• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Association analysis revealed importance of dominance effects on days to silk of maize nested association mapping(NAM)population

    2017-05-19 07:40:56MONIRMdMamunZHUJun
    關(guān)鍵詞:巢式加性顯性

    MONIR Md.Mamun,ZHU Jun()

    Association analysis revealed importance of dominance effects on days to silk of maize nested association mapping(NAM)population

    MONIR Md.Mamun,ZHU Jun1*(Institute of Bioinformatics,Zhejiang University,Hangzhou 310058,China)

    SummaryFull model and multi-loci additive model were used to analyze the days to silk(DS,female flowering)of maize nested association mapping(NAM)population.Analysis with the full model revealed that small effects of additive, dominance,epistasis,and their environmental interactions of many loci controlled the DS of maize NAM population. Dominance related effects had large impacts on the trait.Estimated total heritability was 79.86%,whereas 50.52%was due to dominance related effects.Environmental specific genetic effects also revealed as imperative for DS,explained 27.31% phenotypic variations.The highly significant(-log10PEW>5)quantitative trait SNPs(QTSs)identified were 50 for full model, but 47 for additive model with low heritability(31.65%).Utilizing the association analysis results of DS,genotypes and total genetic effects of superior lines,superior hybrids were predicted that could be useful for future breeding program.

    genome-wide association study;maize;days to silk;dominance effects

    Flowering time is an important trait,measuring the adaption capability of plants to local environments[1-2]. The transition from vegetative growth to flowering by integrating different environmental prompts is crucial for plant reproductive success[3].Flowering time is considered as a major selection criterion in plant breeding[4].Maize is originated from Balsas teosinte (Zea maysssp.parviglumis)in the Mexican highlands (approximately 9 000 years ago),and has evolved to adapt in diverse ecological conditions[1].Dissection ofthe genetic mechanisms of maize flowering time is crucial for evolutionary analysis and future breeding programs.Several studies have been conducted to discover the underlying genetic architecture of flowering time of maize by using quantitative trait locus(QTL)mappingand genome-wideassociation study (GWAS)[1-2,5].

    Dominance and epistasis are important phenomena in quantitative genetics area.Complexity of the genetic architecture can be largely attributed to epistasis,which plays a significant role in heterosis, inbreeding depression,adaptation,reproductive isolation,and speciation[6].However,most of the GWAS of different organisms have been analyzed by ignoring the impacts of dominance,epistasis and environmental interaction.Ignoring the important factors could be a major cause of missing heritability of GWAS.Heterozygous genotypes are generally found with high proportion in random mating and others specially designed populations.However,in whole genome sequencing data with a large number of single nucleotide polymorphisms(SNPs),a small portion of heterozygote genotypes can be found in inbred lines of animals and crops that could have large impacts on phenotypic traits[7-8].In this study,an attempt was made to discover the impacts of heterozygous genotypes on days to silk(DS)of maize nested association mapping (NAM)population.Forthat,the fullmodelapproach with additive,dominance,epistasis,and their environmental interactions was analyzed to dissect genetic architecture of DS by usingQTXNetwork[9].Maize NAM population was constructed by only five-generation self-crossing within 25 diverse families[1,5,10].However,there were no heterozygous genotypes rather than a small portion of missing genotypes.The missing genotypes were replaced by heterozygote genotypes in this study.An additive model with only additive(a)and additive by environmental interactions(ae)was also analyzed for comparison study.Genotypes and total genetic effects of best line(BL),superior line(SL),and superior hybrid(SH)were arranged to observe the scope of improvements for future maize breeding.

    1 Materials and methods

    1.1 Genotype and phenotype data

    Maize nested association mapping(NAM) population derived in the United States(US-NAM)was used in this study,which was derived by crossing 25 diverse lines with B73 and then self-pollination for five generations[5,10].Days to silk(DS)were scored over nine environments.However,to get rid from computational complexity,data from four environments were analyzed.We downloaded the genotype and phenotype data sets from http://www.panzea.org/.

    1.2 Statistical analysis

    Newly developed approach for association mapping,implemented inQTXNetwork,was used for association mapping.The approach has two distinct parts:generalized multi-factor dimensionality reduction (GMDR)method to scan SNPs by 1D for main effects, 2D and 3D for epistasis interactions using module GMDR-GPU[11]ofQTXNetwork,and then association mapping was conducted on detected SNPs by using quantitative traits SNPs(QTS)module ofQTXNetwork.Two different models for association mapping were used in this study,called full genetic model and multiloci additive model.The full genetic model includes SNP loci effects(a,d,aa,ad,da,dd)as fixed; environment(e)and loci by environment interaction (ae,de,aae,ade,dae,dde)as random effects for four environments(1 forE1,2 forE2,3 forE4,and 4 forE9).The statistical approaches of full and additive models[12]were used for conducting association analyses.

    Henderson methodⅢ[13]was used to calculate theF-statistic test for association analysis.A total of 2 000 times permutation was conducted for calculating the criticalF-value to control the experiment-wise typeⅠerror(αEW<0.05).Parameters were estimated by using the MCMC(Markov chain Monte Carlo)algorithm with 20 000 Gibbs sample iterations[9,14-16].Experiment-wise criticalPvalue(PEW-value)wascalculated bycontrolling experiment-wise typeⅠerror(PEW<0.05).

