• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental study of shock interacting with well-controlled gas cylinder generated by soap film

    2014-03-29 08:01:55LuoXishengWangXianshengChenMojunZhaiZhigang
    實(shí)驗(yàn)流體力學(xué) 2014年2期
    關(guān)鍵詞:通訊地址激波力學(xué)

    Luo Xisheng, Wang Xiansheng, Chen Mojun, Zhai Zhigang

    (Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China)

    0 Introduction

    The Richtmyer-Meshkov (RM) instability[1-2]occurs on an initially perturbed interface subjecting to a sudden acceleration by a shock. Due to the deposition of baroclinic vorticity, the initial perturbation will grow with time, which generally intensifies the mixing between fluids and eventually induces turbulence in flow. Because of its academic significance in vortex dynamics and turbulent mixing as well as wide applications ranging from inertial confinement fusion[3], supernova explosions[4]to supersonic combustion[5], the hydrodynamic instability becomes increasingly attractive. Specifically,several comprehensive reviews on this topic have been made[6-8]. As a basic and simple RM instability problem, the shock-gas cylinder interaction has been extensively studied in experiments[9-14]. A great challenge to perform such experiments is to form a well-defined initial interface. Most previous experimental studies are performed in shock tube environments with a discontinuous or continuous interface. The creation of a sharp interface generally adopts a nitrocellulosic membrane[2,15]or a soap film[9,16-19]to separate the test gas from the ambient gas. The advantage of using the membrane or film is that diffusion between the test gas and surrounding gas is eliminated. However, due to the absorption of the fluid kinetic energy, the remaining membrane/film pieces are found to be influential in the late-time evolution. It is also hard to obtain the exact shape of initial perturbations in the experiment. Therefore, the approximate initial conditions were employed in the past numerical attempts, and the wire mesh supports were often simply neglected. To avoid the influences of membrane and support, the technique of gas cylinder[10,14,20]to form a continuous interface is developed. However, this technique for continuous interface has its own drawbacks. Taking the gas cylinder of SF6(sulfur hexafluoride) for example, the SF6gas falls through the test section due to gravity. Therefore, the gases in and near the cylinder column will attain a vertical velocity. Due to diffusion and mixing, the gas composition is not uniformly distributed on longitudinal and radial directions. The cross section of the gas column may deviate from the desired circular symmetry during the experiment. Therefore, the exact initial conditions such as the distribution of the gas concentration and the small vertical velocity of the gas column have to be determined afterwards, and effects of them on the instability are not fully understood as these experimental uncertainties genuinely introduce three-dimensional (3D) influences[21]. In the present study, a novel method to create a discontinuous gaseous interface is developed by the soap film technique for the RM instability study. The formed interface by the new method is free of supporting mesh and its initial shape can be accurately described in mathematics. Therefore, the initial condition can be well controlled.

    (a)

    (b)

    1 Formation and feature of the initial interface

    As sketched in Fig.1(a), two circular wires (35mm in diameter) are embedded into two quartz glasses (200mm×140mm) which are mounted in the visualizing window face-to-face. The wires with a thickness of 0.5 mm are made of acrylic sheets in a computer-aided design. In order to mount the wires, the quartz glasses are engraved on two circular channels. Firstly, the lower (for SF6) or upper (for helium) quartz glass is uniformly wetted by the soap liquid (made of 78% distilled water, 2% sodium oleate and 20% glycerine by mass). Then, a soap bubble is inflated with the test gas (SF6or helium) by a thin blowing pipe placed between the circular wires. This soap bubble firstly becomes a hemisphere bounded by the wire on the lower (for SF6) or upper (for helium) quartz glass, and then is expanding to the other quartz glass. A gaseous cylinder is formed when the bubble contacts with the wire on the other quartz glass. Based on the property of the soap film, the shape of the cylinder is closely related to the pressure inside the bubble[22]. An IC camera (Nikon D90) is used to monitor the geometry of the cylinder. Fig.1(b) shows the images of the two-dimensional (2D) and 3D gaseous cylinders and the dashed lines represent the interface boundaries. The 2D cylinder is formed with a little overpressure inside the inhomogeneity using the similar strategy adopted by Haas and Sturtevant[9]. However, the current 2D cylinder is made of soap film, which is considered to be less influential on the flow than thin plastic membranes[16-17]. The 3D cylinder is formed through making the pressure inside the inhomogeneity equal to the outside. This is realized by puncturing the soap film through a small perforation (2 mm in diameter) at the center of the circular wire in the quartz glass. Because the gas at both sides of the interface is at the ambient pressure, the formed 3D soap film interface has a zero mean curvature, i.e. two principal curvatures at every point of the interface are in opposite direction. Therefore, the formed 3D cylinder has a minimum surface feature[22-23]as depicted in Fig.2 together with its front-view and top-view. The surface can be accurately described in mathematics by

    (1)

    wherer0is the radius of the circle at the symmetric plane (y=0) andr0measured from the initial image is 13.7mm which agrees well with the prediction by Eq.1.

