• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    First-Principles Study: the Structural Stability and Sulfur Anion Redox of Li1?xNiO2?ySy

    2018-01-10 01:22:35YANHuiJunLIBiaoJIANGNingXIADingGuo
    物理化學(xué)學(xué)報 2017年9期
    關(guān)鍵詞:第一性物理化學(xué)熱穩(wěn)定性

    YAN Hui-Jun LI Biao JIANG Ning XIA Ding-Guo

    ?

    First-Principles Study: the Structural Stability and Sulfur Anion Redox of Li1?xNiO2?yS

    YAN Hui-Jun LI Biao JIANG Ning XIA Ding-Guo*

    ()

    Ni-rich layered oxides are the preferred cathode materials for high-energy-density lithium-ion batteries currently used in electric vehicles. In this paper, we present a systematic first-principles evaluation of the deintercalation process in the Li1?NiO2?yS. The partial density of states (PDOS) characters of the electrons near the Fermi level, redox behaviors, and thermal stability have been investigated within the GGA +scheme. The results show that the introduction of sulfur alleviates the lattice distortion during charging, suppresses nickel migration, and enhances the stability of oxygen according to the contribution of sulfur anion redox to the charge compensation for the overcharged Li1?NiO2?S. This study provides a new insight on improving the stability of Ni-rich cathode materials by tuning of the electrochemical behaviors based on sulfur anion redox.

    Anion doping; Sulfur redox; Structural stability; Thermal stability; Transition metal migration

    1 Introduction

    Ni-rich layered oxides with high energy density and low cost are the preferred cathode material for the high energy density lithium-ion batteries used in electric vehicle1,2. For instance, lithium-ion batteries with LiNi0.8Co0.15Al0.05O2have been successfully applied in Tesla. However, Ni-rich layered cathodes suffer from the serious safety concern, related to the structural instability and oxygen release in their overcharged states3,4. Numerous works were done to improve the electrochemical performance of the layered Ni-rich cathodes. Cation doping is a good strategy to enhance the safety of layered Ni-rich oxides and have been extensively verified by experiments5?7. Most cation doping improves structural stability and safety of Ni-rich cathodes through the increased bonding strength of TM―O bond and the decreased oxygen evolution8. Anion doping also attracts researchers' attention9,10. The cycling stability of layered Ni-rich oxides was enhanced by fluorine substitution, which protected the electrode from HF-acid attack11. Park.12suggested that sulfur doping in LiNiO2enhanced the capacity retention by improving the structural stability. Kongstudied the conflicting roles of anion doping (F, Cl and S) in LiNiO2by the first-principles calculations13. However, these works were done by assuming that the electrochemical behaviors of this conventional layered oxide are mainly from the contribution of cation redox during charge-discharge process. By contrast, the abnormally high capacities delivered by lithium-rich oxide cathodes are a result of contributions from both cationic and anionic redox processes14?16. This phenomenon has invoked us to design high capacity cathode materials with help of anionic redox. Previous research based on Li2FeS2indicated that anion sulfur participated in redox reaction in charge and discharge process17. Sulfur redox may present higher reversibility than oxygen redox since S22?is commonly adopted in some familiar sulfides, such as FeS2and CoS2. On the other hand, Li1?NiO2, the basis system of a series of Ni-rich layered oxides, undergoes phase transitions accompanied by oxygen evolution3,4. And the extent of oxygen release increases with more lithium extracted18. The irreversible phase transitions with oxygen loss are responsible for the capacity fading and safety concerns of batteries3.

    Therefore, in present work, we investigated the delithiation process of LiNiO2doped by sulfur anions. We first found that anion sulfur participated the redox process prior to oxygen during the delithiation process. The introduction of sulfur favors the structural and thermal stability of delithiated Li1?NiO2?Sby alleviating the lattice distortion, suppressing nickel migration and mitigating oxygen release.

    2 Computational details

    All the structures are optimized using the ViennaSimulation Package (VASP)19with a 520 eV energy cutoff. The generalized gradient approximation Perdew-Burke- Ernzerhof (GGA-PBE) exchange and correlation functional are selected for all the calculations20. We use the GGA +method to localize the Ni-3electrons21. The value of Hubbard U is set to be 6.3 eV for Ni-3electrons according to previous work22,23. Besides, the spin polarization is also considered. The structure optimization is carried out with convergence of 10?4eV for the total energy and 0.5 eV·nm?1for the forces acting on each atom. A supercell that contains 108 atoms is used and the 2 × 2 × 1-points in the Brillouin zone are applied24.

    The LiNiO2supercell contains 27 Ni atoms, 27 Li atoms and 54 O atoms. As the anion sulfur doping was very dilute in previous reported experiments12,13, the sulfur redox maybe difficult to be observed. In order to explore the anion sulfur redox in LiNiO2-yS, a larger doping concentration is applied in our calculated model, as exemplified by LiNiO1.89S0.11(Li27Ni27O51S3).

    3 Results and discussion

    3.1 Rational choice of the doping concentration

    In order to rationalized the sulfur doping concentration for DFT prediction, LiNiO2?ySsystems with= 0.11, 0.22, 0.33 and 0.55 were calculated and discussed. For all the simulations, sulfur dopants are uniformly distributed in the systems. The lowest energy structures of the systems with different sulfur concentration are shown in Fig.1. It is shown that LiNiO2?ySwith= 0.11, 0.22, and 0.33 all present well organized layered structure as LiNiO2(Fig.1(a?c)). However, the structure with= 0.55 (Fig.1d) is distorted due to the formation of S―S bonding, which denotes a unstable structure with large sulfur doping concentration that can exist only with S―S bonds forming to lower the total energy. Therefore, the doping concentration larger than 0.55 will not be considered any more in the following. Table 1 compares the theoretical capacity, the average delithiated voltage and the reaction enthalpy of the LiNiO2?ySsystems. The reaction enthalpy is calculated according to the reaction:

    LiNiO2 + y/8 S8→ LiNiO2?ySy + y/2 O2(1)

    (a)= 0.11, (b)= 0.22, (c)= 0.33, (d)= 0.55. The structure of LiNiO1.45S0.55is distorted due to the formation of S―S bonding.

    Table 1 Comparison of the theoretical capacity, the average delithiated voltage and the reaction enthalpy in LiNiO2?ySy.

