• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Application of improved PSO-based to neural network control system of parallel mechanism

    2015-12-19 08:47:54ChangjianWANGPengWANGSchoolofMechanicalEngineeringYangtzeUniversityJingzhou434000China
    機床與液壓 2015年12期
    關(guān)鍵詞:自適應(yīng)性控制精度魯棒性

    Chang-jian WANG,Peng WANG(School of Mechanical Engineering,Yangtze University,Jingzhou 434000,China)

    Application of improved PSO-based to neural network control system of parallel mechanism

    Chang-jian WANG,Peng WANG*
    (School of Mechanical Engineering,Yangtze University,Jingzhou 434000,China)

    As the traditional PID neural network could not effectively control the real-time nonlinear multivariable system,this paper proposed a new type of multivariable adaptive PID neural network controller.This control system could put out feedback and activation feedback,with the function of proportion,integration and differentiation.We used the Particle Swarm Algorithm which is based on the solution space division to optimize the parameters of the controller.It also could eliminate effect of initial values on the accuracy of the controller and can be applied to the parallel mechanism control system.As the simulation results shown,controller had higher precision,better robustness and adaptability.This research provided a theoretical basis for the optimization design and performance analysis of the parallel mechanism.

    PID neural network,Parallel mechanism,Improved particle swarm algorithm

    Hydromechatronics Engineering

    http://jdy.qks.cqut.edu.cn

    E-mail:jdygcyw@126.com

    1 Introduction

    Comparing to the series robot,the parallel robot has high stiffness,strong bearing capacity,high precision and compact structure.It could be suitable for some applications in machining,aircraft manufacturing,and health care which have small work space and large load strength.

    With the rapid development of computer technology and artificial intelligence,people integrate mathematical models and operating experience into the computer in order to control the entire mechanical system[1]. It is very difficult to establish an accurate model of control system of parallel mechanism due to typically nonlinear multivariable systems and uncertainties and other factors outside interference.So PID control and its combination with other control theory can be used to solve such problems and favored by the majority of researchers.Neural network has powerful computing,strong robust,high fault tolerance and self-learning that can be approached to continuous linear function,but the presence of slow learning speed,many input parameters and poor dynamic performance make it not easy to achieve in reality.To solve this problem,the advantages of PID controller and neural network were combined and then a new neural network PID controller(PIDNNC)was brought up that it had robustness,high control accuracy and could overcome the above drawbacks[2].This paper introduced an improved Particle Swarm Optimization(PSO)based on the solution space and put it into PIDNNC in order to figure out the local minima due to the gradient descent method of adjusting the weights and thresholds.This method not only improved the learning speed and convergence rate,but also obtained a better accuracy,sta-bility and convergence.Furthermore it provided a theoretical basis for improving control precision of parallel mechanism.

    2 Improved particle swarm optimization

    PSO is an optimized algorithm which makes use of group collaboration to achieve the global intelligent research.PSO imitate the process of bird population prey:each particle in the PSO“flights”towards to the optimal direction based on a search of all the particles and their own experience[3-4].Firstly,PSO initializes group of particles N,and then finds the optimal solution through an iterative process.The extreme speed and position of particles are updated by tracking the personal best position and global best position in each iteration.Update formula is as follows:

    Vi:evolution of the ithparticle velocity;Xi:position of the ithparticle;pBest[i]:the“best”position of the ithparticle;g:the“best”position in group;w:inertia weigh;c1,c2:acceleration factor;rand(t):random function,generate[0,1]of the random number.

    The solution space is derived from a term of linear algebra which is defined as follows:if ξ1,ξ2,…,ξnare N solutions of homogeneous linear equations,then any linear combination of their c1ξ1+c2ξ2+…+cnξnis also the solution vector of homogeneous linear equations.The collection of all the solutions formed a vector space,which is called solution space[5].It can be divided precisely and refined PSO.But one of the most critical factors is how to determine the extreme value area p,when p is stability as well as other areas are basically stable.How to divide solution space is as follows.

    1)Initialize attribute of particles,such as equally spaced and speed distribution;

    2)Record test value and solutions of statistics for each particle,all the particles are ranked according to the initialized attribute,and then identify the most value area and extreme area of every range and calculate the probability p;

    3)If the probability p is stable,output the value;otherwise return to(1)with doubling the size of particle swarm.