    2 Results

    2.1 Estimated heritability using full model

    Days to silk(DS)of maize NAM population is highly heritable trait[5].Estimated total heritability by using full model approach was 79.86%for DS,mostly due to dominance and dominance related epistasis effects(Table 1),referring the importance of analyzing dominance-related effects even ifin inbred lines.Recentstudy showsthatenvironmental specific effects are relatively unimportant for leaf orientation traits of maize NAM population,contributing to only 4.98%-7.32%phenotypic variation[7].Unlike the maize leaf orientation traits,large amount of heritability was estimated due to environmental specific effectswhich refer the genetic effects varied acrossdifferentenvironments.

    Table 1 Estimated heritability(%)of genetic effects for days to silk using full model and additive model

    2.2 Genetic architecture of DS

    Association analyses for DS identified multiple loci with different genetic effects.Full model approach identified total 50 highly significant(-log10PEW>5) QTSs(Fig.1,Table S1 available at http://www. zjujournals.com/agr/EN/article/showSupportInfo.do?id= 10459).The identified QTSs had 64 genetic main effects and 54 environmental specific effects. Therefore,environmental specific effects of QTSs play important roles in DS of NAM population.Despite of the low frequency of heterozygote genotypes of the identified loci(8.21%-9.24%for the loci which had dominant effects,and 3.51%-9.03%for the loci which had dominance related epistasis interaction),we observed large impacts of dominance related effects on DS;though only three QTSs had highly significant dominant effects,there were five pairs of QTSs with highly significant dominance related epistasis interactions(Table S1 available at http:// www.zjujournals.com/agr/EN/article/showSupportInfo. do?id=10459).Flowering time in plants results from interactive molecular pathways[17],and epistasis effects have been observed inArabidopsis[18]and rice[19].In this study,the full model identified total 24 pairs of highly significant epistasis effects for DS of NAM population. In converse to self-fertilizing crop species,small effects of many loci were reported to control the flowering time using QTL mapping of maize NAM population[5]. Similar to previous QTL mapping of DS of NAM population,association analysis with the full model estimated small genetic effects of DS QTSs.The largest positive individual effect of QTS(S10_ 113745101)had a dominant effect of only 1.43 days (-log10PEW=47.3)that could explain 2.92%phenotypic variation.Again,the largest negative individual effect of QTS(S1_172281879)had an additive× environment 1(ae1)effect of-0.912 day(-log10PEW=51.5)that contributed to 0.85%phenotypic variation, though total additive effect of the QTS in environment 1(a+ae1)was only-0.559 day.Similar to individualgenetic effects of loci,estimated epistasis effects were also small.The largest epistasis effects of QTSs(S4_ 53677782 and S8_37237820)had a dominance× dominance(dd)effect of only 2.688 days(-log10PEW=22.3),which could explain 10.31%phenotypic variation.The identified QTS S3_159869611 had the largestpositive additiveeffect61.1),and the QTS S2_109001252 had the largest negative additive effect43.3).

    Fig.1 G×G p lot of detected significant QTSs(PEW<0.05)for DS by using fu ll model(DS_ADI)and additive model (DS_A)app roaches

    2.3 Candidate gene annotation

    Candidate genes corresponding to DS QTSs were collected from Gramene database(http://ensembl. gramene.org/Zea_mays/).Functions of candidate genes were searched in the UniProt(http://www.uniprot.org/ uniprot/)with the accession number of the genes collected from Gramene database.Descriptions of some of the candidate genes were collected from NCBI gene database.Moreover,the functions of candidate genes were collected via literature search in Google. Functions of some candidate genes were tabulated in supplementary Table2(Table S2 availableathttp://www. zjujournals.com/agr/EN/article/showSupportInfo.do?id= 10459).We observed that some of the candidate genes were members of well-known gene families that have crucial functions in plant life.For example,QTS S1_ 172281879 is the near variant of C3HC4-type RING finger family protein geneGRMZM2G116714.The C3HC4-type RING finger genes play important roles in various physiological processes including growth, development,and stress responses[20].QTS S3_ 54472637 is the variant of MYB transcription factor protein geneGRMZM2G051256.The MYB transcription factor proteins play regulatory roles in development processesand defenseresponsesin plants[21].Functions of most of the candidate genes are still unknown.

    2.4 Prediction of best line,superior line,and superior hybrid for DS

    Along with the provided association mapping results,best line(BL),superior line(SL),and superior hybrid(SH)can be predicted for DS that may help breeders for future breeding program(Table 2).Overall total genetic effect of the non-B73 allele homozygous (QQ)combinations was 2.25 days across environments, but variant from 0.20 to 4.18 days in four environments. Predicted total genetic effect forF1hybrid(1.95 days) was smaller than non-B73 allele homozygous(QQ) genotypes.