    3.2 Deintercalation of Li1?xNiO1.89S0.11

    Firstly, we determined the delithiation sequence of different lithium sites in the configuration, as depicted in Fig.2(a). All of the lithium ions can be classified as three types: closest to the sulfur ions, next-closest to the sulfur ions, and others far away from sulfur ions. We found that the lithium ions closest to the sulfur ions are extracted prior to other lithium ions in LiNiO1.89S0.11as indicated from the calculated energy with single lithium vacancy created (see Fig.2(b)). After that, the structural stability of delithiated Li1?xNiO1.89S0.11is discussed from the perspective of thermodynamics. The formation energy of Li1-xNiO1.89S0.11is defined as:

    Fig.2 (a) Nine Li sites in Li layer of Li27Ni27O51S3 (LiNiO1.89S0.11), (b) the energy of system with one Li vacancy site.

    The lithium atoms closest to the sulfur atom are labeled sites 1–3, the lithium atoms next-closest to the sulfur atom are labeled sites 4–6, and other lithium atoms far away from sulfur atom are labeled sites 7–9. The single Li vacancy was created by extracting the corresponding Li atom according to Fig.2(a).

    ΔEf(x) = E(Li1?xNiO1.89S0.11) ? xE(NiO1.89S0.11) ?(1?x) E(LiNiO1.89S0.11)(2)

    in which(Li1?xNiO1.89S0.11),(LiNiO1.89S0.11) and(NiO1.89S0.11) are the energies of systems withlithium delithiated, zero lithium delithiated and all lithium delithiated. Various Li-vacancy configurations in Li1?xNiO1.89S0.11were considered, and the evolution of corresponding formation energies was plotted in Fig.3(a). The negative formation energies indicate that the delithiated structure Li1?xNiO1.89S0.11is stable, rather than phase separation with a portion of LiNiO1.89S0.11and a portion of NiO1.89S0.11coexisting. The lowest formation energies points with different lithium contents are connected, forming the convex hull. The points on the convex hull represent the most stable phases in different lithium concentrations. For a comparison, the formation energies and the convex hull in Li1?xNiO2are also plotted in Fig.3(a). Interestingly, the formation energies of the convex hull in Li1?xNiO1.89S0.11are lower than that in Li1?xNiO2. It means that anion sulfur doping will enhance the structural stability during the delithiation process.

    The charging voltages as a function of Li concentration in Li1?xNiO1.89S0.11are calculated using the following equation:

    Fig.3 (a) Formation energies with different Li concentrations, (b) the calculated charging curves.

    V = {E(LiaNiO1.89S0.11) ? E(LibNiO1.89S0.11) ?(b ? a)E(Li)}/(b ? a)e(3)

    (a) LiNiO2, (b) LiNiO1.89S0.11.

    3.3 Redox behavior of Li1-xNiO1.89S0.11

    To further investigate sulfur redox behavior, the evolution of the average projected density of states (PDOS) during the charge process in Li1?xNiO2(Fig.S2 in Supporting Information) and Li1?xNiO1.89S0.11(Fig.S3 in Supporting Information) were calculated. In order to provide quantitative analysis, the integral of the electron density between 0 and 4 eV in conduction band was applied to study the contribution of each atom to the redox (see Fig.5). In delithiation process of Li1?xNiO2, the electron holes of nickel in conduction band increase withincreases. The electron holes of oxygen in conduction band also increases, which is attributed to the strong interaction between nickel and oxygen. Previous works also reported that the charge compensation during deintercalation was located on oxygen in LiNiO232. For Li1?xNiO1.89S0.11, the evolution of electron density of states in conduction band on nickel and oxygen are similar to Li1?xNiO2, while the electron holes on sulfur increase from 0.60 to 1.00 in initial charging process when< 0.4, and then it basically remains unchanged in the following charging process. This suggested that sulfur ions provide electrons for charge compensation during delithiation process. Moreover, we plotted the charge density differences between the LiNiO1.89S0.11and Li1?xNiO1.89S0.11(Fig.6) to determine whether sulfur is involved in redox. The charge density difference Δ1and Δ2are determined by the following definition:

    Fig.5 Evolution of integral conduction band electrons on each atom during charging process of Li1?xNiO2 and Li1?xNiO1.89S0.11.

    Δρ1 = ρ(LiNiO1.89S0.11) ? ρ(Li0.67NiO1.89S0.11)(4) Δρ2 = ρ(Li0.67NiO1.89S0.11) ? ρ(NiO1.89S0.11)(5)

    In 0 << 0.33, sulfur ions provide electrons to compensate the charge during lithium extraction (Fig.6(a)), but are not involved in redox furthermore in the following process (Fig.6(b)). This is in agreement with the integral DOS analysis. Sulfur redox will result in less electron holes on oxygen at some extent, which will enhance the stability of the overcharged Li1?xNiO1.89S0.11, since we believe sulfur redox is more stable than oxygen redox due to the existence of polysulfides.

    3.4 Structural stability and safety

    Li1?xNiO2, especially in high delithiated phase, exhibits a poor structural and thermal stability. The structural and thermal instability are related to particle crack and phase transition. The particle crack is attributed to the lattice distortion during cycling33. The phase transition is resulted from Ni migration at elevated temperature, accompanied with oxygen gas release4. Therefore, the effect of sulfur doping on structural stability was examined from the view of the lattice distortion and thermodynamic phase transition.

    It is shown previously that the structure of LiNiO1.89S0.11remains layered after sulfur substitution (see Fig.1). Sulfur doping in LiNiO2leads to the lattice parameter expansion due to the larger size of sulfur ions (see Table 2). Moreover, the/ratio, which is the characteristic of layered structure, increases after doping, and this is favorable for the structural reversibility during charging and discharging processes34. The evolution of the lattice parameters during charging in Li1?NiO1.89S0.11is plotted in Fig.7. For Li1?NiO2, lattice parametersandgradually decrease, whileincreases. But there is a turning point for parameterin= 0.8, indicating a shrinkage of the lattice alongdirection occurs at the end of charging process, which agrees well with experiments30. The latticeparameter increases with the deintercalationincreases due to the increscent repulsion between NiO6layers. The lattice shrinkage alongdirection will introduce inner strain in the structure, leading to particle micro cracks finally. After sulfur doping, the effect on the evolution ofandlattice parameters is small, whilelattice parameter is prominent. Firstly, the increasing amplitude ofis smaller than that in undoped system due to larger latticeparameter caused by sulfur substitution will reduce the repulsion between NiO6layers, and this will decrease the introduced inner strain during charging of Li1?NiO1.89S0.11. Furthermore, theparameter presents a monotonous ascending trend without any tuning points, implying that there is no lattice shrinkage at the end of charging, which will reduce particle cracks. Therefore, sulfur doping will reduce the lattice distortion and improve the structural stability during charging.