    Determination of the probability p is that it assumed p1,…,pnafter n times testing,if p satisfy i≥n/2 andwe define p is stable,moreover β≤0.001 could meet test requirements.

    In the researching process of particle swarm,every particle is constantly pursuing the known optimal position.But it also could cause other particles chasing the local extremes when it becomes the temporary optimal location,hence the whole population into this local extreme.Therefore,to solve this problem of blind search,we first divided the solution space of all the particle swarm into several regions;if there was only one extreme value in a certain area,then blind search could work:the particles could be automatically tend to it.Space can be divided equally,randomly or with the graphics division(such as triangles,squares);each interval was an independent group of small particles.Interval extreme could be found in each area with performance standards,and then compare each interval extreme;finally,find a whole range extreme position for an optimum solution.

    3 Controller design of parallel mechanism

    3.1 Multivariable control PIDNNC

    PID control,produced in the early 20th century,has dominated the field of automatic control,depending on its simple structure,good stability and flexible handling.Neural network with its own self-correction and adaptive capacity has been widely adopted in different situations.A new controller PIDNNC,in which structural features and control laws were effectively combined,is shown in Fig.1.There are input section ej(j=1,2,…,s),one output section and three hidden layers;hidden layer,input and output end existed recursive feedback loop;there is a linear activation function in the hidden layer and output layer[6].In the controller,the first node a1of hidden layer contained a dynamic output feedback and record function which could feedback the weighting sum to node n1,while the second node a2does not had feedback;the third node a3has active feedback and it delayed with minus units of output after weighting sum of nodes n3and regarded it as a new input to n3.

    As is shown in the Fig.1,PIDNNC is negative feedback loop;input is rj(k)(j=1,2…s),output is yj(k)(j=1,2,…,s),system output error is ej(k)= rj(k)-yj(k).The controller’s output at time k in hidden layer is αi(k)(i=1,2,3)

    Network terminal output:

    Compared to formula(1)(2)(3)to(5),(1)presents the integral feature like the PID control.(2)is of proportion character which has activated feedback and(3)reflects the differential aspect.Unlike previous PID neural network,which is caused by controller that contains the output feedback and self-feedback network hybrid recursive composition,PIDNNC is designed convenient,simple structure and the determined number of nodes in the hidden layer.In addition,three sets of hidden layer weights w1j,w2j,w3j(j=1,2,…,s)are similar to the proportion,integration and differential that make physical meaning of parameters relatively clear.Multivariable controller is designed according to the complexity of the object and this process is more convenient than conventional PID.

    Fig.1 ControIIer of PIDNNC

    In the design process of the controller,we need to determine the number of input layer,hidden layer and output layer first,and then to adjust the network weights w1j,w2j,w3j(j=1,2,…,s)and output weights w1(k),w2(k),w3(k)to obtain better properties neural network.According to(4),the characteristics of PIDNNC are determined by the weights of hidden layer while the rule of output layer is summation which function is linear.Therefore,in order to decrease training time and study design,the output weights wi(i=1,2,3)is set to 1,and learning optimization parameters to wij(i=1,2,3;j=1,2,…,s).

    In this article,we made the improved PSO into m file using Matlab,and then optimized the objective function with Sim function.Firstly,the initial values of parameters were entered into the parameter matrix X,then system block diagram was built by Simulink and saved to mdl format.Finally,used the Sim function to write the objective function program and optimized it with m file.

    3.2 Controller of parallel mechanism

    Fig.2 displays the 3-TPT parallel mechanism,which is composed of fixed platform,moving platform,driven rod and connecting rod.Both moving platform and fixed platform are equilateral triangle,each drive rod is connected to parallel mechanism with Hooke joint,so as the moving platform and fixed platform. Three drive rods are driven by servo motor and adjust the position of movable platform by changing the length.They withstand external forces and torque[7].

    Fig.2 3-TPT paraIIeI mechanisms

    Degree of freedom can be deduced by KutzbachGrable:

    F:DOF;n:the number of component;g:kinematic pair;fi:the relative freedom of kinematic pair of i-th.