    Table 2 Prediction of total genetic effects of days to silk

    Maximum positive total genetic effect across environments was revealed for the line Z012E0020 (6.83 days)called as the positive best line(best line(+)),whereas environment specific positive best lines were Z008E0050(9.89 days)in environment 1,Z012E0124(9.72 days)in environment 2, Z007E0043(6.89 days)in environment 3,and Z012E0058(9.27 days)in environment 4(Table S3 available at http://www.zjujournals.com/agr/EN/article/ showSupportInfo.do?id=10459).Maximum negative total genetic effect across environments was revealed for the line Z019E0177(-5.72 days)called as negative best line(best line(-)),and its total genetic values were varied to(-1.87--8.56)days under four different environments.Environmental specific negative best lines were Z024E0182(-9.05 days)in environment 1,Z024E0114(-6.16 days)in environment 2, Z010E0020(-5.48 days)in environment 3,and Z024E0094(-8.69 days)in environment 4.Total genetic values of environmental specific best lines were largely varied,(-2.50--9.05)days for line Z024E0182,(-2.57--7.36)daysforline Z024E0114, (-2.11--5.48)days for line Z010E0020,and (-1.41--8.69)days for line Z024E0094.Therefore, there was no specific best line across the environments forDS.

    The predicted superior negative line(superior line(-))could provide insight for crop improvement along with the optimum homozygous genotypes(QQ,qq)combinations.Total overall genetic effect of the predicted superior line had-7.11 days,which was smaller than the existing best line(Z019E0177).

    Again,the total genetic effect of the negative superior hybrid,that exhausted the optimum combination of homozygous(QQ,qq)and heterozygous (Qq)genotypes had-11.80 days,which was 6.08 days earlier than the existing line Z019E0177,referring that the predicted superior hybrid has greater scope than the predicted superior line for further improvement. We tabulated optimum genotypes corresponding to loci of the predicted lines(Table S4 available at http://www. zjujournals.com/agr/EN/article/showSupportInfo.do?id= 10459)that could be helpful to breeders for further crop improvement.

    2.5 Association mapping with additive model

    Additive model identified 47 highly significant QTSs,among which 31 QTSs were also identified by full model(Fig.1).As like the full model,estimated effects from additive model were small.Estimated total heritability was 31.65%by using additive model approach that was less than half of the total heritability of full model(Table 1),illustrating the problem of missing heritability by using additive model. Therefore,ignoring dominant and epistasis interactions may have large impacts on under-estimating heritability ofcomplextraits.

    3 Discussion

    Role of heterozygous genotypes has been ignored in GWAS under the assumption that most of the genetic variations in animal and plant organisms are results of additive effects of multiple loci. Environmental impacts were also ignored or adjusted by subtracting their effects from phenotypic data. However,ignorance or adjustments of important factors can result in missing information about the genetic architecture of complex traits.Full model approach was designed to estimate or predict the effects of different types of factors(additive, dominance,epistasis,and their environmental interactions)that can provide more information about the underlying mechanisms of complex traits.In this study,maize days to silk was analyzed by using full model approach,which revealed new insight about this complex traits.DS is related with adaption of maize under various environments,a major criterion for selection breeding[1].We observed genetic effects of multiple loci varying under different environments. Estimated heritability of environmental specific effects was 27.31%.For full model analyses,dominance and dominance related epistasis interaction had large effects on DS.An additive model was also analyzed in this study.Association study with additive model approach had smaller heritability than the full model approach.Correlation between predicted genotypic values and phenotypes was very high for full model approach(r≈0.96),suggesting the analysis results can accurately predict the phenotypes.Epistasis effects were unimportant for DS in previous QTL mapping study[5].However,we observed large impact of epistasis effects on DS,contributing to around 49.37%of phenotypic variations(Table 1).This result showed concordance with the results observed inArabidopsis[18]and rice[19].

    By calculating the total genetic effects of lines, we observed that there was no specific line with large genetic effect across environments,rather than found that different lines had large effects under different environments.This result suggests that the maize flowering time is very sensitive to environments,and different environments need different combinations of genotypes for better performance.The predicted genotypes of SL and SH also suggest the same hypotheses that the superior genotypes of loci were different under different environments(Table S4).The predicted SL and SH had larger genetic effects than the best lines,suggesting the scope of further improvement for the maize days to silk with the predicted genotype combinations.

    [1]LI Y X,LI C,BRADBURY P J,et al.Identification of genetic variants associated with maize flowering time using an extremely large multi-genetic background population.The Plant Journal: For Cell and Molecular Biology,2016,86(5):391-402.

    [2]XU J,LIU Y,LIU J,et al.The genetic architecture of floweringtime and photoperiod sensitivity in maize as revealed by QTL review and Meta analysis.Journal of Integrative Plant Biology, 2012,54(6):358-373.

    [3]GRILLO M A,LI C,HAMMOND M,et al.Genetic architecture of flowering time differentiation between locally adapted populations ofArabidopsis thaliana.The New Phytologist,2013, 197(4):1321-1331.

    [4]JUNG C,MULLER A E.Flowering time control and applications in plant breeding.Trends in Plant Science,2009,14(10):563-573.

    [5]BUCKLER E S,HOLLAND J B,BRADBURY P J,et al.The genetic architecture of maize flowering time.Science,2009,325 (5941):714-718.

    [6]YANG J,ZHU J.Methods for predicting superior genotypes under multiple environments based on QTL effects.Theoretical and Applied Genetics,2005,110(7):1268-1274.

    [7]MONIR M M.Comparing different genetic models and statistical approaches of GWAS for complex traits.Hangzhou:Zhejiang University,2016:44-64.

    [8]LIYUAN Z.Genetic association studies for complex traits of crops and linear-model-based multiple dimensionality reduction method developing.Hangzhou:Zhejiang University,2016:10-23.