    (a) (b) (c)

    2 Experimental method

    Experiments are conducted in a horizontal shock tube, which consists of a 1.7m driver section, a 2.0m driven section and a 0.6m test-section with the cross-sectional area of 140mm×20mm. The open-end tube is employed mainly for taking photos of the initial interface by the IC. The distance between the center of the initial interface and the open-end of the shock tube is 312mm, which corresponds to a test time of 1.4ms. The height of the test section is small (2h=20mm) to minimize the gravity effect of the test gas and to ensure a 3D interface formed in the shock tube. Note that, in order to create a 3D cylinder, the height of the shock tube must satisfy Eq.1 for a fixed radius of the circular wire (In the current situation, the radius of the circular wire is 17.5mm and the resulting maximum height of the shock tube is less than 23.2mm). The schlieren photography is employed to visualize the interaction of the shock wave with the 2D and 3D gaseous cylinders as shown in Fig.3. In order to maintain the shapes of the initial interface, the visualizing windows are arranged in the vertical direction. The illumination, provided by a DC regulated light source (DCR III, SCHOTT North America, Inc., 200W), is made accessible through a pair of quartz glasses (200mm×140mm) mounted in the visualizing window. A high-speed video camera (FASTCAM SA5, Photron Limited) is equipped to record the sequences. The timing and triggering system involves a four channel delay generator (DG645, Stanford Research Systems), two piezoelectric pressure transducers, a charge amplifier, an oscilloscope and some accessories. The frame rate of the high-speed video camera is 3×104fps and the spatial resolution is 640×376 which implies 300mm/pixel. The local pressure and temperature are 101325Pa and 293K, respectively.

    Fig.3 The schematic of the schlieren system

    3 Results and discussion

    The morphologies of the shocked 2D cylinder with a diameter of 35mm and the corresponding 3D inhomogeneity with minimum surface feature are compared in Figs.4 and 5 by schlieren sequences. Helium or SF6is employed as the test gas in the cylinder, which produces a large density mismatching with the surrounding air. The incident shock wave propagates from left to right with a Mach number ofMs=1.2. All the records start when the incident shock wave collides with the gaseous cylinder. When the shock wave collides with the bubble either filled with helium or SF6, the incident shock bifurcates into a transmitted shock wave and a reflected wave whose type is either the shock, or the rarefaction due to the mismatch of acoustic impedance inside and outside the bubble. During the passage of the shock, the discrete inhomogeneity obtains the energy at a very short time and baroclinic vorticity is deposited on the interface due to the misalignment of the pressure and density gradients[8]. When the shock wave transmits away, the deposited vorticity drives the shear flow in the vicinity of the interface. The interface is then rolled up, and the vortex pairs gradually dominate the flow. Eventually, the flow becomes more turbulent and the mixing between fluids is greatly intensified. In general, the morphologies of the shocked 2D cylinders are similar with the observations in literature[9]. Therefore, a detail description of the interface evolution is skipped here. However, there are distinct improvements in our images. It can be found that there are fewer waves in the schlieren images and the evolving interface is more symmetric. These improvements can be ascribed to the new method of the interface formation. The formed interface is free of support and mesh, and, therefore, is free of disturbances caused by the support and mesh. The instability evolution on the 2D interface is found to be quite different from that in the case of continuous interfaces[14]. The main vortex and the secondary vortices are more pronounced in our results of the shocked 2D SF6cylinder, as shown in the inset of Fig.5 (at time 0.82ms). The jet is also stronger in our results. These phenomena can often be found in numerical simulations[24], but seldom seen in experiments.

    (a) (b)

    (a) (b)

    The 3D effects on the interface morphologies are significant which can be directly found from the comparison between the 2D and 3D shocked cylinders. In the helium case as shown in Fig.4, the 3D shocked cylinder presents two downstream interfaces denoted by ‘a(chǎn)’ and ‘b’ in the schlieren at time 0.21ms. The two downstream interfaces correspond to the interfaces at the symmetric (y=0) and boundary (y=±h) planes, respectively. Because of the 3D effects, the intermediate-time morphologies are also quite different in the two cases. The 3D shocked helium cylinder begins to roll up and the vortex pair forms at time 0.61 ms, which are earlier than those in the 2D case. In the SF6case as shown in Fig.5, there are also two downstream interfaces appearing in the 3D shocked cylinder at time 0.43ms. However, different from the helium case, most parts of the two interfaces coalesce to one interface as time proceeds except the central part (denoted by ‘c’). This central part belongs to the downstream interface at the boundary plane. Because of the curved shape (in vertical direction) of the downstream interface, the transmitted shock from the downstream interface (from SF6to air) will form a Mach reflection near the boundary and cause a relatively high pressure zone just outside the downstream interface. Driven by this high pressure, the central part, as shown in the inset of the schlieren image at time 0.63ms, becomes larger with time and moves more slowly than the upstream interface. Finally, the central part merges with the upstream interface.

