)顯色實(shí)驗(yàn)來檢測(cè)細(xì)胞培養(yǎng)液中BTC-AP的活性,并以此代表ADAM10的活性[6].Ionomycin(IM)是已知的ADAM10激活劑[6,27],結(jié)果表明過表達(dá)σ1RWT對(duì)IM促進(jìn)的ADAM10活性有顯著抑制作用,這與我們之前的研究相一致[6],而過表達(dá)σ1RE102Q對(duì)ADAM10活性有更強(qiáng)的抑制作用(圖5(a)).有意思的是,在PRE084的共同作用下,IM促進(jìn)的ADAM10活性受到PRE084的抑制(圖5(b)),而過表達(dá)σ1RWT對(duì)PRE084產(chǎn)生的抑制效應(yīng)有抵消,而過表達(dá)σ1RE102Q的情況下,PRE084對(duì)ADAM10活性的抑制作用依然存在(圖5(c)).
圖5 過表達(dá)σ1RWT或σ1RE102Q及PRE084對(duì)ADAM10活性的影響Fig.5 The effects of overexpression of σ1RWT or σ1RE102Q and PRE084 on ADAM10 activityRSC96細(xì)胞轉(zhuǎn)染AP-BTC或相應(yīng)σ1R表達(dá)質(zhì)粒,24h后進(jìn)行AP活性實(shí)驗(yàn).第1h用對(duì)照(Control)的DMEM,第2h則加入相應(yīng)的刺激劑(IM或IM+PRE084),收集上清進(jìn)行AP實(shí)驗(yàn).各組的活性值=刺激1h的AP值/對(duì)照1h的AP值.(a)顯示IM激活A(yù)DAM10活性可以被過表達(dá)的σ1R抑制,且過表達(dá)σ1RE102Q比過表達(dá)σ1RWT具有更強(qiáng)的抑制作用.(b)在對(duì)比轉(zhuǎn)染了pCAG和AP-BTC質(zhì)粒的細(xì)胞中IM和IM+PRE084刺激下ADAM10活性;PRE084+IM組加入了含有PRE084(終濃度50μmol/L)和IM的DMEM.結(jié)果顯示PRE084顯著抑制AMDA10的活性.(c)顯示在過表達(dá)σ1RWT或σ1RE102Q的情況下,PRE084對(duì)ADAM10活性的抑制作用.過表達(dá)σ1RWT可以抵消PRE084的抑制作用,而σ1RE102Q不能抵消.誤差為±S.E.M,n=6,*P<0.05,**P<0.01.
本研究利用了大鼠施旺細(xì)胞系RSC96研究了σ1R的E102Q突變對(duì)其凋亡和細(xì)胞內(nèi)Ca2+濃度以及ADAM10活性的影響.首先,本研究發(fā)現(xiàn)雖然過表達(dá)σ1RWT或者σ1RE102Q對(duì)TG誘導(dǎo)RSC96細(xì)胞的凋亡沒有影響,但是在激動(dòng)劑PRE084存在的情況下,過表達(dá)σ1RE102Q促進(jìn)了TG誘導(dǎo)的RSC96細(xì)胞的凋亡.從該結(jié)果可以看出,無論在正常生理狀態(tài),還是在內(nèi)質(zhì)網(wǎng)壓力情況下,E102Q突變都不影響σ1R對(duì)細(xì)胞凋亡的影響,然而當(dāng)σ1R受到激動(dòng)劑激活后,E102Q突變使處于內(nèi)質(zhì)網(wǎng)壓力下的RSC96細(xì)胞更易于凋亡.相對(duì)于原代培養(yǎng)的施旺細(xì)胞,RSC96細(xì)胞系易于培養(yǎng)與操作,能縮短實(shí)驗(yàn)周期和降低實(shí)驗(yàn)成本.后續(xù)如果能夠采用含有此突變的ALS病人來源的施旺細(xì)胞或者iPSC誘導(dǎo)分化的膠質(zhì)細(xì)胞,將能進(jìn)一步模擬和深入了解病人體內(nèi)的機(jī)制.由于施旺細(xì)胞是構(gòu)成周圍神經(jīng)系統(tǒng)髓鞘的主要細(xì)胞,并且在神經(jīng)肌肉接頭處突觸的維持中起著重要作用,髓鞘細(xì)胞的凋亡不僅影響周圍神經(jīng)系統(tǒng)的髓鞘的維持,從而影響動(dòng)作電位的傳遞,并且也會(huì)影響NMJ的維持,從而使周圍神經(jīng)系統(tǒng)更容易發(fā)生去神經(jīng)化,而NMJ處的去神經(jīng)化是早期ALS的病癥之一,并且影響著ALS疾病的進(jìn)程[14-16,28].由此,我們推測(cè)E102Q可能通過促進(jìn)應(yīng)激條件下施旺細(xì)胞的凋亡而使NMJ處更容易發(fā)生運(yùn)動(dòng)神經(jīng)元末端軸突的回縮而影響ALS疾病的發(fā)病及進(jìn)程.