    It is also known that the thermal stability of Li1?NiO2is very terrible. Here, we also investigated the thermal stability of the Li1?NiO1.89S0.11. As we know, the layered Li1?NiO2will undergo the phase transition to spinel LiNi2O4, rocksalt NiO and O2gas3,4. The phase transition requires the migration of Ni ion from the Ni layer to Li layer, passing through the intermediate tetrahedral sites33. Ni4+ion is inclined to occupy the octahedral site due to its filled2gstate, while Ni3+with an additional electron inglevel is possible to migrate to tetrahedral site35. But the migration is not easy to happen at room temperature and slightly above36. Since it requires elevated temperature to induce the migration, it is possible that the spinel LiNi2O4becomes thermodynamically unstable before it is generated kinetically from the layered phase. As temperature increases, LiNi2O4becomes unstable and will convert to LiNiO2, NiO, and O2according to the temperature evolution of ternary phase diagram of Li-Ni-O236. Hence, the phase transition reaction could be described as:

    Li1–xNiO2 (layered) → (1 – x) LiNiO2 (layered) +x NiO (rocksalt) + x/2 O2(6) Li1–xNiO1.89S0.11 (layered) → (1 – x) LiNiO1.89S0.11(layered) + x NiO0.89S0.11 (rocksalt) + x/2 O2(7)

    (a) Δ1, (b) Δ2. The positive isosurface is in grey. The isosurface level is 0.07. The sulfur atoms (yellow) in Li1?xNiO1.89S0.11are marked by the dotted circle. color online.

    Fig.7 Evolution of lattice constants.

    (a), (b)andduring delithiation of Li1–xNiO2and Li1–xNiO1.89S0.11.

    We calculated the reaction enthalpies for> 0.5 according to the equation (6) or (7) (See Fig.8). The negative reaction enthalpy represents the exothermic reaction. The more the heat release, the more unstable the delithiated phase is. For Li1?NiO2, the released heat increases asincreases. It means that the delithiated phase is more and more unstable upon delithiation and will release oxygen gas finally, which is not conducive for thermal stability. However, after sulfur doping, the delithiated phase Li1?NiO1.89S0.11are more stable than Li1?NiO2due to the less heat release. Therefore, sulfur doping will enhance the thermal stability of the overcharged phase. We think the enhanced thermal stability is related to the sulfur redox. Sulfur provides a small amount of electrons to charge compensation, with less electron holes located on oxygen, thus retarding the oxygen generation. This further proves the superiority of sulfur doping in LiNiO2system.

    Fig.8 Reaction enthalpies of Li1?xNiO2 and Li1?xNiO1.89S0.11 with x > 0.5.

    Previous study indicated that oxygen vacancy would assist TM migration in layered structures37. Given that sulfur redox will reduce the oxygen participation on charge compensation, we evaluated the doping effect on Ni migration. The delithiated supercells Li9Ni27O54(Li0.33NiO2) and Li9Ni27O51S3(Li0.33NiO1.89S0.11) were used to study Ni migration, considering that they both possess some Ni3+ions and sufficient space to allow the Ni3+ion to hop between layers. The first step of phase transition is normally regarded as Ni3+ions migrating from the octahedral sites in Ni layer to neighboring tetrahedral sites in Li layer. We compared the energy differences Δoct→tetbetween the Li9(Nitet)(Nioct)26O54[Li9(Nitet)(Nioct)26O51S3] and Li9(Nioct)27O54[Li9(Nioct)27O51S3] (See Table 3). The possible structures of Li9(Nitet)(Nioct)26O54and Li9(Nitet)(Nioct)26O51S3are shown in Fig.9. We considered three types of Ni3+with tetrahedral sites in Li9(Nitet)(Nioct)26O51S3: the tetrahedral Ni3+ion are the nearest neighbor to dopant (labeled tet-1 in Fig.9(b)), next nearest neighbor to dopant (labeled tet-2 in Fig.9(b)) and distant to dopant (labeled tet-3 in Fig.9(b)), respectively. The positive energy difference represents an endothermic character of Ni migration to tetrahedral site. The smaller the value of positive energy difference is, the more likely Ni3+ion occupys tetrahedral site. As shown in Table 3, the energy difference Δoct→tetin undoped system is about 1.24 eV, which is lower than that in all cases of sulfur doped system. Therefore, Ni3+ions have a strong preference for octahedral site after sulfur doping, which will inhibit Ni3+ion migration. From this view, sulfur doping can suppress the phase transition and enhance the structural stability.

    Table 3 Energy differences of the system with and without tetrahedral Ni3+ ion.

    Fig.9 Configurations of Li9(Nitet)(Nioct)26O54 and Li9(Nitet)(Nioct)26O51S3.

    (a) Li9(Nitet)(Nioct)26O54, (b)Li9(Nitet)(Nioct)26O51S3, the migrated Ni3+ions are divided into the nearest neighbor to dopant (tet-1), (b) next nearest neighbor to dopant (tet-2) and distant to dopant (tet-3), respectively.

    4 Conclusions

    The mechanism of redox chemistry in Li1?xNiO1.89S0.11during delithiation is discussed in details. Due to the introduction of sulfur, the electron density is drew closer to the Fermi energy, which results in the lowered delithiated voltage. Moreover, sulfur ions contribute electrons to charge compensation upon initial deintercalation, which will reduce electron holes on oxygen. Sulfur doping will also alleviate the change of lattice parameter upon delithiation, which is beneficial for structural stability. From the thermodynamics view, sulfur doping will suppress Ni migration and retard the oxygen evolution, which is favor of the thermodynamic stability during delithiation. This work will open up a new view in designing the Ni-rich cathode materials with multiple anions redox.