    In order to compare the 2D and 3D cylinders quantitatively, the width and height of the interface structure are further measured, as given in Figs.6 and 7. All the quantities are normalized by the local characteristic length, which means that except that the width of the volume together with its time in the 3D helium case is normalized by the initial radius of the symmetric plane, other quantities are nondimensionalized by the initial radius of the cylinder, i.e. radius at the boundary plane. The reason is that the width in the 3D helium case is the distance between the upstream interface and the downstream interface at the symmetric plane (the interface denoted by ‘a(chǎn)’). It can be easily seen that the development of the shocked 3D cylinder is slower than that of the 2D counterpart, especially for the helium case. The pressure gradient and the baroclinic vorticity are supposed to be the driving mechanisms to account for the slowness, which is similar with the minimum surface case of 3D air/SF6interface in our previous study[23]. We shall first consider the width of the volume in the helium case. In the shock-helium in the helium case. In the shock-helium cylinder interaction, the direction of pressure gradient at pointIL/IR, induced by the reflected and transmitted waves in the horizontal (xz) plane, is to the left as depicted in Fig.8(a). However, in the cylinder with minimum surface feature, there is another pressure gradient, whose direction is to the right, induced by waves in the vertical (xy) plane. Therefore, the growth of perturbations at the symmetric plane tends to be suppressed by these opposite pressure gradients compared with the 2D counterpart. The baroclinic vorticity along the catenary line (OR-IR-OR′ orOL-IL-OL′) is also opposite to the one along the circular plane (xz), as illustrated in Fig.8(b), which also prevents the growth of the width at the symmetric plane. The slowness of the upstream height in the 3D helium case can be ascribed to these two factors. Because of the curved shape of the catenary lines of the 3D cylinder, there are ‘a(chǎn)dverse’ baroclinic vorticity and pressure gradients exerting on the upstream interface. Therefore, the height of the upstream interface in the 3D cylinder increases more slowly than that in the 2D case at the early stage. Because of the earlier formation of the vortex pair in the 3D case as indicated in the schlieren images, the height of the 3D upstream interface begins to decrease earlier than that of the 2D case. For the SF6case, the extra pressure gradients and baroclinic vorticity caused by the minimum surface feature also prevent the interface development. Therefore, the quantities of the 3D case are all smaller than the 2D counterparts. It should be noted that in the SF6case the interface height, not the height of upstream interface as used in the helium case, is used because the vortex pair in this heavy gas case stretches the upstream interface and subsequently the upstream interface connects to the vortex pair. We can find that the interface height first experiences a small decrease due to shock compression and then increases with time because of the instability.

    (a)

    (b)

    (a)

    (b)

    (a)

    (b)

    4 Conclusions

    A simple method of generating gas cylinders is proposed by using the soap film technique. The formed interface is free of supporting mesh and the initial shape can be accurately described in mathematics. As a result, the schlieren images of the shocked 2D cylinder have less disturbing waves and the evolving interfaces are more symmetric comparing with the results in literature. Because of the sharp interface, the main vortex and secondary instabilities are more pronounced in our 2D results. Therefore, the quality of the experiments of the shock-cylinder interaction is improved by using the well-controlled initial condition and can provide a good benchmark for numerical codes and analytical models. Special attention is then given to the 3D effects caused by the minimum surface feature on the interface evolution. It is found that there are two downstream interfaces both in the 3D helium and SF6cases. The development of the shocked 3D cylinder is slower than that of the 2D counterpart, which can be ascribed to ‘a(chǎn)dverse’ pressure gradients and baroclinic vorticity related to the 3D initial shape. Due to the 3D characteristic, the evolving interface at eachy-plane behaves differently and may interact with each other, which cannot be resolved by the integral visualizing method used in the present work. The effects of the liquid droplets produced by the soap film breakup, cylinder diameter, and shock Mach number on the RM instability also need further investigation.

    Acknowledgements:This research was carried out with the support of the National Natural Science Foundation of China, Grant No. 10972214 and by the Knowledge Innovation Program of the Chinese Academy of Sciences, Grant No. CX2090050020. The authors would like to thank Dr. Si Ting and Mr. Wang Minghu for the valuable help during the experiments.

    References:

    [1]Richtmyer R D. Taylor instability in shock acceleration of compressible fluids[J]. Commun Pure Appl Math,1960, 13: 297-319.

    [2]Meshkov E E. Instability of the interface of two gases accelerated by a shock wave[J]. Fluid Dyn, 1969, 4: 101-104.

    [3]Lindl J D, Mccrory R L, Campbell E M. Progress toward ignition and burn propagation in inertial confinement fusion[J]. Phys Today, 1992, 45: 32-40.

    [4]Arnett W D, Bahcall J N, Kirshner R P, et al. Supernova 1987A[J]. Annu Rev Astron Astrophys, 1989, 27: 629-700.

    [5]Yang J, Kubota T, Zukoski E E. Applications of shock-induced mixing to supersonic combustion[J]. AIAA J, 1993, 35: 854-862.

    [6]Zabusky N J. Vortex paradigm for accelerated inhomogeneous flows: visiometrics for the Rayleigh-Taylor and Richtmyer-Meshkov environments[J]. Annu Rev Fluid Mech, 1999, 31: 495-536.

    [7]Brouillette M. The Richtmyer-Meshkov instability[J]. Annu Rev Fluid Mech, 2002, 34: 445-468.