    In the parallel mechanism,n=8,g=9,each Hooke joint has 2 rotational DOF and each moving pair has 1 DOF,socording to(6)F=3,the DOF of 3-TPT parallel mechanism is 3.

    In this paper,the model of parallel mechanism was established by Simulink in SimMechanics simulation and integrated to the control system[8].The model of PIDNNC is shown below.

    Fig.3 ModeI of PIDNNC

    Fig.4 System simuIation diagram

    4 Improved PSO algorithm steps

    When PSO optimized to PIDNNC,the objective function of the controller is fitness function;to search the optimal position by improved PSO is to minimize mean square error,fitness function is as follow:

    Where,l:sampled data;s:the number of input node;rj(k)-yj(k):output error.Optimization steps are as follows.

    1)PIDNNC controller and particle swarm initialization parameter is set according to the number of input layer neurons of controlled object[9],hidden layer nodes are set 3(Kp,Ki,Kd);initialized the population of position and velocity,set test number M and divided entire population into n subintervals.

    2)Put the values of Kp,Ki,Kdobtained by using conventional calculation as an initial value of hidden layer weights wij(0),then set output layer weights wi=1(i=1,2,3),computing u(0)[10].

    3)Calculated a1(k),a2(k),a3(k)and output u(k);set k=k+1,return to recalculate until the output meet accuracy requirements.

    5 Simulations

    Set parameters of 3-TPT parallel mechanism:R= 600 mm,r=200 mm;the size of provision population is 200,maximum number of iteration is 200,acceleration factor c1=2,c2=2,maximum speed v=0.2,inertia weight w=0.8.

    This paper performed a contrast experiment between traditional PID and PIDNNC optimized by improved PSO.Figure 5 is an improved PSO evolutionary curve,it can be seen that the it converges very fast early,later to slow down when search the optimal solution.This method could solve effectively the problem of local convergence.And in Fig.6,under the signal control of sine wane,PIDNNC optimized by PSO can adjust three output parameters online,accuracy and systematics error are improved and displacement is better.

    Fig.5 PSO evoIution curve

    Fig.6 Contrast curve of dispIacement and controI error

    6 Conclusions

    This paper introduced a new PSO based on divided solution space and put it into the design of a new multivariate controller PIDNNC which effectively solved the problem of multivariable nonlinear systems of traditional PID neural network.Hidden layer of the controller had the effect of proportional,integral and derivative at same time it had better stability,accuracy and robustness.Taking the improved PSO to optimized neural network system overcomed the problem of local minimum caused by the use of gradient descent,this made selection and learning of neural network more simpler,convergence more faster and looking for solutions more accurately.

    [1]TAN Xiankun.Improved control algorithm based on particle swarm optimization and its simulation research[J].Machine Tool&Hydraulics,2012,40(19):28-33.

    [3]Cong Shuang,Liang Yan-yang,Li Guo-dong.Multivariable Adaptive PID-like Neural Network Controller and Its Design Method[J].Inform Ation and Control,2006,35(5):565-573.

    [3]AO Chaohua,BI Jianchao.Improved algorithm of PSO and its application in parameter tuning of control system[J]. Machine Tool&Hydraulics,2012,40(12):84-90.

    [4]Che Lin-xian,He Bing,Yi jian,etal.Improved Particle Swarm Optimization for Forward Positional Analysis Symmertrical Stewart Parallel Manipulators[J].Transactions of the Chinese Society for Agricultural Machinery,2008,39(10):159-163.

    [5]Zhao Wei,Cai Xing-sheng.PSO Improved Algorthmg Based on the Solution Space Division[J].Journal of Jilin University:Science Edition,2012,50(4):725-732.

    [6]Liang Yan-yang.Nonlinear Adaptive Control of Time-carying Uncertain Electro-mechanical Motion System[D].Hefei:University of Science and Technology of China,2008.

    [7]Yang Hui,Zhao Heng-hua,F(xiàn)u Hong-shuan.The Establishment and Simulation of the Parallel Mechanism Virtual Prototype[J].Journal of Engineering Design,2012,19(6):445-448.