    [9]ZHANG F T,ZHU Z H,TONG X R,et al.Mixed linear model approaches of association mapping for complex traits based on omics variants.Scientific Reports,2015,5:10298.

    [10]TIAN F,BRADBURY P J,BROWN P J,et al.Genome-wide association study of leaf architecture in the maize nested association mapping population.Nature Genetics,2011,43(2):159-162.

    [11]ZHU Z,TONG X,ZHU Z,et al.Development of GMDR-GPU for gene-gene interaction analysis and its application to WTCCC GWAS data for type 2 diabetes.PloS One,2013,8(4):e61943.

    [12]MONIR M M,ZHU J.Comparing GWAS results of complex traits using full genetic model and additive models for revealing genetic architecture.Scientific Reports,2017,7:38600.

    [13]SEARLE S R,CASELLA G,MCCULLOCH C E.Variance Components.New York,USA:John Wiley&Sons,2009.

    [14]YANG J,ZHU J,WILLIAMS R W.Mapping the genetic architecture of complex traits in experimental populations.Bioinformatics,2007,23(12):1527-1536.

    [15]YANG J,HU C C,HU H,et al.QTLNetwork:Mapping and visualizing genetic architecture of complex traits in experimental populations.Bioinformatics,2008,24(5):721-723.

    [16]QI T,JIANG B,ZHU Z,et al.Mixed linear model approach for mapping quantitative trait loci underlying crop seed traits.Heredity,2014,113(3):224-232.

    [17]KOMEDA Y.Genetic regulation of time to flower inArabidopsis thaliana.Annual Review of Plant Biology,2004,55:521-535.

    [18]EL-LITHY M E,BENTSINK L,HANHART C J,et al.NewArabidopsisrecombinant inbred line populations genotyped using SNPWave and their use for mapping flowering-time quantitative trait loci.Genetics,2006,172(3):1867-1876.

    [19]UWATOKO N,ONISHI A,IKEDA Y,et al.Epistasis among the three major flowering time genes in rice:Coordinate changes of photoperiod sensitivity,basic vegetative growth and optimum photoperiod.Euphytica,2007,163(2):167-175.

    [20]MA K,XIAO J H,LI X H,et al.Sequence and expression analysis of the C3HC4-type RING finger gene family in rice.Gene,2009,444(1/2):33-45.

    [21]CHEN Y H,YANG X Y,HE K,et al.The MYB transcription factor superfamily ofArabidopsis:Expression analysis and phylogenetic comparison with the rice MYB family.Plant Molecular Biology,2006,60(1):107-124.

    關(guān)聯(lián)分析揭示顯性效應(yīng)對(duì)玉米巢式定位群體抽穗期的重要性(英文).

    馬姆·茂尼,朱軍*(浙江大學(xué)生物信息學(xué)研究所,杭州310058)

    采用關(guān)聯(lián)定位全模型和多位點(diǎn)加性模型,分析了玉米巢式關(guān)聯(lián)定位群體抽絲期的遺傳效應(yīng)。全模型關(guān)聯(lián)分析揭示,玉米抽絲期受微效多基因的加性、顯性、上位性及其環(huán)境互作控制,其中顯性效應(yīng)最為重要。在估算的總遺傳率(79.86%)中,與顯性效應(yīng)相關(guān)的遺傳率高達(dá)50.52%,其次是環(huán)境互作效應(yīng)的遺傳率(27.31%)。檢測(cè)到的極顯著(-log10PEW>5)數(shù)量性狀單核苷酸多態(tài)性位點(diǎn)數(shù)為全模型50個(gè)、加性模型47個(gè)(遺傳率=31.65%)。基于關(guān)聯(lián)分析玉米抽絲期的結(jié)果,預(yù)測(cè)了最優(yōu)自交系和最優(yōu)雜交組合的基因型組配方式及相應(yīng)的遺傳效應(yīng)值,可用于指導(dǎo)玉米群體優(yōu)異位點(diǎn)的精準(zhǔn)分子選擇。

    全基因組關(guān)聯(lián)分析;玉米;抽絲期;顯性效應(yīng)

    Q 348

    A

    10.3785/j.issn.1008-9209.2017.02.236

    浙江大學(xué)學(xué)報(bào)(農(nóng)業(yè)與生命科學(xué)版),2017,43(2):146-152

    Foundation item:Supported by the National Natural Science Foundation of China(No.31371250).

    *Corresponding author:ZHU Jun(http://orcid.org/0000-0002-8509-8304),E-mail:jzhu@zju.edu.cn