    [8]Ranjan D, Oakley J, Bonazza R. Shock-bubble interactions[J]. Annu Rev Fluid Mech, 2011, 43: 117-140.

    [9]Haas J F, Sturtevant B. Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities[J]. J Fluid Mech, 1987, 181: 41-76.

    [10] Jacobs J W. The dynamics of shock accelerated light and heavy gas cylinders[J]. Phys Fluids, 1993, 5(9): 2239-2247.

    [11] Tomkins C, Prestridge K, Rightley P, et al. A quantitative study of the interaction of two Richtmyer-Meshkov-unstable gas cylinders[J]. Phys Fluids, 2003, 15: 986-1004.

    [12] Kumar S, Orlicz G, Tomkins C, et al. Stretching of material lines in shock-accelerated gaseous flows[J]. Phys Fluids, 2005, 17: 082107.

    [13] Kumar S, Vorobieff P, Orlicz G, et al. Complex flow morphologies in shock-accelerated gaseous flows[J]. Physica D, 2007, 235: 21-28.

    [14] Tomkins C, Kumar S, Orlicz G C, et al. An experimental investigation of mixing mechanisms in shock-accelerated flow[J]. J Fluid Mech, 2008, 611: 131-150.

    [15] Mariani C, Vanderboomgaerde M, Jourdan G, et al. Investigation of the Richtmyer-Meshkov instability with stereolithographed interfaces[J]. Phys Rev Lett, 2008, 100: 254503.

    [16] Layes G, Jourdan G, Houas L. Experimental study on a plane shock wave accelerating a gas bubble[J]. Phys Fluids, 2009, 21: 074102.

    [17] Zhai Z, Si T, Luo X, et al. On the evolution of spherical gas interfaces accelerated by a planar shock wave[J]. Phys Fluids, 2011, 23: 084104.

    [18] Si T, Zhai Z, Yang J, et al. Experimental investigation of reshocked spherical gas interfaces[J]. Phys Fluids, 2012, 24: 054101.

    [19] Haehn N, Ranjan D, Weber C, et al. Reacting shock bubble interaction[J]. Combustion and Flame, 2012, 159: 1339-1350.

    [20] Zou L, Liu C, Tan D, et al. On interaction of shock wave with elliptic gas cylinder[J]. J Vis, 2010, 13: 347-353.

    [21] Weirs V G, Dupont T, Plewa T. Three-dimensional effects in shock-cylinder interactions[J]. Phys Fluids, 2008, 20: 044102.

    [22] Isenberg C. The science of soap films and soap bubbles[M]. New York: Dover publications, INC., 1992.

    [23] Luo X, Wang X, Si T. The Richtmyer-Meshkov instability of a three-dimensional air/SF6interface with a minimum-surface feature[J]. J Fluid Mech, 2013, 722, R2.

    [24] Niederhaus Jhj, Greenough J A, Oakley J G, et al. A computational parameter study for the three-dimensional shock-bubble interaction[J]. J Fluid Mech, 2008, 594: 85-124.

    Authorbiography:

    羅喜勝(1971-),男,湖南沅江人,中國科學(xué)技術(shù)大學(xué)工程科學(xué)學(xué)院近代力學(xué)系教授、博士生導(dǎo)師。研究方向:高速流動(dòng)中的相變與多相流動(dòng)、激波管內(nèi)RM不穩(wěn)定性。通訊地址:安徽合肥中國科學(xué)技術(shù)大學(xué)工程科學(xué)學(xué)院近代力學(xué)系 (230027)。E-mail: xluo@ustc.edu.cn