    [8]QIN Huiming,LI Xiao.Neural Network Control for Teleoperated Construction Robot Based on WAN[J].Machine Tool &Hydraulics,2014,42(3):5-8.

    [9]Feng Dong-qing,Xing Guang-cheng,F(xiàn)ei Min-rui,etal. Improved PSO-based Multivariable PID-like Neural Network Control[J].Journal of Simulation,2011,23(2):363-385.

    [10]Zhou Xi-feng.The Control of PID Neural Network Based on β Parameterized B-spline Basic Functions and Improved PSO[J].Maufacturing Automation,2011,33(10):61-67.

    基于改進的PSO在并聯(lián)機構(gòu)神經(jīng)網(wǎng)絡(luò)控制系統(tǒng)中的應(yīng)用

    王長建,王 鵬*
    長江大學(xué)機械工程學(xué)院,湖北荊州 434000

    針對傳統(tǒng)PID神經(jīng)網(wǎng)絡(luò)不能實時有效地控制非線性多變量系統(tǒng)的問題,設(shè)計了一種新型多變量自適應(yīng)PID神經(jīng)網(wǎng)絡(luò)控制器。該控制器的隱含層帶有輸出反饋和激活反饋,實現(xiàn)了比例、微分和積分功能。利用一種基于解空間劃分的改進粒子群算法對控制器參數(shù)進行優(yōu)化,消除了初始值對控制器準(zhǔn)確性的影響,并將控制器應(yīng)用于并聯(lián)機構(gòu)控制中。由仿真結(jié)果可知:控制器控制精度高,魯棒性和自適應(yīng)性較強。這一研究為并聯(lián)機構(gòu)的精準(zhǔn)控制和優(yōu)化設(shè)計提供了理論基礎(chǔ)。

    PID神經(jīng)網(wǎng)絡(luò);并聯(lián)機構(gòu);改進PSO算法

    10.3969/j.issn.1001-3881.2015.12.010Document code:A

    TH165+.2

    1 July 2014;revised 17 February 2015;accepted 5 March 2015

    Chang-jian WANG,Professor.E-mail:wangchangjian2468@ 163.com

    *Corresponding author:Peng WANG,Master.