    Acknowledgment: The work was carried out at National Supercomputer Center in Tianjin, and the calculations were performed on TianHe-1(A).

    Supporting Information: available free of chargethe internet at http://www.whxb.pku.edu.cn.

    (1) Liu, W.; Oh, P.; Liu, X.; Lee, M. J.; Cho, W.; Chae, S.; Kim, Y.; Cho, J.2015,, 4440. doi: 10.1002/anie.201409262

    (2) Kim, D.; Lim, J. M.; Lim, Y. G.; Yu, J. S.; Park, M. S.; Cho, M.; Cho, K.2015,, 6450. doi: 10.1021/acs.chemmater.5b02697

    (3) Wu, L.; Nam, K. W.; Wang, X.; Zhou, Y.; Zheng, J. C.; Yang, X. Q.; Zhu, Y.2011,, 3953. doi:10.1021/cm201452q

    (4) Nam, K. W.; Bak, S. M.; Hu, E.; Yu, X.; Zhou, Y.; Wang, X.; Wu, L.; Zhu, Y.; Chung, K. Y.; Yang, X. Q.2013,, 1047. doi:10.1002/adfm.201200693

    (5) Yang, Z. G.; Hua, W. B.; Zhang, J.; Chen, J. H.; He, F. R.; Zong, B. H.; Guo, X. D.2016,(5), 1056. [楊祖光, 滑緯博, 張 軍, 陳九華, 何鳳榮, 鐘本和, 郭孝東. 物理化學(xué)學(xué)報, 2016,(5), 1056.] doi: 10.3866/PKU.WHXB201603092

    (6) Huang, Y. Y.; Zhou, H. H.; Chen, J. T.; Gao, D. S.; Su, G. Y.2005,(7), 725. [黃友元, 周恒輝, 陳繼濤, 高德淑, 蘇光耀. 物理化學(xué)學(xué)報, 2005,(7), 725.] doi: 10.3866/PKU.WHXB20050706

    (7) Hou, X. Q.; Jiang, W. J.; Qi, L.; Han, L. J.2007,(Supp), 40. [侯憲全, 江衛(wèi)軍, 其 魯, 韓立娟. 物理化學(xué)學(xué)報, 2007,(Supp), 40.] doi: 10.3866/PKU.WHXB2007Supp10

    (8) Tatsumi, K.; Sasano, Y.; Muto, S.; Yoshida, T.; Sasaki, T.; Horibuchi, K.; Takeuchi, Y.; Ukyo, Y.2008,, 045108. doi: 10.1103/PhysRevB.78.045108

    (9) Woo, S. U.; Park, B. C.; Yoon, C. S.; Myung, S. T.; Prakash, J.; Sun, Y. K.2007,, A649. doi: 10.1149/1.2735916

    (10) Yan, H.; Li, B.; Yu, Z.; Chu, W.; Xia, D.2017,(13), 7155. doi: 10.1021/acs.jpcc.7b01168

    (11) Yue, P.; Wang, Z.; Guo, H.; Xiong, X.; Li, X.2013,, 1. doi: 10.1016/j.electacta.2013.01.018

    (12) Park, S. H.; Sun, Y. K.; Park, K. S.; Nahm, K. S.; Lee, Y. S.; Yoshio, M.2002,, 1721. doi: 10.1016/S0013-4686(02)00023-3

    (13) Kong, F.; Liang, C.; Longo, R. C.; Yeon, D. H.; Zheng, Y.; Park, J. H.; Doo, S. G.; Cho, K.2016,, 6942. doi: 10.1021/acs.chemmater.6b02627

    (14) Li, B.; Yan, H.; Zuo, Y.; Xia, D.2017,(7), 2811. doi: 10.1021/acs.chemmater.6b04743

    (15) Li, B.; Shao, R.; Yan, H.; An, L.; Zhang, B.; Wei, H.; Ma, J.; Xia, D.; Han, X.2016,, 1306. doi: 10.1002/adfm.201670054

    (16) Li, B.; Yan, H.; Ma, J.; Yu, P.; Xia, D.; Huang, W.; Chu, W.; Wu, Z.2014,, 5112. doi: 10.1002/adfm.201400436

    (17) Barker, J.; Kendrick, E.2011,, 6960.

    (18) Lee, K. K.; Yoon, W. S.; Kim, K. B.; Lee, K. Y.; Hong, S. T.2001,, 321. doi: 10.1016/S0378-7753(01)00548-1

    (19) Kresse, G.; Furthmüller, J.1996,, 11169. doi: 10.1103/PhysRevB.54.11169

    (20) Kresse, G.; Joubert, D.1999,, 1758. doi: 10.1103/PhysRevB.59.1758

    (21) Anisimov VI, V. I.; Zaanen, J.; Andersen, O. K.1991,, 943. doi: 10.1103/PhysRevB.44.943

    (22) Zhou, F.; Cococcioni, M.; Marianetti, C. A.; Morgan, D.; Ceder, G.2004,, 35. doi: 10.1103/PhysRevB.70.235121

    (23) Ma, J.; Yan, H.; Li, B.; Xia, Z.; Huang, W.; An, L.; Xia, D.2016,, 13421. doi:10.1021/acs.jpcc.6b04338

    (24) Monkhorst, H. J.1976,, 5188. doi: 10.1103/PhysRevB.13.5188

    (25) Chen, H.; Freeman, C. L.; Harding, J. H.2011,, 085108. doi: 10.1103/PhysRevB.84.085108

    (26) Rougier, A.; Delmas, C.; Chadwick, A. V.1995,, 123. doi: 10.1016/0038-1098(95)00020-8

    (27) Chung, J. H.; Proffen, T.; Shamoto, S.; Ghorayeb, A. M.; Croguennec, L.; Tian, W.; Sales, B. C.; Jin, R.; Mandrus, D.; Egami, T.2005,, 064410. doi: 10.1103/PhysRevB.71.064410

    (28) Marianetti, C. A.; Morgan, D.; Ceder, G.2001,, 224304. doi: 10.1103/PhysRevB.63.224304

    (29) Ouyang, C. Y.; Shi, S. Q.; Lei, M. S.2009,, 370. doi: 10.1016/j.jallcom.2008.06.123