    猜你喜歡
    通訊地址激波力學(xué)
    力學(xué)
    弟子規(guī)·余力學(xué)文(十)
    快樂語文(2021年11期)2021-07-20 07:41:32
    中國兵工學(xué)會(huì)第二十二屆引信學(xué)術(shù)年會(huì)征文通知
    弟子規(guī)·余力學(xué)文(四)
    快樂語文(2020年30期)2021-01-14 01:05:28
    一種基于聚類分析的二維激波模式識(shí)別算法
    基于HIFiRE-2超燃發(fā)動(dòng)機(jī)內(nèi)流道的激波邊界層干擾分析
    數(shù)字式汽車衡的實(shí)際應(yīng)用探究
    斜激波入射V形鈍前緣溢流口激波干擾研究
    適于可壓縮多尺度流動(dòng)的緊致型激波捕捉格式
    力學(xué) 等
    亚洲欧洲日产国产| 日韩欧美精品免费久久| 亚洲欧美一区二区三区久久| 99久久精品国产国产毛片| 女性被躁到高潮视频| 久久久久国产精品人妻一区二区| 久久久久久久国产电影| 男女午夜视频在线观看| 亚洲国产看品久久| 精品国产露脸久久av麻豆| 久久久久久久久久久久大奶| 美女主播在线视频| 日韩中文字幕视频在线看片| 男女边吃奶边做爰视频| 国产精品女同一区二区软件| 99热全是精品| 日韩伦理黄色片| av天堂久久9| 亚洲欧美中文字幕日韩二区| 精品99又大又爽又粗少妇毛片| 一个人免费看片子| 国产午夜精品一二区理论片| 电影成人av| 最新中文字幕久久久久| 亚洲国产av影院在线观看| 日本av免费视频播放| 欧美日韩一级在线毛片| 亚洲内射少妇av| 高清不卡的av网站| 一级a爱视频在线免费观看| 飞空精品影院首页| 巨乳人妻的诱惑在线观看| 国产精品不卡视频一区二区| 午夜福利,免费看| 91午夜精品亚洲一区二区三区| 一区在线观看完整版| 18禁裸乳无遮挡动漫免费视频| 国产亚洲最大av| 91精品伊人久久大香线蕉| 亚洲国产精品一区三区| 啦啦啦中文免费视频观看日本| 妹子高潮喷水视频| 丝袜喷水一区| 亚洲成av片中文字幕在线观看 | 三上悠亚av全集在线观看| 午夜福利乱码中文字幕| 国产精品一区二区在线观看99| 国产精品.久久久| 交换朋友夫妻互换小说| 如日韩欧美国产精品一区二区三区| 99热国产这里只有精品6| 中文字幕色久视频| 精品国产国语对白av| 欧美成人午夜精品| 在线观看人妻少妇| 欧美老熟妇乱子伦牲交| 免费观看av网站的网址| 色婷婷av一区二区三区视频| 亚洲内射少妇av| 男男h啪啪无遮挡| 丝袜脚勾引网站| 国产欧美日韩一区二区三区在线| 波多野结衣av一区二区av| 国产精品av久久久久免费| 最新的欧美精品一区二区| 精品久久久久久电影网| 中国国产av一级| 美国免费a级毛片| 男人舔女人的私密视频| a级片在线免费高清观看视频| 成人亚洲欧美一区二区av| 婷婷色麻豆天堂久久| 亚洲伊人久久精品综合| av免费在线看不卡| 免费在线观看视频国产中文字幕亚洲 | xxxhd国产人妻xxx| 毛片一级片免费看久久久久| 色播在线永久视频| 国产精品三级大全| 我的亚洲天堂| 春色校园在线视频观看| 一区福利在线观看| 国产高清不卡午夜福利| 国产一区二区三区av在线| 国产成人免费观看mmmm| 婷婷色综合www| 久久久久久人人人人人| 新久久久久国产一级毛片| 免费少妇av软件| 美女中出高潮动态图| 国产淫语在线视频| 在线天堂最新版资源| 香蕉国产在线看| 亚洲精品乱久久久久久| 美女国产高潮福利片在线看| 伊人久久国产一区二区| 中文字幕人妻丝袜一区二区 | 亚洲人成网站在线观看播放| 国产精品成人在线| www.熟女人妻精品国产| 欧美人与性动交α欧美软件| 精品99又大又爽又粗少妇毛片| 青春草视频在线免费观看| 欧美精品一区二区大全| 精品国产一区二区久久| 欧美日韩视频高清一区二区三区二| 欧美国产精品va在线观看不卡| 久久久久久人人人人人| 国产xxxxx性猛交| 亚洲成色77777| 日产精品乱码卡一卡2卡三| 可以免费在线观看a视频的电影网站 | 午夜免费男女啪啪视频观看| av在线观看视频网站免费| 日韩三级伦理在线观看| 丝袜美足系列| 丁香六月天网| 国产一区二区三区综合在线观看| 国产成人精品久久二区二区91 | 精品国产露脸久久av麻豆| 亚洲美女黄色视频免费看| 亚洲精品国产一区二区精华液| 亚洲成人手机| 国产精品一区二区在线不卡| 亚洲精品成人av观看孕妇| 国产毛片在线视频| 亚洲欧洲国产日韩| xxxhd国产人妻xxx| 日本91视频免费播放| 看免费成人av毛片| 久久99蜜桃精品久久| 