    E-mail:47361222@qq.com

    猜你喜歡
    自適應(yīng)性控制精度魯棒性
    基于TRIZ理論的巡檢機器人移動底盤結(jié)構(gòu)創(chuàng)新設(shè)計
    機械傳動(2025年1期)2025-02-25 00:00:00
    基于多源異構(gòu)信息融合的采摘機械臂驅(qū)動控制研究
    荒漠綠洲區(qū)潛在生態(tài)網(wǎng)絡(luò)增邊優(yōu)化魯棒性分析
    高校外籍教師自適應(yīng)性調(diào)整探索——基于四川文理學(xué)院8名外教非結(jié)構(gòu)式訪談的定性研究
    基于確定性指標(biāo)的弦支結(jié)構(gòu)魯棒性評價
    MW級太空發(fā)電站微波能量波束指向控制精度分析
    基于非線性多輸入多輸出近似動態(tài)規(guī)劃的發(fā)動機缸平衡智能調(diào)節(jié)算法
    基于安卓的智能車轉(zhuǎn)速系統(tǒng)的設(shè)計與實現(xiàn)
    水下大壩裂縫圖像分割方法研究 
    基于非支配解集的多模式裝備項目群調(diào)度魯棒性優(yōu)化
    久久久国产欧美日韩av| 亚洲第一区二区三区不卡| 国产亚洲一区二区精品| √禁漫天堂资源中文www| 免费在线观看黄色视频的| 久久精品aⅴ一区二区三区四区 | 99热国产这里只有精品6| 在线观看人妻少妇| 校园人妻丝袜中文字幕| 中文欧美无线码| 巨乳人妻的诱惑在线观看| 久久精品国产亚洲av天美| 欧美另类一区| 国产一区二区激情短视频 | 多毛熟女@视频| 男女边摸边吃奶| 久久久欧美国产精品| 免费少妇av软件| 色婷婷av一区二区三区视频| 美女中出高潮动态图| 一级毛片 在线播放| 久久狼人影院| 97在线人人人人妻| 一级毛片电影观看| 女性生殖器流出的白浆| 春色校园在线视频观看| 在线天堂最新版资源| 咕卡用的链子| 日韩三级伦理在线观看| 少妇被粗大的猛进出69影院| 男女高潮啪啪啪动态图| 中文天堂在线官网| 国产精品麻豆人妻色哟哟久久| 大陆偷拍与自拍| 美国免费a级毛片| 午夜av观看不卡| 亚洲人成77777在线视频| 九九爱精品视频在线观看| 国产在视频线精品| 99久久综合免费| 日本午夜av视频| 精品久久久精品久久久| 一区二区三区乱码不卡18| 色视频在线一区二区三区| 色婷婷av一区二区三区视频| 男人操女人黄网站| 久久久欧美国产精品| 免费黄网站久久成人精品| 美女福利国产在线| 中文字幕最新亚洲高清| 亚洲色图综合在线观看| 国产在视频线精品| 亚洲欧美中文字幕日韩二区| 久久久精品区二区三区| 视频区图区小说| 亚洲人成77777在线视频| 黄频高清免费视频| 老鸭窝网址在线观看| 最近中文字幕2019免费版| 亚洲国产精品999| 亚洲国产精品国产精品| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 欧美日韩一区二区视频在线观看视频在线| 成人毛片60女人毛片免费| 美女脱内裤让男人舔精品视频| 欧美日韩综合久久久久久| 国产男女超爽视频在线观看| a级毛片在线看网站| 国产成人免费观看mmmm| 丰满迷人的少妇在线观看| 国产成人免费观看mmmm| 人人妻人人澡人人看| 又粗又硬又长又爽又黄的视频| 国产片内射在线| 欧美日韩国产mv在线观看视频| 热99国产精品久久久久久7| 丝瓜视频免费看黄片| 久久毛片免费看一区二区三区| 不卡视频在线观看欧美| 精品少妇黑人巨大在线播放| 青春草视频在线免费观看| 亚洲精品美女久久久久99蜜臀 | 一区二区三区激情视频| 18禁观看日本| 一本色道久久久久久精品综合| 美女中出高潮动态图| tube8黄色片| tube8黄色片| 丝袜喷水一区| www.