    Received:2017-02-23;Accepted:2017-03-13

    猜你喜歡
    巢式加性顯性
    ?2?4[u]-加性循環(huán)碼
    小鼠諾如病毒巢式PCR 檢測(cè)方法的建立及應(yīng)用
    企業(yè)家多重政治聯(lián)系與企業(yè)績(jī)效關(guān)系:超可加性、次可加性或不可加性
    企業(yè)家多重政治聯(lián)系與企業(yè)績(jī)效關(guān)系:超可加性、次可加性或不可加性
    顯性激勵(lì)與隱性激勵(lì)對(duì)管理績(jī)效的影響
    社會(huì)權(quán)顯性入憲之思考
    基于加性指標(biāo)的網(wǎng)絡(luò)斷層掃描的研究
    顯性的寫作,隱性的積累——淺談學(xué)生寫作動(dòng)力的激發(fā)和培養(yǎng)
    意識(shí)形態(tài)教育中的顯性灌輸與隱性滲透
    基于牙釉質(zhì)基因巢式PCR性別鑒定超微量DNA檢測(cè)方法的建立
    久久精品国产a三级三级三级| 午夜免费男女啪啪视频观看| 久久久久国产网址| eeuss影院久久| 深爱激情五月婷婷| 亚洲精品成人av观看孕妇| 免费少妇av软件| 伦理电影大哥的女人| 高清视频免费观看一区二区| 久久久久久久国产电影| 日日摸夜夜添夜夜爱| 亚洲欧美清纯卡通| 国产老妇伦熟女老妇高清| 精品人妻熟女av久视频| 久久久久精品性色| 国产精品久久久久久精品电影小说 | 午夜爱爱视频在线播放| 亚洲国产色片| 国产美女午夜福利| 亚洲精品日本国产第一区| 五月天丁香电影| 在线免费观看不下载黄p国产| 亚洲aⅴ乱码一区二区在线播放| 黄色怎么调成土黄色| 欧美激情在线99| 亚洲婷婷狠狠爱综合网| 春色校园在线视频观看| 青春草国产在线视频| 久久人人爽人人片av| 欧美一级a爱片免费观看看| 成人鲁丝片一二三区免费| 亚洲精品日本国产第一区| 下体分泌物呈黄色| 熟女人妻精品中文字幕| 别揉我奶头 嗯啊视频| 亚洲不卡免费看| 伊人久久国产一区二区| 免费黄网站久久成人精品| 久热久热在线精品观看| 伊人久久国产一区二区| 久久精品国产亚洲av天美| 欧美潮喷喷水| 十八禁网站网址无遮挡 | 人妻少妇偷人精品九色| 欧美高清性xxxxhd video| 免费少妇av软件| 日韩国内少妇激情av| 精品熟女少妇av免费看| 22中文网久久字幕| 大话2 男鬼变身卡| 精品国产乱码久久久久久小说| 一级毛片电影观看| 女人十人毛片免费观看3o分钟| 日本欧美国产在线视频| 日韩一区二区视频免费看| 永久免费av网站大全| 亚洲av福利一区| 高清欧美精品videossex| videos熟女内射| 大陆偷拍与自拍| 日韩制服骚丝袜av| 久久久久网色| 午夜免费男女啪啪视频观看| 3wmmmm亚洲av在线观看| 精品久久久久久久末码| 免费少妇av软件| 永久免费av网站大全| 亚洲内射少妇av| 乱系列少妇在线播放| 久久久精品免费免费高清| 久久热精品热| 国产黄片视频在线免费观看| 亚洲av不卡在线观看| 亚洲最大成人中文| 国产精品久久久久久精品电影| 日韩欧美精品免费久久| 黄色欧美视频在线观看| 亚洲精品自拍成人| 午夜亚洲福利在线播放| 国产日韩欧美亚洲二区| 熟女人妻精品中文字幕| 亚洲精品乱码久久久v下载方式| 成年版毛片免费区| 免费不卡的大黄色大毛片视频在线观看| 亚洲精品国产av成人精品| 免费少妇av软件| 成人毛片a级毛片在线播放| 男女边吃奶边做爰视频| 日韩一区二区三区影片| 国产欧美亚洲国产| 成人国产av品久久久| 麻豆成人av视频| 精品人妻视频免费看| 嫩草影院新地址| 国产精品蜜桃在线观看| 国产有黄有色有爽视频| 久久久精品94久久精品| 中文字幕亚洲精品专区| 国产有黄有色有爽视频| 久久久精品欧美日韩精品| 麻豆精品久久久久久蜜桃| 亚洲,欧美,日韩| 亚洲成人中文字幕在线播放| 亚洲国产精品成人综合色| 日本三级黄在线观看| 在线a可以看的网站| 我的女老师完整版在线观看| 国产美女午夜福利| 五月开心婷婷网| 国产精品秋霞免费鲁丝片| 久久午夜福利片| 乱码一卡2卡4卡精品| 国内精品美女久久久久久| 亚洲内射少妇av| 久久99热6这里只有精品| 久久精品国产亚洲av涩爱| 亚洲欧美成人综合另类久久久| 嫩草影院入口| 又黄又爽又刺激的免费视频.