少妇人妻久久综合中文| 男人爽女人下面视频在线观看| 久久精品国产a三级三级三级| 日韩电影二区| 国产黄频视频在线观看| 日韩中文字幕视频在线看片| 免费黄色在线免费观看| tube8黄色片| 亚洲人成77777在线视频| 99香蕉大伊视频| √禁漫天堂资源中文www| 最近中文字幕高清免费大全6| 亚洲欧美中文字幕日韩二区| 国产xxxxx性猛交| 叶爱在线成人免费视频播放| 亚洲欧美成人综合另类久久久| 久久这里只有精品19| 久久国内精品自在自线图片| 一级a爱视频在线免费观看| 日韩精品免费视频一区二区三区| 成人毛片a级毛片在线播放| 免费不卡的大黄色大毛片视频在线观看| √禁漫天堂资源中文www| 精品少妇一区二区三区视频日本电影 | 欧美中文综合在线视频| 春色校园在线视频观看| 久久久a久久爽久久v久久| 免费女性裸体啪啪无遮挡网站| 99热网站在线观看| 高清不卡的av网站| 18禁观看日本| 成年美女黄网站色视频大全免费| 桃花免费在线播放| 9191精品国产免费久久| 久久这里有精品视频免费| 永久网站在线| 七月丁香在线播放| 日本欧美国产在线视频| 新久久久久国产一级毛片| 色94色欧美一区二区| 精品国产露脸久久av麻豆| 激情五月婷婷亚洲| 国产成人aa在线观看| 九九爱精品视频在线观看| 精品少妇黑人巨大在线播放| 国产一区二区三区av在线| 国产免费一区二区三区四区乱码| 国产乱人偷精品视频| 九草在线视频观看| 亚洲精品日韩在线中文字幕| 黑人猛操日本美女一级片| 国产老妇伦熟女老妇高清| 精品99又大又爽又粗少妇毛片| 亚洲av日韩在线播放| 成人国产av品久久久| 久久国产精品大桥未久av| 欧美精品一区二区大全| 久久97久久精品| 丝袜在线中文字幕| 国产精品二区激情视频| 在线观看三级黄色| 女性被躁到高潮视频| 国产色婷婷99| 精品国产露脸久久av麻豆| 亚洲精品国产色婷婷电影| 欧美日韩av久久| 在线观看免费视频网站a站| 国产精品一区二区在线观看99| 亚洲欧美成人综合另类久久久| 国产成人a∨麻豆精品| 18禁动态无遮挡网站| 亚洲精品美女久久久久99蜜臀 | 成年动漫av网址| 最近最新中文字幕大全免费视频 | 最近中文字幕2019免费版| 国产欧美日韩综合在线一区二区| 丝袜脚勾引网站| 日韩欧美一区视频在线观看| 一级,二级,三级黄色视频| 国产成人免费无遮挡视频| 狠狠精品人妻久久久久久综合| 熟女av电影| 国产麻豆69| 日韩欧美精品免费久久| 乱人伦中国视频| 国产免费福利视频在线观看| 在线观看三级黄色| 亚洲国产最新在线播放| 国产日韩欧美在线精品| 亚洲精品自拍成人| 久久影院123| 性色av一级| 香蕉丝袜av| av免费在线看不卡| 国产无遮挡羞羞视频在线观看| 久久av网站| 一级,二级,三级黄色视频| 王馨瑶露胸无遮挡在线观看| 男女午夜视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 国产一区二区 视频在线| 韩国高清视频一区二区三区| 国产在线免费精品| 免费av中文字幕在线| 91精品伊人久久大香线蕉| 久久精品国产a三级三级三级| 国产极品天堂在线| 精品少妇久久久久久888优播| 91成人精品电影| 满18在线观看网站| 久久影院123| 日本91视频免费播放| 交换朋友夫妻互换小说| 亚洲情色 制服丝袜| 免费黄频网站在线观看国产| av网站免费在线观看视频| 国产精品欧美亚洲77777| 啦啦啦视频在线资源免费观看| 一区福利在线观看| 纯流量卡能插随身wifi吗| 天天操日日干夜夜撸| 91精品国产国语对白视频| 久久久久久久大尺度免费视频| 你懂的网址亚洲精品在线观看| 各种免费的搞黄视频| 精品久久久精品久久久| 日韩,欧美,国产一区二区三区| av福利片在线| 超碰成人久久| 国产亚洲精品第一综合不卡| 国产精品一国产av| 大片免费播放器 马上看| 国产精品99久久99久久久不卡 | 日韩在线高清观看一区二区三区| 亚洲人成电影观看| 高清不卡的av网站| 亚洲国产欧美日韩在线播放| 日本黄色日本黄色录像| 七月丁香在线播放| a级毛片黄视频| 两个人免费观看高清视频| 国产 一区精品| 久久久久久久精品精品| 亚洲av综合色区一区| 亚洲精品aⅴ在线观看| 日韩中文字幕视频在线看片| 三级国产精品片| 精品少妇黑人巨大在线播放| 男女国产视频网站| 久久久久久人妻| 国产精品av久久久久免费| 黄色怎么调成土黄色| av线在线观看网站| 日本-黄色视频高清免费观看| 免费久久久久久久精品成人欧美视频| 久久精品国产亚洲av天美| 午夜福利在线观看免费完整高清在| 2018国产大陆天天弄谢| 久热久热在线精品观看| 