自偷自拍.com| av在线app专区| 国产亚洲av片在线观看秒播厂| 黄色怎么调成土黄色| 晚上一个人看的免费电影| 天堂8中文在线网| 高清av免费在线| 天堂8中文在线网| 国产精品久久久久成人av| 亚洲一级一片aⅴ在线观看| 日韩不卡一区二区三区视频在线| 亚洲国产av影院在线观看| 久久久亚洲精品成人影院| 国产高清不卡午夜福利| 肉色欧美久久久久久久蜜桃| 91国产中文字幕| 啦啦啦在线观看免费高清www| 国产一区亚洲一区在线观看| 亚洲国产精品999| 国产又爽黄色视频| 日本-黄色视频高清免费观看| 国产成人av激情在线播放| 一边亲一边摸免费视频| 女人精品久久久久毛片| 考比视频在线观看| 搡老乐熟女国产| 欧美人与善性xxx| 人妻人人澡人人爽人人| 五月开心婷婷网| 91成人精品电影| 欧美激情极品国产一区二区三区| 中国国产av一级| 国产乱来视频区| 制服人妻中文乱码| 欧美人与性动交α欧美精品济南到 | 在线观看人妻少妇| 亚洲成国产人片在线观看| 国产免费现黄频在线看| 一级爰片在线观看| 夜夜骑夜夜射夜夜干| 国产一区二区三区av在线| 午夜福利,免费看| 婷婷色av中文字幕| 纯流量卡能插随身wifi吗| 久久久久久久精品精品| 国产精品欧美亚洲77777| 高清黄色对白视频在线免费看| 亚洲,欧美,日韩| 青春草视频在线免费观看| 国产一区有黄有色的免费视频| 国产欧美日韩一区二区三区在线| 久久人人97超碰香蕉20202| 性色av一级| 伊人久久国产一区二区| 黄色一级大片看看| 国产精品国产三级专区第一集| 精品久久久久久电影网| 亚洲精品日本国产第一区| 美女中出高潮动态图| 亚洲精品中文字幕在线视频| 欧美成人午夜精品| 亚洲欧美中文字幕日韩二区| 一个人免费看片子| 国产精品.久久久| 亚洲成人av在线免费| 国产成人午夜福利电影在线观看| 国产色婷婷99| 国产成人精品一,二区| 国产免费又黄又爽又色| 日韩欧美一区视频在线观看| 久久精品人人爽人人爽视色| 亚洲av国产av综合av卡| 亚洲激情五月婷婷啪啪| 中文天堂在线官网| 亚洲成色77777| av国产久精品久网站免费入址| 91aial.com中文字幕在线观看| 永久免费av网站大全| 秋霞伦理黄片| 少妇的逼水好多| 精品视频人人做人人爽| 国产在线视频一区二区| 欧美最新免费一区二区三区| 制服丝袜香蕉在线| 热99久久久久精品小说推荐| 亚洲在久久综合| 久久精品熟女亚洲av麻豆精品| 波多野结衣av一区二区av| 精品一品国产午夜福利视频| 精品人妻在线不人妻| 国产精品不卡视频一区二区| 午夜福利在线免费观看网站| 亚洲人成电影观看| 少妇人妻久久综合中文| 久久久国产一区二区| 精品久久蜜臀av无| 欧美日韩视频精品一区| av福利片在线| 欧美日韩精品成人综合77777| 免费看不卡的av| 久久亚洲国产成人精品v| 我要看黄色一级片免费的| 香蕉丝袜av| 边亲边吃奶的免费视频| 激情视频va一区二区三区| 丝瓜视频免费看黄片| 亚洲国产精品999| 国产成人精品无人区| 26uuu在线亚洲综合色| 自拍欧美九色日韩亚洲蝌蚪91| 大片电影免费在线观看免费| 亚洲婷婷狠狠爱综合网| 亚洲欧美一区二区三区国产| 国产精品国产三级国产专区5o| 久久久久久人人人人人| 巨乳人妻的诱惑在线观看| 精品亚洲乱码少妇综合久久| 国产乱来视频区| 乱人伦中国视频| 国产日韩欧美视频二区| 热99国产精品久久久久久7| 美国免费a级毛片| 99久久综合免费| 最近手机中文字幕大全| 欧美日韩av久久| 亚洲成人一二三区av| 国产野战对白在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 成人毛片a级毛片在线播放| 如日韩欧美国产精品一区二区三区| 亚洲熟女精品中文字幕| 亚洲精品乱久久久久久| 国产精品一区二区在线不卡| 欧美精品一区二区免费开放| 亚洲精品乱久久久久久| 国产一区二区 视频在线| 曰老女人黄片| 国产日韩欧美在线精品| 男女午夜视频在线观看| 热99久久久久精品小说推荐| 亚洲精品久久久久久婷婷小说| 