    (30) Ohzuku, T.; Ueda, A.; Nagayama, M.1993,, 1862. doi: 10.1149/1.2220730

    (31) Aydinol, M. K.; Kohan, A. F.; Ceder, G.; Cho, K.; Joannopoulos, J.1997,, 1354. doi: 10.1103/PhysRevB.56.1354

    (32) Uchimoto, Y.; Sawada, H.; Yao, T.2001,, 326. doi: 10.1016/S0378-7753(01)00624-3

    (33) Jung, S. K.; Gwon, H.; Hong, J.; Park, K. Y.; Seo, D.-H.; Kim, H.; Hyun, J.; Yang, W.; Kang, K.2014,, 1300787. doi: 10.1002/aenm.201300787

    (34) Naghash, A. R.; Lee, J. Y.2001,, 2293. doi: 10.1016/S0013-4686(01)00452-2

    (35) Reed, J.; Ceder, G.2004,, 4513. doi:10.1021/cr020733x

    (36) Wang, L.; Maxisch, T.; Ceder, G.2007,, 543. doi: 10.1021/cm0620943

    (37) Qian, D.; Xu, B.; Chi, M.; Meng, Y. S.2014,, 14665. doi: 10.1039/c4cp01799d

    陰離子硫氧化還原與Li1?xNiO2?yS的結(jié)構(gòu)穩(wěn)定性:第一性原理研究

    鄢慧君 李 彪 蔣 寧 夏定國*

    (北京大學(xué)工學(xué)院,先進(jìn)電池材料理論與技術(shù)北京市重點實驗室,北京 100871)

    高鎳層狀氧化物是電動汽車高能量密度鋰離子電池正極材料的首選。本文通過第一性原理計算模擬了Li1?NiO2?S材料的脫鋰過程。通過GGA +計算分析了體系費(fèi)米能級處的電子結(jié)構(gòu),充電過程中的氧化還原機(jī)制和熱穩(wěn)定性。在Li1?NiO2?S脫鋰過程中,首次發(fā)現(xiàn)硫參與電荷補(bǔ)償,抑制過渡金屬的遷移,降低晶格扭曲幅度和提高體系中氧的穩(wěn)定性。這種基于硫陰離子氧化還原對鋰離子電池陰極材料電化學(xué)行為的調(diào)制有助于設(shè)計高穩(wěn)定性的高鎳正極材料。

    陰離子摻雜;硫氧化還原;結(jié)構(gòu)穩(wěn)定性;熱穩(wěn)定性;過渡金屬遷移

    O641

    10.3866/PKU.WHXB201705041

    March 30, 2017;

    April 20, 2017;

    May 4, 2017.

    . Email: dgxia@pku.edu.cn; Tel: +86-10-62767962.

    The project was supported by the New Energy Project for Electric Vehicle of National Key Research and Development Program, China (2016YFB0100200) and National Natural Science Foundation of China (51671004).