老鸭窝网址在线观看| 国产日韩一区二区三区精品不卡| 免费黄网站久久成人精品| 国产成人精品福利久久| 91在线精品国自产拍蜜月| 97在线人人人人妻| 国产黄色免费在线视频| 夜夜骑夜夜射夜夜干| 国产av一区二区精品久久| 国产精品成人在线| 夜夜骑夜夜射夜夜干| 国产精品久久久av美女十八| 亚洲国产av新网站| 日本欧美国产在线视频| 国产精品不卡视频一区二区| 久久久久久伊人网av| 建设人人有责人人尽责人人享有的| 女人久久www免费人成看片| 国产精品亚洲av一区麻豆 | 欧美精品亚洲一区二区| 欧美激情极品国产一区二区三区| av一本久久久久| 飞空精品影院首页| 欧美人与性动交α欧美精品济南到 | 亚洲内射少妇av| 国产亚洲av片在线观看秒播厂| 成人毛片a级毛片在线播放| 亚洲av电影在线观看一区二区三区| 久久人人97超碰香蕉20202| 成年美女黄网站色视频大全免费| 天堂8中文在线网| 精品人妻在线不人妻| 国产 一区精品| 在线免费观看不下载黄p国产| 亚洲经典国产精华液单| 亚洲天堂av无毛| 久久人人爽人人片av| 国产毛片在线视频| av片东京热男人的天堂| av线在线观看网站| 国产极品天堂在线| av国产精品久久久久影院| h视频一区二区三区| 日本av免费视频播放| 午夜福利视频精品| 日韩,欧美,国产一区二区三区| 亚洲成国产人片在线观看| 侵犯人妻中文字幕一二三四区| kizo精华| 久久午夜综合久久蜜桃| 三上悠亚av全集在线观看| 中文字幕另类日韩欧美亚洲嫩草| 9191精品国产免费久久| a级片在线免费高清观看视频| 菩萨蛮人人尽说江南好唐韦庄| 香蕉精品网在线| 香蕉丝袜av| 9色porny在线观看| 考比视频在线观看| 中国三级夫妇交换| 一级黄片播放器| 国产淫语在线视频| 欧美精品人与动牲交sv欧美| av不卡在线播放| 日韩一区二区视频免费看| 男人操女人黄网站| 中文字幕精品免费在线观看视频| 黑丝袜美女国产一区| 成人影院久久| 日本91视频免费播放| 成人国产av品久久久| 一级毛片黄色毛片免费观看视频| 国产精品 欧美亚洲| 亚洲精品国产av蜜桃| 亚洲欧美精品自产自拍| 亚洲精品久久午夜乱码| 久久国产精品男人的天堂亚洲| freevideosex欧美| 国产免费一区二区三区四区乱码| 国产一区有黄有色的免费视频| 久久久久视频综合| 热re99久久精品国产66热6| 丝袜美腿诱惑在线| 国产一区二区 视频在线| 男女午夜视频在线观看| 亚洲美女黄色视频免费看| 一本大道久久a久久精品| 99re6热这里在线精品视频| 欧美日韩成人在线一区二区| 秋霞在线观看毛片| 满18在线观看网站| 99九九在线精品视频| 人人妻人人爽人人添夜夜欢视频| 久久久久国产一级毛片高清牌| 国产亚洲一区二区精品| 国产精品国产三级专区第一集| 午夜福利影视在线免费观看| 午夜免费男女啪啪视频观看| 日本猛色少妇xxxxx猛交久久| 国产一级毛片在线| 国产熟女午夜一区二区三区| 曰老女人黄片| 伦理电影大哥的女人| 99久久综合免费| 亚洲人成网站在线观看播放| 国产精品成人在线| 亚洲精品第二区| 这个男人来自地球电影免费观看 | 亚洲欧美色中文字幕在线| 日韩不卡一区二区三区视频在线| 自线自在国产av| 久久99蜜桃精品久久| 老汉色∧v一级毛片| 成人毛片a级毛片在线播放| 不卡av一区二区三区| 欧美激情极品国产一区二区三区| 国产日韩一区二区三区精品不卡| 免费大片黄手机在线观看| 中文精品一卡2卡3卡4更新| 欧美97在线视频| 26uuu在线亚洲综合色| 又黄又粗又硬又大视频| 亚洲一码二码三码区别大吗| 欧美日韩国产mv在线观看视频| 18+在线观看网站| 在线观看国产h片| 亚洲国产毛片av蜜桃av| 少妇的丰满在线观看| 国产一级毛片在线| 亚洲欧洲国产日韩| 国产一级毛片在线| 久久久精品国产亚洲av高清涩受| 久久久久久人人人人人| 国产精品成人在线| 中文字幕亚洲精品专区| 久久精品亚洲av国产电影网| 天天躁日日躁夜夜躁夜夜| 欧美激情高清一区二区三区 | 国产精品久久久久久av不卡| 欧美人与善性xxx| 一级毛片 在线播放| 欧美精品高潮呻吟av久久| 中文字幕人妻熟女乱码| 亚洲欧美精品综合一区二区三区 | 制服人妻中文乱码| 国产亚洲av片在线观看秒播厂| 91aial.com中文字幕在线观看| 亚洲综合精品二区| 欧美激情极品国产一区二区三区| 人人澡人人妻人| 免费在线观看完整版高清| 欧美少妇被猛烈插入视频| 亚洲国产毛片av蜜桃av| 成人国语在线视频| 天天躁夜夜躁狠狠躁躁| 久久国产精品大桥未久av| 日日摸夜夜添夜夜爱| 看十八女毛片水多多多| 观看美女的网站| 黄色一级大片看看| 