黑人欧美特级aaaaaa片| 青春草国产在线视频| 免费在线观看完整版高清| 美女主播在线视频| 精品卡一卡二卡四卡免费| 久久久久久免费高清国产稀缺| 狠狠精品人妻久久久久久综合| 国产精品免费视频内射| av免费观看日本| 亚洲精品久久久久久婷婷小说| 亚洲,欧美,日韩| 久久久久精品人妻al黑| 18禁国产床啪视频网站| 精品少妇黑人巨大在线播放| 三上悠亚av全集在线观看| 男女国产视频网站| √禁漫天堂资源中文www| 国产精品三级大全| 亚洲情色 制服丝袜| 亚洲精品av麻豆狂野| 精品少妇内射三级| 曰老女人黄片| 国产片特级美女逼逼视频| 亚洲欧美一区二区三区久久| 嫩草影院入口| 人人妻人人添人人爽欧美一区卜| 久久热在线av| 一区二区三区四区激情视频| 国产精品嫩草影院av在线观看| 亚洲精品成人av观看孕妇| 高清在线视频一区二区三区| 欧美人与善性xxx| 免费高清在线观看日韩| 国产免费福利视频在线观看| 免费女性裸体啪啪无遮挡网站| 一级a爱视频在线免费观看| 久久久久精品性色| 建设人人有责人人尽责人人享有的| 妹子高潮喷水视频| 在线亚洲精品国产二区图片欧美| 免费在线观看完整版高清| 日韩av在线免费看完整版不卡| 日本wwww免费看| 最近中文字幕高清免费大全6| 少妇 在线观看| 免费日韩欧美在线观看| 日本欧美国产在线视频| 99热全是精品| 国产白丝娇喘喷水9色精品| 爱豆传媒免费全集在线观看| 青春草国产在线视频| 男女国产视频网站| 国产亚洲精品第一综合不卡| 久久久欧美国产精品| 午夜福利在线观看免费完整高清在| 两个人看的免费小视频| 国产在线一区二区三区精| 天天操日日干夜夜撸| 在线观看国产h片| 国精品久久久久久国模美| 天天躁夜夜躁狠狠躁躁| 亚洲av欧美aⅴ国产| 亚洲精品国产色婷婷电影| 狂野欧美激情性bbbbbb| 午夜免费观看性视频| 国产成人精品无人区| 国产精品亚洲av一区麻豆 | 极品人妻少妇av视频| 一区二区三区乱码不卡18| 久热这里只有精品99| 亚洲精品日韩在线中文字幕| 久久ye,这里只有精品| 久久人人97超碰香蕉20202| 人成视频在线观看免费观看| 久久热在线av| 三级国产精品片| 宅男免费午夜| 精品一区二区三区四区五区乱码 | 美女脱内裤让男人舔精品视频| 免费不卡的大黄色大毛片视频在线观看| 青春草国产在线视频| 你懂的网址亚洲精品在线观看| √禁漫天堂资源中文www| 如何舔出高潮| 国产精品av久久久久免费| 日韩不卡一区二区三区视频在线| 日本av手机在线免费观看| 中文字幕亚洲精品专区| 十八禁网站网址无遮挡| 亚洲熟女精品中文字幕| 日日爽夜夜爽网站| 国产欧美日韩一区二区三区在线| 午夜福利在线观看免费完整高清在| 久久久久视频综合| 亚洲婷婷狠狠爱综合网| 日本欧美视频一区| 日韩人妻精品一区2区三区| 午夜免费鲁丝| 国产亚洲精品第一综合不卡| 男女免费视频国产| 丰满迷人的少妇在线观看| 天天影视国产精品| 大码成人一级视频| 国产成人精品一,二区| 精品一区二区免费观看| 新久久久久国产一级毛片| 精品国产一区二区久久| 日韩制服丝袜自拍偷拍| 免费观看a级毛片全部| 免费看av在线观看网站| 欧美人与性动交α欧美精品济南到 | 丁香六月天网| 久久久精品国产亚洲av高清涩受| 亚洲图色成人| 日韩伦理黄色片| 亚洲国产欧美日韩在线播放| 亚洲熟女精品中文字幕| 国产欧美日韩一区二区三区在线| 永久网站在线| 97在线视频观看| 国产成人aa在线观看| av线在线观看网站| 观看美女的网站| 香蕉精品网在线| 国产高清不卡午夜福利| 亚洲av成人精品一二三区| 亚洲精品国产av成人精品| 少妇被粗大的猛进出69影院| 成人手机av| 久久99热这里只频精品6学生| 如何舔出高潮| 国产男女超爽视频在线观看| av片东京热男人的天堂| 中文字幕精品免费在线观看视频| 999精品在线视频| 欧美黄色片欧美黄色片| 大香蕉久久成人网| 校园人妻丝袜中文字幕| 