| 成人毛片60女人毛片免费| 久久久久久久午夜电影| 内地一区二区视频在线| 亚洲精品aⅴ在线观看| 久久久精品94久久精品| 丝瓜视频免费看黄片| 插逼视频在线观看| 国产男女内射视频| 国产精品蜜桃在线观看| 永久免费av网站大全| 亚洲最大成人av| 久久久久久久大尺度免费视频| 波野结衣二区三区在线| 欧美另类一区| 亚洲av在线观看美女高潮| 制服丝袜香蕉在线| 国产一区亚洲一区在线观看| 一个人观看的视频www高清免费观看| 麻豆精品久久久久久蜜桃| 亚洲,一卡二卡三卡| 久久久久网色| 久久人人爽人人片av| 精品视频人人做人人爽| 夜夜看夜夜爽夜夜摸| 精品久久久久久久久亚洲| 国产亚洲午夜精品一区二区久久 | 精品酒店卫生间| 成人黄色视频免费在线看| 国产视频首页在线观看| 免费观看的影片在线观看| 别揉我奶头 嗯啊视频| 欧美激情国产日韩精品一区| 成人毛片a级毛片在线播放| 亚洲精品乱久久久久久| 久久久久久久精品精品| 国产视频内射| 看黄色毛片网站| 高清午夜精品一区二区三区| 国产精品国产三级国产av玫瑰| 欧美性感艳星| 蜜桃久久精品国产亚洲av| 国产成人精品久久久久久| 2018国产大陆天天弄谢| 午夜精品国产一区二区电影 | av又黄又爽大尺度在线免费看| 99热6这里只有精品| 九草在线视频观看| 综合色av麻豆| 久久久久久久大尺度免费视频| 欧美三级亚洲精品| 日韩强制内射视频| 高清毛片免费看| 三级国产精品欧美在线观看| 国精品久久久久久国模美| av黄色大香蕉| 国产男女超爽视频在线观看| 欧美国产精品一级二级三级 | 久久久久久久大尺度免费视频| 国产伦在线观看视频一区| 99久久精品热视频| 建设人人有责人人尽责人人享有的 | 高清毛片免费看| 国产免费福利视频在线观看| 一二三四中文在线观看免费高清| 久热这里只有精品99| 成人黄色视频免费在线看| 春色校园在线视频观看| 亚洲在久久综合| 一级毛片 在线播放| 国产免费一区二区三区四区乱码| 国产日韩欧美亚洲二区| 久久热精品热| 中国国产av一级| 性色av一级| 在线a可以看的网站| 一级毛片电影观看| 一级爰片在线观看| eeuss影院久久| 亚洲国产精品成人久久小说| 久久久久精品性色| 人妻制服诱惑在线中文字幕| 97在线视频观看| 在线亚洲精品国产二区图片欧美 | 久久久久性生活片| 亚洲第一区二区三区不卡| 中国国产av一级| 亚洲天堂国产精品一区在线| 亚洲熟女精品中文字幕| 水蜜桃什么品种好| 人体艺术视频欧美日本| 国产av国产精品国产| 免费人成在线观看视频色| 97人妻精品一区二区三区麻豆| 男人和女人高潮做爰伦理| 在线精品无人区一区二区三 | 日韩亚洲欧美综合| 久久鲁丝午夜福利片| 国产成人免费观看mmmm| 国产中年淑女户外野战色| 色网站视频免费| av一本久久久久| 女人十人毛片免费观看3o分钟| 欧美极品一区二区三区四区| 国产午夜福利久久久久久| 国产精品国产三级国产av玫瑰| 校园人妻丝袜中文字幕| 午夜日本视频在线| 国产黄片视频在线免费观看| 久久精品国产鲁丝片午夜精品| 99久久九九国产精品国产免费| 一区二区av电影网| 午夜福利视频1000在线观看| 中文在线观看免费www的网站| 岛国毛片在线播放| 日本色播在线视频| 国产av国产精品国产| 亚洲不卡免费看| 精品国产一区二区三区久久久樱花 | 麻豆精品久久久久久蜜桃| 人人妻人人看人人澡| 午夜福利在线在线| 国产综合精华液| 特大巨黑吊av在线直播| 大香蕉久久网| 日本wwww免费看| 免费观看的影片在线观看| 国产伦精品一区二区三区四那| 亚洲精品乱码久久久久久按摩| 狂野欧美激情性xxxx在线观看| 建设人人有责人人尽责人人享有的 | 99久国产av精品国产电影| 99热这里只有是精品50| 久久鲁丝午夜福利片| 又爽又黄无遮挡网站| a级一级毛片免费在线观看| 国内少妇人妻偷人精品xxx网站| 搡老乐熟女国产| 国产精品久久久久久精品古装| 免费看光身美女| 少妇人妻 视频| 久久国内精品自在自线图片| 日韩电影二区| 国产黄色免费在线视频| 欧美性感艳星| 精品99又大又爽又粗少妇毛片| 在线a可以看的网站| 亚洲国产欧美在线一区| 国产 精品1| 色5月婷婷丁香| 美女主播在线视频| 18禁在线无遮挡免费观看视频| 精品久久久噜噜| 国产黄色免费在线视频| 精品少妇久久久久久888优播| 中文字幕制服av| 午夜福利在线观看免费完整高清在| 一边亲一边摸免费视频| 青春草国产在线视频| 亚洲欧美成人精品一区二区| 日本午夜av视频| 日韩 亚洲 欧美在线| 美女脱内裤让男人舔精品视频| 久久精品久久精品一区二区三区| 亚洲性久久影院| 一边亲一边摸免费视频| 国产精品麻豆人妻色哟哟久久| 婷婷色综合大香蕉| 女人被狂操c到高潮| 亚洲激情五月婷婷啪啪| 最近2019中文字幕mv第一页| 国内少妇人妻偷人精品xxx网站| 最近手机中文字幕大全| 