其次,本研究發(fā)現(xiàn)σ1RE102Q喪失了對(duì)胞質(zhì)Ca2+濃度的調(diào)控能力——當(dāng)胞質(zhì)Ca2+濃度在Ionomycin刺激下迅速上升時(shí),過表達(dá)σ1RWT抑制了胞質(zhì)Ca2+濃度上升的幅度,而過表達(dá)σ1RE102Q卻無法抑制胞質(zhì)Ca2+濃度的上升幅度.之前研究指出σ1RE102Q在運(yùn)動(dòng)神經(jīng)元細(xì)胞系中表現(xiàn)出異常的亞細(xì)胞分布狀態(tài),由正常的主要位于線粒體相關(guān)的內(nèi)質(zhì)網(wǎng)膜(MAM)變?yōu)橹饕植加诩?xì)胞質(zhì)中[1,3].σ1R在激動(dòng)劑刺激下,會(huì)與MAM處的IP3解離而轉(zhuǎn)移到細(xì)胞質(zhì)[5].而在本研究中也發(fā)現(xiàn)σ1R的激動(dòng)劑PRE084會(huì)促進(jìn)胞質(zhì)Ca2+濃度上升的幅度.由此可以推測(cè)E102Q突變使σ1R處于一定程度的被激活狀態(tài),而這種狀態(tài)在一定程度上影響了其對(duì)胞質(zhì)Ca2+濃度的調(diào)控能力.對(duì)胞質(zhì)Ca2+濃度不僅在細(xì)胞凋亡中起著重要調(diào)控作用,而且也影響著施旺細(xì)胞對(duì)周圍環(huán)境刺激的相應(yīng)[5,11],因此,E102Q突變可能通過影響施旺細(xì)胞Ca2+信號(hào)而影響了其對(duì)NMJ突觸的調(diào)控,
然后,本研究發(fā)現(xiàn)過表達(dá)σ1RE102Q或σ1RWT對(duì)ADAM10活性都有顯著抑制作用,并且σ1RE102Q對(duì)ADAM10活性的抑制作用更強(qiáng).據(jù)報(bào)道,ADAM10在受損的末端軸突生長(zhǎng)中起著重要作用,并且是髓鞘化過程的先決條件[8-9],而σ1RE102Q對(duì)ADAM10活性的抑制可能會(huì)影響NMJ處軸突的生長(zhǎng)及髓鞘化而使NMJ更容易發(fā)生去神經(jīng)化.
據(jù)此,我們推測(cè)SIGMAR1基因的E102Q突變影響了ALS病人的施旺細(xì)胞對(duì)NMJ的維持,調(diào)控及受損后的修復(fù),從而協(xié)助推進(jìn)了早發(fā)性ALS疾病的進(jìn)展.然而該推測(cè)還有待體內(nèi)及體外實(shí)驗(yàn)的進(jìn)一步研究驗(yàn)證.
雖然大部分文獻(xiàn)報(bào)道σ1R的激動(dòng)劑對(duì)細(xì)胞都是起到保護(hù)作用的,但是主要是針對(duì)神經(jīng)元的研究[19-20,29-30].在RSC96細(xì)胞中,PRE084的刺激加劇了Ionomycin誘導(dǎo)的胞質(zhì)Ca2+濃度的上升,具有抑制ADAM10活性的作用,并且顯著地增強(qiáng)了TG誘導(dǎo)的細(xì)胞凋亡.這說明σ1R的激動(dòng)劑在神經(jīng)元及施旺細(xì)胞中具有不同的作用,僅盲目地通過激活σ1R以抑制神經(jīng)元凋亡并不一定可以延緩ALS的病情.這也暗示對(duì)ALS致病機(jī)制及疾病進(jìn)程的研究需要綜合考慮各個(gè)因素的影響.
此外,之前研究結(jié)果顯示ADAM10活性受胞質(zhì)Ca2+濃度的調(diào)控,而在本研究中,雖然過表達(dá)σ1RE102Q對(duì)Ionomycin誘導(dǎo)的胞質(zhì)Ca2+濃度的上升沒有影響,而PRE084刺激可以促進(jìn)Ionomycin誘導(dǎo)的胞質(zhì)Ca2+濃度的上升,但是過表達(dá)σ1RE102Q和PRE084刺激卻都對(duì)ADAM10的活性具有顯著地抑制作用,說明σ1RE102Q及PRE084并不通過調(diào)控胞質(zhì)Ca2+濃度來調(diào)控ADAM10的活性.對(duì)于具體的調(diào)控機(jī)制,還有待進(jìn)一步研究.