    國家重點研發(fā)計劃“新能源汽車”重點專項(2016YFB0100200)和國家自然科學(xué)基金(51671004)資助項目

    猜你喜歡
    第一性物理化學(xué)熱穩(wěn)定性
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進(jìn)的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    AuBe5型新相NdMgNi4-xCox的第一性原理研究
    SO2和NO2在γ-Al2O3(110)表面吸附的第一性原理計算
    Chemical Concepts from Density Functional Theory
    W、Bi摻雜及(W、Bi)共摻銳鈦礦TiO2的第一性原理計算
    缺陷和硫摻雜黑磷的第一性原理計算
    PVC用酪氨酸鑭的合成、復(fù)配及熱穩(wěn)定性能研究
    中國塑料(2016年7期)2016-04-16 05:25:52
    提高有機(jī)過氧化物熱穩(wěn)定性的方法
    可聚合松香衍生物的合成、表征和熱穩(wěn)定性?
    精品一区二区三区视频在线| 亚洲中文日韩欧美视频| 精品不卡国产一区二区三区| 成人三级黄色视频| 99热只有精品国产| 欧美黑人巨大hd| 亚洲欧美精品综合久久99| 中文字幕高清在线视频| 成人特级黄色片久久久久久久| 国产高清激情床上av| 国产黄色小视频在线观看| 国产美女午夜福利| 日韩欧美国产在线观看| 特级一级黄色大片| 国产精品影院久久| 国产成人福利小说| 成年人黄色毛片网站| 级片在线观看| 亚洲色图av天堂| 日韩成人在线观看一区二区三区| 一个人免费在线观看的高清视频| 久9热在线精品视频| 日本一本二区三区精品| 小说图片视频综合网站| av国产免费在线观看| 99国产综合亚洲精品| 亚洲人成伊人成综合网2020| 可以在线观看毛片的网站| 亚洲最大成人手机在线| 亚洲欧美精品综合久久99| 国产伦一二天堂av在线观看| 久久久久亚洲av毛片大全| 亚洲内射少妇av| 欧美成狂野欧美在线观看| 亚洲天堂国产精品一区在线| av天堂中文字幕网| 欧美bdsm另类| 偷拍熟女少妇极品色| x7x7x7水蜜桃| 中文字幕高清在线视频| 国产三级中文精品| 国产一区二区激情短视频| 久久久色成人| 亚洲在线自拍视频| 国产视频一区二区在线看| 国产免费av片在线观看野外av| 久久亚洲真实| 亚洲美女搞黄在线观看 | 美女被艹到高潮喷水动态| 麻豆成人av在线观看| 久久99热这里只有精品18| 69av精品久久久久久| 亚洲欧美精品综合久久99| 欧美精品啪啪一区二区三区| 美女免费视频网站| 搡老妇女老女人老熟妇| 国产成人欧美在线观看| 一本综合久久免费| 国产三级在线视频| 日本免费a在线| 男人狂女人下面高潮的视频| 欧美激情国产日韩精品一区| 午夜影院日韩av| 超碰av人人做人人爽久久| 97超级碰碰碰精品色视频在线观看| 中文字幕高清在线视频| 亚洲精品在线观看二区| 久久久久久大精品| 无人区码免费观看不卡| netflix在线观看网站| 久久久久亚洲av毛片大全| 99国产综合亚洲精品| 性欧美人与动物交配| 国产伦一二天堂av在线观看| 久久国产乱子免费精品| 最近中文字幕高清免费大全6 | 啦啦啦观看免费观看视频高清| 欧美日韩黄片免| 天堂动漫精品| 好男人在线观看高清免费视频| 日本一本二区三区精品| 人妻夜夜爽99麻豆av| 国产三级黄色录像| 国产成人av教育| 午夜日韩欧美国产| 国产野战对白在线观看| 一个人免费在线观看电影| 国产成人欧美在线观看| 成人高潮视频无遮挡免费网站| 国产不卡一卡二| 国产精品久久久久久人妻精品电影| 亚洲国产精品久久男人天堂| .国产精品久久| 久久精品国产清高在天天线| 亚洲欧美清纯卡通| 亚洲在线自拍视频| 老熟妇仑乱视频hdxx| 国产精品日韩av在线免费观看| 日韩有码中文字幕| 国产精品人妻久久久久久| 午夜影院日韩av| 91在线精品国自产拍蜜月| 精品日产1卡2卡| 黄色日韩在线| 久久久久久久久大av| 一本久久中文字幕| 看免费av毛片| 久久热精品热| 听说在线观看完整版免费高清| 久久久国产成人精品二区| 99久久九九国产精品国产免费| 婷婷六月久久综合丁香| 亚洲欧美清纯卡通| 日日夜夜操网爽| 亚洲精品亚洲一区二区| 国内毛片毛片毛片毛片毛片| 老司机福利观看| 免费av不卡在线播放| 久久中文看片网| 别揉我奶头~嗯~啊~动态视频| 少妇的逼水好多| 国产午夜精品久久久久久一区二区三区 | 伊人久久精品亚洲午夜| 国内揄拍国产精品人妻在线| 日本一二三区视频观看| 欧美潮喷喷水| av天堂在线播放| 最近中文字幕高清免费大全6 | 真人做人爱边吃奶动态| av在线观看视频网站免费| 嫩草影院新地址| 日本三级黄在线观看| 国产精品久久久久久久电影| 国产av不卡久久| xxxwww97欧美| 人妻制服诱惑在线中文字幕| 日韩欧美一区二区三区在线观看| 欧美成狂野欧美在线观看| 午夜免费男女啪啪视频观看 | 欧美又色又爽又黄视频| 90打野战视频偷拍视频| 在现免费观看毛片| 人妻丰满熟妇av一区二区三区| 国语自产精品视频在线第100页| 男人舔奶头视频| 国产一区二区亚洲精品在线观看| 好男人在线观看高清免费视频| 天堂网av新在线| 又紧又爽又黄一区二区| 久久亚洲精品不卡| 国产精品久久视频播放| 又爽又黄无遮挡网站| 国产亚洲精品av在线| 自拍偷自拍亚洲精品老妇| 天堂动漫精品| 免费观看的影片在线观看| 国产又黄又爽又无遮挡在线| 99久久无色码亚洲精品果冻| a级毛片a级免费在线| 99在线视频只有这里精品首页| 国内精品久久久久精免费| 国产亚洲精品久久久久久毛片| 国内揄拍国产精品人妻在线| 免费人成视频x8x8入口观看| 亚洲久久久久久中文字幕| 在线观看舔阴道视频| 此物有八面人人有两片| 亚洲熟妇熟女久久| 性色avwww在线观看| 国内久久婷婷六月综合欲色啪| 久久久久国产精品人妻aⅴ院| 两个人的视频大全免费| 3wmmmm亚洲av在线观看| 亚洲性夜色夜夜综合| 亚洲欧美激情综合另类| 欧美高清成人免费视频www| av在线蜜桃| 免费电影在线观看免费观看| 十八禁人妻一区二区| 亚洲第一欧美日韩一区二区三区| 免费一级毛片在线播放高清视频| 久久香蕉精品热| 最新中文字幕久久久久| 亚洲最大成人av| 99精品久久久久人妻精品| 校园春色视频在线观看| 国产午夜精品论理片| 久久久久久九九精品二区国产| 国产一区二区在线观看日韩| 亚洲国产欧美人成| 18禁裸乳无遮挡免费网站照片| 99久国产av精品| 又黄又爽又刺激的免费视频.