在线天堂最新版资源| 69av精品久久久久久| 日韩在线高清观看一区二区三区| 亚洲av福利一区| 又爽又黄a免费视频| 国产 一区精品| 欧美xxxx性猛交bbbb| 国产精品一区二区性色av| 亚洲精品影视一区二区三区av| 国产成人一区二区在线| 免费大片18禁| 亚洲精品一二三| 国产亚洲91精品色在线| av线在线观看网站| 日韩中字成人| 国产欧美日韩一区二区三区在线 | 久久久色成人| 国内精品美女久久久久久| 亚洲,一卡二卡三卡| 国产成人一区二区在线| 欧美性猛交╳xxx乱大交人| 成人综合一区亚洲| 99久久精品热视频| 成年av动漫网址| 深夜a级毛片| 午夜激情福利司机影院| 午夜福利在线在线| 最近2019中文字幕mv第一页| 男女边摸边吃奶| 日韩欧美精品免费久久| 高清午夜精品一区二区三区| 高清欧美精品videossex| 黄色日韩在线| 六月丁香七月| 国产高清不卡午夜福利| 丝袜美腿在线中文| 成人免费观看视频高清| 少妇猛男粗大的猛烈进出视频 | 大香蕉97超碰在线| 亚洲成人av在线免费| 欧美zozozo另类| 搞女人的毛片| 久久久久久久精品精品| 免费大片黄手机在线观看| 超碰av人人做人人爽久久| 亚洲精华国产精华液的使用体验| 国产精品爽爽va在线观看网站| 精品久久久久久久人妻蜜臀av| 爱豆传媒免费全集在线观看| 99热这里只有是精品50| 久久久国产一区二区| 在线观看一区二区三区激情| 一级片'在线观看视频| 99热这里只有是精品50| 一边亲一边摸免费视频| 波多野结衣巨乳人妻| 国产亚洲午夜精品一区二区久久 | 黄色怎么调成土黄色| 国产伦在线观看视频一区| 成人漫画全彩无遮挡| 在线播放无遮挡| 噜噜噜噜噜久久久久久91| 人妻 亚洲 视频| 亚洲国产欧美人成| 免费人成在线观看视频色| 日韩av免费高清视频| 精品久久久噜噜| 777米奇影视久久| 亚洲在线观看片| 丰满人妻一区二区三区视频av| 伊人久久国产一区二区| 爱豆传媒免费全集在线观看| 青春草视频在线免费观看| 日韩大片免费观看网站| 久久久久久久亚洲中文字幕| 九色成人免费人妻av| 亚洲丝袜综合中文字幕| 啦啦啦在线观看免费高清www| 天堂网av新在线| 亚洲av免费在线观看| 中文字幕免费在线视频6| 美女主播在线视频| 直男gayav资源| 国产精品秋霞免费鲁丝片| 直男gayav资源| 国产成人91sexporn| 新久久久久国产一级毛片| 国产成人免费观看mmmm| 夜夜爽夜夜爽视频| 丰满乱子伦码专区| 国产成人一区二区在线| 日日摸夜夜添夜夜爱| 五月开心婷婷网| 天天躁日日操中文字幕| 精品国产一区二区三区久久久樱花 | 亚洲av一区综合| 一个人看视频在线观看www免费| 超碰av人人做人人爽久久| 日韩国内少妇激情av| 免费观看无遮挡的男女| 精品国产露脸久久av麻豆| 国语对白做爰xxxⅹ性视频网站| 99精国产麻豆久久婷婷| 老司机影院成人| 午夜福利网站1000一区二区三区| 亚洲欧美日韩另类电影网站 | 久久久久久久久大av| 免费黄频网站在线观看国产| 国产国拍精品亚洲av在线观看| 日韩一区二区视频免费看| 激情五月婷婷亚洲| 在线精品无人区一区二区三 | 亚洲图色成人| 大码成人一级视频| av专区在线播放| 搡老乐熟女国产| 99re6热这里在线精品视频| 黄色怎么调成土黄色| 国产成人精品福利久久| 欧美成人一区二区免费高清观看| 日本-黄色视频高清免费观看| 精品一区二区三区视频在线| 日韩av在线免费看完整版不卡| 99热6这里只有精品| 亚洲自拍偷在线| 久久久久久久大尺度免费视频| 国产精品秋霞免费鲁丝片| 中文字幕人妻熟人妻熟丝袜美| 亚洲av男天堂| 亚洲美女搞黄在线观看| 国产午夜精品久久久久久一区二区三区| 国产人妻一区二区三区在| 天天一区二区日本电影三级| 亚洲av福利一区| 国产综合懂色| 亚洲av国产av综合av卡| 久久午夜福利片| 国产成人一区二区在线| 成人特级av手机在线观看| 精品久久久噜噜| 七月丁香在线播放| 精品99又大又爽又粗少妇毛片| 久久99蜜桃精品久久| 精品一区二区三区视频在线| 熟女电影av网| 午夜福利视频精品| 国产成人freesex在线| 亚洲最大成人av| 秋霞伦理黄片| 最近最新中文字幕免费大全7| 午夜精品国产一区二区电影 | 一区二区三区四区激情视频| 97超碰精品成人国产| 国产国拍精品亚洲av在线观看| 免费黄频网站在线观看国产| 亚洲国产av新网站| 国产精品蜜桃在线观看| av播播在线观看一区| a级毛色黄片| 神马国产精品三级电影在线观看| 国产 精品1| 1000部很黄的大片| 热99国产精品久久久久久7| 