總之,本文初步地研究了與ALS相關(guān)聯(lián)的σ1R的E102Q突變對(duì)大鼠施旺細(xì)胞RSC96細(xì)胞的影響,表明σ1R突變可能通過施旺細(xì)胞在ALS疾病的致病機(jī)制中發(fā)揮著一定作用.
[1] FUKUNAGA K, SHINODA Y, TAGASHIRA H. The role of SIGMAR1 gene mutation and mitochondrial dysfunction in amyotrophic lateral sclerosis [J].JournalofPharmacologicalSciences, 2015,127(1): 36-41.
[2] INCE P G, HIGHLEY J R, KIRBY J,etal. Molecular pathology and genetic advances in amyotrophic lateral sclerosis: an emerging molecular pathway and the significance of glial pathology [J].ActaNeuropathol, 2011,122(6): 657-671.
[3] AL-SAIF A, AL-MOHANNA F, BOHLEGA S. A mutation in sigma-1 receptor causes juvenile amyotrophic lateral sclerosis [J].AnnNeurol, 2011,70(6): 913-919.
[4] TAGASHIRA H, SHINODA Y, SHIODA N,etal. Methyl pyruvate rescues mitochondrial damage caused by SIGMAR1 mutation related to amyotrophic lateral sclerosis [J].BiochimBiophysActa, 2014,1840(12): 3320-3334.
[5] HAYASHI T, SU T P. Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca2+signaling and cell survival [J].Cell, 2007,131(3): 596-610.
[6] LI J, LIU B, GAO X,etal. Overexpression of sigma-1 receptor inhibits ADAM10 and ADAM17 mediated shedding in vitro [J].Protein&Cell, 2012,3(2): 153-159.
[7] LIU Y, HAO W, DAWSON A,etal. Expression of amyotrophic lateral sclerosis-linked SOD1 mutant increases the neurotoxic potential of microglia via TLR2 [J].JournalofBiologicalChemistry, 2008,284(6): 3691-3699.
[8] JANGOUK P, DEHMEL T, MEYER ZU HORSTE G,etal. Involvement of ADAM10 in axonal outgrowth and myelination of the peripheral nerve [J].Glia, 2009,57(16): 1765-1774.
[9] MEYER Z H G, DERKSEN A, STASSART R,etal. Neuronal ADAM10 promotes outgrowth of small-caliber myelinated axons in the peripheral nervous system [J]. 2015,74(11): 1077-1085.
[10] ROBBERECHT W, PHILIPS T. The changing scene of amyotrophic lateral sclerosis [J].NatRevNeurosci, 2013,14(4): 248-264.
[11] ARBOUR D, VANDE VELDE C, ROBITAILLE R. New perspectives on amyotrophic lateral sclerosis: The role of glial cells at the neuromuscular junction [J].JPhysiol, 2017,595(3): 647-661.
[12] FREY D, SCHNEIDER C, XU L,etal. Early and selective loss of neuromuscular synapse subtypes with low sprouting competence in motoneuron diseases [J].JournalofNeuroscience, 2000,20(7): 2534-2542.
[13] FISCHER L R, CULVER D, TENNANT P,etal. Amyotrophic lateral sclerosis is a distal axonopathy: Evidence in mice and man [J].ExperimentalNeurology, 2004,185(2): 232-240.
[14] SON Y J, THOMPSON W J. Schwann cell processes guide regeneration of peripheral axons [J].Neuron, 1995,14(1): 125-132.
[15] SON Y-J, THOMPSON W J. Nerve sprouting in muscle is induced and guided by processes extended by schwann cells [J].Neuron, 1995,14(1): 133-141.
[16] REDDY L V, KOIRALA S, SUGIURA Y,etal. Glial cells maintain synaptic structure and function and promote development of the neuromuscular junctioninvivo[J].Neuron, 2003,40(3): 563-580.
[17] JIANG S, CHOW S, NICOTERA P,etal. Intracellular Ca2+signals activate apoptosis in thymocytes: Studies using the Ca2+-ATPase inhibitor thapsigargin [J].ExperimentalCellResearch, 1994,212(1): 84-92.
[18] ROUSSEAUX C G, GREENE S F. Sigma receptors[σRs]: Biology in normal and diseased states [J].JReceptSignalTransductRes, 2016,36(4): 1-62.
[19] GUZMAN-LENIS M S, NAVARRO X, CASAS C. Selective sigma receptor agonist 2-(4-morpholinethyl)1-phenylcyclohexanecarboxylate (PRE084) promotes neuroprotection and neurite elongation through protein kinase C (PKC) signaling on motoneurons [J].Neuroscience, 2009,162(1): 31-38.