| 蜜桃久久精品国产亚洲av| 九色国产91popny在线| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品综合久久久久久久免费| 香蕉av资源在线| 两个人视频免费观看高清| 可以在线观看的亚洲视频| 亚洲第一电影网av| 国产毛片a区久久久久| 午夜影院日韩av| 一区二区三区四区激情视频 | 亚洲aⅴ乱码一区二区在线播放| 午夜福利在线观看吧| 欧美色欧美亚洲另类二区| 久久久久精品国产欧美久久久| 欧美绝顶高潮抽搐喷水| 悠悠久久av| 亚洲成人中文字幕在线播放| 深夜精品福利| www.www免费av| 久久久国产成人精品二区| 久久人妻av系列| 欧美不卡视频在线免费观看| 国产爱豆传媒在线观看| 丰满的人妻完整版| 亚洲av一区综合| 欧美中文日本在线观看视频| 久久久精品大字幕| 亚洲国产精品合色在线| 国产真实伦视频高清在线观看 | 美女大奶头视频| 欧美黑人欧美精品刺激| 欧美日韩乱码在线| 午夜福利视频1000在线观看| 99久久精品国产亚洲精品| 亚洲不卡免费看| 成人精品一区二区免费| 亚洲精品在线美女| 日韩成人在线观看一区二区三区| 国产国拍精品亚洲av在线观看| 欧美日韩乱码在线| 午夜福利在线观看吧| 成人性生交大片免费视频hd| 男人狂女人下面高潮的视频| 国产综合懂色| 9191精品国产免费久久| 国产精品98久久久久久宅男小说| 精品国产亚洲在线| 99国产极品粉嫩在线观看| 亚洲美女视频黄频| 亚洲内射少妇av| 亚洲欧美日韩卡通动漫| 久99久视频精品免费| 亚洲男人的天堂狠狠| 色5月婷婷丁香| 亚洲第一区二区三区不卡| 最新中文字幕久久久久| 69人妻影院| 熟女人妻精品中文字幕| 欧美丝袜亚洲另类 | 欧美性猛交黑人性爽| 91久久精品国产一区二区成人| 狠狠狠狠99中文字幕| 久久99热6这里只有精品| 高清在线国产一区| 亚洲成av人片在线播放无| 色哟哟哟哟哟哟| 国产免费av片在线观看野外av| 舔av片在线| 中文字幕熟女人妻在线| 亚洲欧美日韩卡通动漫| 18禁黄网站禁片午夜丰满| 蜜桃亚洲精品一区二区三区| 午夜免费男女啪啪视频观看 | 久久午夜福利片| 亚洲七黄色美女视频| 毛片女人毛片| av黄色大香蕉| 亚洲av二区三区四区| 97碰自拍视频| 丰满的人妻完整版| 最近中文字幕高清免费大全6 | 88av欧美| 99riav亚洲国产免费| 欧美国产日韩亚洲一区| 亚洲色图av天堂| 久久精品人妻少妇| 香蕉av资源在线| 免费大片18禁| 在现免费观看毛片| 国产探花在线观看一区二区| 国产一级毛片七仙女欲春2| 日本精品一区二区三区蜜桃| 免费高清视频大片| 性插视频无遮挡在线免费观看| 日本黄色片子视频| 99精品在免费线老司机午夜| .国产精品久久| 美女免费视频网站| 极品教师在线免费播放| 亚洲人成电影免费在线| 亚洲在线自拍视频| 一级黄色大片毛片| 国产不卡一卡二| 亚洲精品影视一区二区三区av| 热99re8久久精品国产| 亚洲美女搞黄在线观看 | 久久久久久久久久黄片| 男女之事视频高清在线观看| 国产精品美女特级片免费视频播放器| 99热这里只有是精品50| 久久国产精品影院| 久久国产乱子伦精品免费另类| 听说在线观看完整版免费高清| bbb黄色大片| 国产又黄又爽又无遮挡在线| 激情在线观看视频在线高清| 欧美日本亚洲视频在线播放| 嫩草影院精品99| 国产美女午夜福利| 成人欧美大片| 好男人电影高清在线观看| 色综合站精品国产| 午夜福利视频1000在线观看| 亚洲av电影不卡..在线观看| 欧美区成人在线视频| 国产一区二区激情短视频| 给我免费播放毛片高清在线观看| 国产 一区 欧美 日韩| 在线天堂最新版资源| 美女黄网站色视频| 男人的好看免费观看在线视频| 51国产日韩欧美| 九色国产91popny在线| 婷婷精品国产亚洲av| 色综合亚洲欧美另类图片| 久久午夜福利片| 国产大屁股一区二区在线视频| 女同久久另类99精品国产91| 精品一区二区免费观看| 一边摸一边抽搐一进一小说| 欧美成人免费av一区二区三区| 一个人看视频在线观看www免费| 亚洲精品日韩av片在线观看| 嫩草影院精品99| 亚洲人成伊人成综合网2020| 亚洲在线观看片| 精品国产亚洲在线| 国产黄a三级三级三级人| 精品熟女少妇八av免费久了| 国产av麻豆久久久久久久| 人人妻,人人澡人人爽秒播| 最近视频中文字幕2019在线8| 成年女人毛片免费观看观看9| 久久久久久久久中文| 亚洲一区二区三区色噜噜| 国内揄拍国产精品人妻在线| 亚洲欧美日韩卡通动漫| 欧美国产日韩亚洲一区| 精品一区二区三区视频在线观看免费| 我要看日韩黄色一级片| 亚洲人成电影免费在线| 日日摸夜夜添夜夜添小说| 我的老师免费观看完整版| 少妇的逼好多水| 可以在线观看的亚洲视频| 午夜视频国产福利| 国产精品久久久久久亚洲av鲁大| 欧美日韩中文字幕国产精品一区二区三区| 一进一出抽搐动态| 在线国产一区二区在线| 亚洲乱码一区二区免费版| 国产一区二区三区在线臀色熟女| 国产亚洲欧美98| 日韩精品中文字幕看吧| avwww免费| 两个人视频免费观看高清| 欧美成人免费av一区二区三区| 熟妇人妻久久中文字幕3abv| 人人妻人人澡欧美一区二区| a级毛片a级免费在线| 在线免费观看不下载黄p国产 | 91麻豆av在线| 国产精品一区二区三区四区免费观看 | 宅男免费午夜| 久久性视频一级片| 麻豆一二三区av精品| 亚洲国产精品sss在线观看| 色播亚洲综合网| 一卡2卡三卡四卡精品乱码亚洲| 国产精品一区二区三区四区免费观看 | 麻豆国产97在线/欧美| 夜夜夜夜夜久久久久| 夜夜看夜夜爽夜夜摸| 亚洲18禁久久av| 中文字幕精品亚洲无线码一区| 老司机深夜福利视频在线观看| 亚洲精品一区av在线观看| 69av精品久久久久久| 国产在线精品亚洲第一网站| 日本五十路高清| 超碰av人人做人人爽久久| 女人被狂操c到高潮| 国产伦一二天堂av在线观看| 五月伊人婷婷丁香| 一个人观看的视频www高清免费观看| 亚洲av电影不卡..