国产老妇女一区| 禁无遮挡网站| 欧美区成人在线视频| 精品久久久久久久末码| 中文天堂在线官网| 蜜桃亚洲精品一区二区三区| 美女国产视频在线观看| 99久久精品一区二区三区| 久久久精品94久久精品| 岛国毛片在线播放| 日韩亚洲欧美综合| 国产午夜精品久久久久久一区二区三区| 免费黄网站久久成人精品| 午夜福利在线观看免费完整高清在| 丰满少妇做爰视频| av在线蜜桃| 久久精品国产亚洲网站| 精品国产乱码久久久久久小说| 老女人水多毛片| 精品久久国产蜜桃| 国产探花极品一区二区| 久久99热这里只频精品6学生| 成人亚洲精品一区在线观看 | 亚洲精品456在线播放app| 26uuu在线亚洲综合色| 在线观看人妻少妇| 一级毛片电影观看| 亚洲色图av天堂| 成年人午夜在线观看视频| 国产精品国产三级专区第一集| 特大巨黑吊av在线直播| 大码成人一级视频| 欧美激情国产日韩精品一区| 亚洲欧美清纯卡通| 亚洲精品,欧美精品| 亚洲av在线观看美女高潮| 国产黄a三级三级三级人| 欧美人与善性xxx| 精品久久久精品久久久| 欧美日韩一区二区视频在线观看视频在线 | 国产日韩欧美亚洲二区| 国产精品国产三级国产av玫瑰| 18+在线观看网站| 亚洲精品国产色婷婷电影| 人妻制服诱惑在线中文字幕| 老司机影院成人| 日韩欧美精品v在线| 中文在线观看免费www的网站| 成人特级av手机在线观看| 国产精品一区二区三区四区免费观看| 精品一区二区三区视频在线| 欧美日韩精品成人综合77777| 国产成人a区在线观看| 国产精品精品国产色婷婷| 人人妻人人澡人人爽人人夜夜| 黄色视频在线播放观看不卡| 久久久久精品久久久久真实原创| 成人一区二区视频在线观看| 欧美zozozo另类| 亚洲精品aⅴ在线观看| 免费看日本二区| 男人狂女人下面高潮的视频| 中国三级夫妇交换| 97超碰精品成人国产| 一区二区三区免费毛片| 2022亚洲国产成人精品| 中文字幕人妻熟人妻熟丝袜美| 综合色av麻豆| 最近中文字幕2019免费版| 一级黄片播放器| 少妇人妻久久综合中文| 亚洲人成网站在线观看播放| av卡一久久| 22中文网久久字幕| 国产久久久一区二区三区| 国产男女内射视频| 女人久久www免费人成看片| 午夜爱爱视频在线播放| 精品国产三级普通话版| 波多野结衣巨乳人妻| 亚洲精品影视一区二区三区av| 91午夜精品亚洲一区二区三区| 久久久久久久国产电影| 欧美国产精品一级二级三级 | 新久久久久国产一级毛片| 国产高清国产精品国产三级 | 18禁裸乳无遮挡动漫免费视频 | 亚洲,一卡二卡三卡| 日本黄大片高清| 美女视频免费永久观看网站| 国产av不卡久久| 黄色配什么色好看| 最近2019中文字幕mv第一页| 久久久成人免费电影| 另类亚洲欧美激情| 69人妻影院| 欧美日韩综合久久久久久| 99热这里只有是精品在线观看| 丰满人妻一区二区三区视频av| 麻豆成人av视频| 男人和女人高潮做爰伦理| 美女主播在线视频| 久久这里有精品视频免费| 美女内射精品一级片tv| 国产精品国产三级专区第一集| 在线观看人妻少妇| 嫩草影院新地址| av网站免费在线观看视频| 亚洲精品乱码久久久v下载方式| 精品一区在线观看国产| 色网站视频免费| 久久精品久久久久久久性| 爱豆传媒免费全集在线观看| 看免费成人av毛片| 51国产日韩欧美| 精品一区二区免费观看| 亚洲欧美成人精品一区二区| 大香蕉97超碰在线| 99热国产这里只有精品6| 久热这里只有精品99| 成人无遮挡网站| 汤姆久久久久久久影院中文字幕| 老女人水多毛片| 久久精品久久精品一区二区三区| 国产爱豆传媒在线观看| 国产在线一区二区三区精| 偷拍熟女少妇极品色| av在线蜜桃| 国产久久久一区二区三区| 欧美性猛交╳xxx乱大交人| 国内精品美女久久久久久| 国产爽快片一区二区三区| 国产高清国产精品国产三级 | 国产男女内射视频| av天堂中文字幕网| 婷婷色av中文字幕| 国产男女内射视频| 色网站视频免费| 免费看日本二区| 亚洲国产欧美人成| 国产熟女欧美一区二区| 国产精品蜜桃在线观看| 欧美少妇被猛烈插入视频| 高清午夜精品一区二区三区| 国产精品蜜桃在线观看| 综合色av麻豆| 制服丝袜香蕉在线| 久久精品国产亚洲av天美| 久久人人爽av亚洲精品天堂 | 成人特级av手机在线观看| 亚洲国产高清在线一区二区三| 在线亚洲精品国产二区图片欧美 | 国产老妇女一区| 蜜桃亚洲精品一区二区三区| 久久久精品94久久精品| 日本-黄色视频高清免费观看| 亚洲久久久久久中文字幕| 18禁在线播放成人免费| 国产免费一级a男人的天堂| 亚洲精品乱码久久久v下载方式| 亚洲av一区综合|