[20] HYRSKYLUOTO A, PULLI I, TORNQVIST K,etal. Sigma-1 receptor agonist PRE084 is protective against mutant huntingtin-induced cell degeneration: Involvement of calpastatin and the NF-kappaB pathway [J].CellDeathDis, 2013,4: e646.
[21] JI L L, PENG J B, FU C H,etal. Activation of sigma-1 receptor ameliorates anxiety-like behavior and cognitive impairments in a rat model of post-traumatic stress disorder [J].BehaviouralBrainResearch, 2016,311: 408-415.
[22] WANG J, SAUL A, ROON P,etal. Activation of the molecular chaperone, sigma 1 receptor, preserves cone function in a murine model of inherited retinal degeneration [J].ProcNatlAcadSciUSA, 2016,113(26): 3764-3772.
[23] GIL-PARRADO S, FERNNDEZ-MONTALVN A, ASSFALG-MACHLEIDT I,etal. Ionomycin-activated calpain triggers apoptosis a probable role for Bcl-2 family members [J].JournalofBiologicalChemistry, 2002,277(30): 27217-27226.
[24] MIYAKE H, HARA I, ARAKAWA S,etal. Stress protein GRP78 prevents apoptosis induced by calcium ionophore, ionomycin, but not by glycosylation inhibitor, tunicamycin, in human prostate cancer cells [J].JournalofCellularBiochemistry, 2000,77(3): 396-408.
[25] TAKEI N, ENDO Y. Ca2+ionophore-induced apoptosis on cultured embryonic rat cortical neurons [J].BrainResearch, 1994,652(1): 65-70.
[26] BLOBEL C P. ADAMs: Key components in EGFR signalling and development [J].NatRevMolCellBiol, 2005,6(1): 32-43.
[27] SAHIN U, WESKAMP G, KELLY K,etal. Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands [J].JCellBiol, 2004,164(5): 769-779.
[28] TAVEGGIA C. Schwann cells-axon interaction in myelination [J].CurrentOpinioninNeurobiology, 2016,39: 24-29.
[29] GRIESMAIER E, POSOD A, GROSS M,etal. Neuroprotective effects of the sigma-1 receptor ligand PRE-084 against excitotoxic perinatal brain injury in newborn mice [J].ExpNeurol, 2012,237(2): 388-395.
[30] PENAS C, PASCUAL-FONT A, MANCUSO R,etal. Sigma receptor agonist 2-(4-morpholinethyl)1 phenylcyclohexanecarboxylate (Pre084) increases GDNF and BiP expression and promotes neuroprotection after root avulsion injury [J].JNeurotrauma, 2011,28(5): 831-840.
Activationofσ1RMutationRelatedtoALSPromotestheApoptosisofRatSchwannCellsRSC96
ZHOUMei1,LIZengmin1,ZHENGYufang1,2,3
(1.SchoolofLifeSciences,FudanUniversity,Shanghai200438,China;2.InstituteofDevelopmentalBiologyandMolecularMedicine,FudanUniversity,Shanghai200433,China;3.InstituteofReproductiveandDevelopmentalResearch,ObstetricsandGynecologyHospitalofFudanUniversity,Shanghai200090,China)
Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative disease characterized by loss of upper and lower motor neurons in the brain and spinal cord, leading to amyotrophy and spasm and ultimately death from respiratory failure. Most studies focused on motor neurons to understand the pathogenesis of this disease, while none have tried to explore the role of Schwann cells in the progression of ALS. Previous study reported a mutation ofSIGMAR1 gene in a family of juvenile ALS. The 102ndamino acid of mutated sigma-1 Receptor (σ1R) turned to be glutamine (Q) instead of glutamic acid (E). We overexpressed wild-type or mutated σ1R in rat Schwann cells (RSC96 cell line) to explore the effects of this mutation on apoptosis of RSC96 cells. Our results showed that under Thapsigargin-induced ER stress and stimulation of PRE084 (agonist of σ1R), overexpression of mutated σ1R promoted apoptosis in RSC96 cells, lost the ability to inhibit the upregulation of cytoplasmic Ca2+, and exerted stronger inhibition ofADAM10activity. Our study suggested a possible role of Schwann cells in the pathogenesis of ALS through mutated σ1R.
ALS; σ1R; RSC96; cell apoptosis; cytoplasmic Ca2+; ADAM10
0427-7104(2017)06-0662-09
2017-02-21
國家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃(2013CB945404),上海市科委重點(diǎn)創(chuàng)新項(xiàng)目(14JC1401000)
周 梅(1987—),女,碩士研究生;鄭煜芳,女,副教授,通信聯(lián)系人,E-mail: zhengyf@fudan.edu.cn.
Q25
A