在线观看| 亚洲精品在线美女| 深爱激情五月婷婷| 国产大屁股一区二区在线视频| 老熟妇仑乱视频hdxx| 欧美性猛交黑人性爽| 99riav亚洲国产免费| 真人做人爱边吃奶动态| 色哟哟哟哟哟哟| 嫩草影院精品99| 亚洲人成网站在线播| h日本视频在线播放| 国产精品一区二区三区四区久久| 色视频www国产| 日本成人三级电影网站| 90打野战视频偷拍视频| 久久精品国产亚洲av天美| 国产爱豆传媒在线观看| 久久久久久久精品吃奶| 啦啦啦观看免费观看视频高清| 日韩欧美国产一区二区入口| 欧美日韩乱码在线| 国内久久婷婷六月综合欲色啪| 人妻夜夜爽99麻豆av| 我要看日韩黄色一级片| 乱码一卡2卡4卡精品| 午夜福利在线在线| 免费人成视频x8x8入口观看| 高清在线国产一区| 91久久精品电影网| а√天堂www在线а√下载| 国产大屁股一区二区在线视频| 日韩人妻高清精品专区| 搡老妇女老女人老熟妇| 国产aⅴ精品一区二区三区波| 久久精品人妻少妇| 免费人成视频x8x8入口观看| 夜夜躁狠狠躁天天躁| 日本五十路高清| 一区二区三区免费毛片| 波多野结衣巨乳人妻| 婷婷六月久久综合丁香| 免费在线观看成人毛片| 搡老熟女国产l中国老女人| 他把我摸到了高潮在线观看| 在现免费观看毛片| 欧美日韩国产亚洲二区| 久久99热这里只有精品18| 一级作爱视频免费观看| 欧美乱色亚洲激情| 宅男免费午夜| 国内精品久久久久久久电影| 老熟妇乱子伦视频在线观看| 波多野结衣高清作品| 人妻久久中文字幕网| 91午夜精品亚洲一区二区三区 | 亚州av有码| 亚洲欧美激情综合另类| 国产精品98久久久久久宅男小说| 精品久久久久久久久av| 国产久久久一区二区三区| 亚洲精品在线美女| 怎么达到女性高潮| 一本精品99久久精品77| 国产三级中文精品| 日日干狠狠操夜夜爽| 真实男女啪啪啪动态图| 99国产极品粉嫩在线观看| 色精品久久人妻99蜜桃| 色综合婷婷激情| 国产91精品成人一区二区三区| 久久久国产成人精品二区| 精品一区二区三区人妻视频| 夜夜爽天天搞| 亚洲国产日韩欧美精品在线观看| 黄片小视频在线播放| 一级av片app| 成人毛片a级毛片在线播放| 夜夜爽天天搞| 免费av观看视频| 宅男免费午夜| 国产69精品久久久久777片| 人妻夜夜爽99麻豆av| 女人十人毛片免费观看3o分钟| 欧美最黄视频在线播放免费| www.色视频.com| 男人狂女人下面高潮的视频| 1000部很黄的大片| 精品久久久久久久末码| 国产精品99久久久久久久久| 午夜福利免费观看在线| 淫妇啪啪啪对白视频| 丰满的人妻完整版| 桃色一区二区三区在线观看| 身体一侧抽搐| 夜夜爽天天搞| 色综合婷婷激情| 国产私拍福利视频在线观看| 中出人妻视频一区二区| 日韩人妻高清精品专区| 美女cb高潮喷水在线观看| av天堂中文字幕网| 国产黄色小视频在线观看| 成人欧美大片| 91麻豆精品激情在线观看国产| 国产成人欧美在线观看| ponron亚洲| 国产精华一区二区三区| 激情在线观看视频在线高清| 我要看日韩黄色一级片| 免费观看精品视频网站| 久久久久久久久大av| 亚洲精品456在线播放app | 亚洲av五月六月丁香网| 淫秽高清视频在线观看| 日本一本二区三区精品| 国产主播在线观看一区二区| 91麻豆av在线| 91午夜精品亚洲一区二区三区 | 久久久久久久精品吃奶| 人人妻人人看人人澡| 美女高潮喷水抽搐中文字幕| 很黄的视频免费| 精品一区二区三区人妻视频| 欧美成人a在线观看| 亚洲欧美日韩无卡精品| 麻豆国产av国片精品| h日本视频在线播放| 高清在线国产一区| 两个人的视频大全免费| 中国美女看黄片| 黄色配什么色好看| 国产精品爽爽va在线观看网站| 久久久久久久亚洲中文字幕 | 老司机午夜十八禁免费视频| 国产一级毛片七仙女欲春2| 日本 欧美在线| 日本熟妇午夜| 亚洲av电影在线进入| 免费在线观看日本一区| 久久久久久久久大av| 人妻久久中文字幕网| 最好的美女福利视频网| 国产欧美日韩一区二区精品| 免费av不卡在线播放| 69人妻影院| 91狼人影院| 亚洲av日韩精品久久久久久密| 淫妇啪啪啪对白视频| 亚洲综合色惰| 中文字幕免费在线视频6| av国产免费在线观看| 热99re8久久精品国产| 在线观看66精品国产| 欧美zozozo另类| 久久久久久久久久成人| 一个人免费在线观看的高清视频| 天堂av国产一区二区熟女人妻| 亚洲国产欧美人成| 国产伦精品一区二区三区四那| 精品久久国产蜜桃| 怎么达到女性高潮| 黄片小视频在线播放| 久久久久精品国产欧美久久久| 在线观看一区二区三区| 亚洲av电影不卡..在线观看| 亚洲国产精品sss在线观看| 国产成人欧美在线观看| 亚洲国产精品sss在线观看| 国产v大片淫在线免费观看| 少妇人妻一区二区三区视频| 99久国产av精品| www日本黄色视频网| 成年免费大片在线观看| 国产三级在线视频| 两人在一起打扑克的视频| 无遮挡黄片免费观看| 国产视频内射| 2021天堂中文幕一二区在线观| 日本撒尿小便嘘嘘汇集6| 最好的美女福利视频网| 两人在一起打扑克的视频| 午夜免费成人在线视频| 老司机午夜十八禁免费视频| 老熟妇仑乱视频hdxx| 久9热在线精品视频| 精品一区二区三区人妻视频| 美女cb高潮喷水在线观看| 精品一区二区三区视频在线观看免费| 午夜精品在线福利| 一进一出抽搐gif免费好疼| bbb黄色大片| 亚洲真实伦在线观看| 亚洲一区高清亚洲精品| 亚洲国产精品sss在线观看| 中出人妻视频一区二区| 久久精品国产自在天天线| 亚洲av电影不卡..在线观看| 久久精品国产自在天天线| 亚洲久久久久久中文字幕| 国产蜜桃级精品一区二区三区| 精品久久久久久久久久久久久| 香蕉av资源在线| 日本一本二区三区精品| 亚洲熟妇熟女久久| 亚洲欧美日韩高清在线视频| 国产精品三级大全| 9191精品国产免费久久| 亚洲av第一区精品v没综合| 亚洲av二区三区四区| 好男人在线观看高清免费视频| 亚洲中文字幕一区二区三区有码在线看| 精品一区二区三区视频在线| 97碰自拍视频| 亚洲一区高清亚洲精品| 久久精品国产自在天天线|