日本av手机在线免费观看| 亚洲三级黄色毛片| 国产片内射在线| 男人添女人高潮全过程视频| 99香蕉大伊视频| 日韩视频在线欧美| 看非洲黑人一级黄片| 超碰成人久久| 亚洲人成电影观看| 少妇 在线观看| 美女高潮到喷水免费观看| 久久ye,这里只有精品| 天天影视国产精品| 26uuu在线亚洲综合色| 波多野结衣av一区二区av| 亚洲国产av影院在线观看| 另类精品久久| 人人妻人人澡人人看| 国产亚洲一区二区精品| 午夜福利在线观看免费完整高清在| 狂野欧美激情性bbbbbb| 成年美女黄网站色视频大全免费| 校园人妻丝袜中文字幕| 欧美激情高清一区二区三区 | 国产老妇伦熟女老妇高清| 成年人免费黄色播放视频| 国产精品人妻久久久影院| 亚洲图色成人| 久久久久精品久久久久真实原创| 亚洲精品在线美女| 成人亚洲欧美一区二区av| 亚洲情色 制服丝袜| 欧美激情 高清一区二区三区| 欧美另类一区| 男女无遮挡免费网站观看| 中文字幕色久视频| 一个人免费看片子| 国产欧美日韩综合在线一区二区| videos熟女内射| 国产麻豆69| 国产爽快片一区二区三区| 亚洲美女黄色视频免费看| 人妻系列 视频| 一级片免费观看大全| 不卡av一区二区三区| 国产精品一区二区在线观看99| 日本av手机在线免费观看| 午夜免费男女啪啪视频观看| 丝袜美足系列| 波野结衣二区三区在线| 精品卡一卡二卡四卡免费| 欧美激情极品国产一区二区三区| 制服人妻中文乱码| 一个人免费看片子| 亚洲国产av影院在线观看| www.自偷自拍.com| 免费观看a级毛片全部| 国产精品一二三区在线看| 电影成人av| 欧美日韩精品网址| 最近最新中文字幕大全免费视频 | videosex国产| 日本爱情动作片www.在线观看| 在线精品无人区一区二区三| xxx大片免费视频| 精品人妻在线不人妻| 多毛熟女@视频| 国产精品香港三级国产av潘金莲 | 丝袜脚勾引网站| 亚洲色图 男人天堂 中文字幕| 国产乱来视频区| 久久久久久久久久久久大奶| 国产精品嫩草影院av在线观看| 精品国产一区二区三区久久久樱花| 久久精品国产综合久久久| 国产成人精品福利久久| 黑人猛操日本美女一级片| 久久久久久久久久久免费av| 久久 成人 亚洲| 免费大片黄手机在线观看| 人人澡人人妻人| 久久av网站| 国产成人av激情在线播放| 欧美黄色片欧美黄色片| 中文字幕最新亚洲高清| 人体艺术视频欧美日本| 99久久综合免费| 国产免费现黄频在线看| 精品卡一卡二卡四卡免费| 久久国产精品大桥未久av| 嫩草影院入口| 欧美xxⅹ黑人| 97人妻天天添夜夜摸| 久久久久久久久久久久大奶| a 毛片基地| 欧美精品人与动牲交sv欧美| 97精品久久久久久久久久精品| 美女高潮到喷水免费观看| 黑人欧美特级aaaaaa片| 久久久久久久亚洲中文字幕| 欧美精品国产亚洲| 精品人妻在线不人妻| 黑人猛操日本美女一级片| 18+在线观看网站| 成人影院久久| 久久久精品免费免费高清| 国产成人免费无遮挡视频| 黄色一级大片看看| 啦啦啦中文免费视频观看日本| 美女高潮到喷水免费观看| 欧美日韩精品网址| 菩萨蛮人人尽说江南好唐韦庄| 1024香蕉在线观看| 欧美人与性动交α欧美软件| 日本午夜av视频| 午夜免费观看性视频| 久久午夜福利片| 午夜日本视频在线| 97在线人人人人妻| 欧美日韩视频高清一区二区三区二| 不卡av一区二区三区| 69精品国产乱码久久久| 男女无遮挡免费网站观看| 91精品伊人久久大香线蕉| 丝袜人妻中文字幕| 亚洲国产毛片av蜜桃av| 国精品久久久久久国模美| 欧美精品一区二区大全| 亚洲精品一区蜜桃| 制服人妻中文乱码| 国产免费福利视频在线观看| 精品99又大又爽又粗少妇毛片| 国产片内射在线| 中文字幕人妻丝袜制服| 婷婷成人精品国产| 男女边吃奶边做爰视频| 叶爱在线成人免费视频播放| 丝袜在线中文字幕| 夫妻午夜视频| 免费高清在线观看日韩| 三级国产精品片| 国产男人的电影天堂91| 国产免费现黄频在线看| 韩国高清视频一区二区三区| 一级片'在线观看视频| 亚洲中文av在线| 侵犯人妻中文字幕一二三四区| 18禁裸乳无遮挡动漫免费视频| 日韩欧美一区视频在线观看| 人妻人人澡人人爽人人| 狠狠婷婷综合久久久久久88av| 少妇熟女欧美另类| 免费高清在线观看视频在线观看| 韩国高清视频一区二区三区| 熟女少妇亚洲综合色aaa.| 天天躁狠狠躁夜夜躁狠狠躁| 青春草亚洲视频在线观看| 亚洲国产日韩一区二区| 男女国产视频网站| 日本免费在线观看一区| 777久久人妻少妇嫩草av网站| 最近最新中文字幕大全免费视频 | 三上悠亚av全集在线观看| 七月丁香在线播放| 男人添女人高潮全过程视频|