免费看av在线观看网站| 尾随美女入室| 一区在线观看完整版| 亚洲精品国产av成人精品| 亚洲久久久国产精品| 一本色道久久久久久精品综合| 久热久热在线精品观看| 老鸭窝网址在线观看| 久久精品国产综合久久久| 亚洲国产精品999| 国产成人精品婷婷| 韩国精品一区二区三区| 超色免费av| 2021少妇久久久久久久久久久| 亚洲国产日韩一区二区| 男女高潮啪啪啪动态图| 丝袜喷水一区| 26uuu在线亚洲综合色| 秋霞在线观看毛片| 天堂中文最新版在线下载| 亚洲,一卡二卡三卡| 国产又色又爽无遮挡免| 七月丁香在线播放| 亚洲av综合色区一区| 伊人亚洲综合成人网| 欧美日韩国产mv在线观看视频| 亚洲精品美女久久久久99蜜臀 | 亚洲精品久久成人aⅴ小说| 亚洲国产av影院在线观看| 在现免费观看毛片| 精品酒店卫生间| 91久久精品国产一区二区三区| 久久久a久久爽久久v久久| 成人黄色视频免费在线看| 成年人午夜在线观看视频| 久久女婷五月综合色啪小说| av天堂久久9| 免费黄网站久久成人精品| 午夜福利网站1000一区二区三区| 精品国产国语对白av| 色婷婷久久久亚洲欧美| 国产精品 欧美亚洲| 性色av一级| 边亲边吃奶的免费视频| av卡一久久| 亚洲人成网站在线观看播放| 亚洲欧洲国产日韩| 麻豆精品久久久久久蜜桃| 精品国产露脸久久av麻豆| 国产成人av激情在线播放| 午夜福利视频在线观看免费| 国产精品成人在线| 日本欧美国产在线视频| 亚洲精品美女久久久久99蜜臀 | 国产爽快片一区二区三区| 麻豆av在线久日| 在线观看美女被高潮喷水网站| 免费黄频网站在线观看国产| 欧美日韩一级在线毛片| 国产日韩欧美视频二区| 大话2 男鬼变身卡| 啦啦啦在线免费观看视频4| 久久毛片免费看一区二区三区| 亚洲av福利一区| av线在线观看网站| 免费高清在线观看视频在线观看| 女人被躁到高潮嗷嗷叫费观| 桃花免费在线播放| 久久精品aⅴ一区二区三区四区 | 黄片无遮挡物在线观看| 久久人人爽人人片av| 国产精品成人在线| av线在线观看网站| 亚洲精品国产一区二区精华液| 精品国产一区二区三区四区第35| 国产片内射在线| 久久精品国产亚洲av涩爱| 午夜免费鲁丝| 美女脱内裤让男人舔精品视频| 在线 av 中文字幕| 男女边摸边吃奶| 丝袜在线中文字幕| 最近最新中文字幕免费大全7| 91成人精品电影| 国产激情久久老熟女| 久久毛片免费看一区二区三区| 日韩成人av中文字幕在线观看| 亚洲成色77777| 中文字幕精品免费在线观看视频| 麻豆av在线久日| 亚洲精品在线美女| 性少妇av在线| 精品视频人人做人人爽| 国产成人av激情在线播放| 国产在线免费精品| 热re99久久国产66热| 国产成人精品久久久久久| 精品少妇一区二区三区视频日本电影 | 伦理电影大哥的女人| 又黄又粗又硬又大视频| 久久久亚洲精品成人影院| 国产成人欧美| 爱豆传媒免费全集在线观看| 宅男免费午夜| 久久午夜福利片| 制服丝袜香蕉在线| 久久精品久久久久久久性| 精品一区二区三区四区五区乱码 | 国产成人aa在线观看| 国产一区二区三区av在线| 亚洲国产精品国产精品| 国产精品欧美亚洲77777| 捣出白浆h1v1| 毛片一级片免费看久久久久| 欧美精品一区二区大全| 国产精品久久久久久精品古装| 国产成人91sexporn| 91成人精品电影| 欧美精品国产亚洲| 国产色婷婷99| 久久久国产一区二区| 一区二区日韩欧美中文字幕| 看非洲黑人一级黄片| 久久久久久免费高清国产稀缺| 免费人妻精品一区二区三区视频| 2022亚洲国产成人精品| 久久 成人 亚洲| 国产在线视频一区二区| 在线观看美女被高潮喷水网站| 国产淫语在线视频| 欧美精品国产亚洲| 一区二区日韩欧美中文字幕| 18禁裸乳无遮挡动漫免费视频| 久久久久久久国产电影| 黄片无遮挡物在线观看| www日本在线高清视频| 欧美日韩综合久久久久久| 啦啦啦在线免费观看视频4| 在线天堂中文资源库| 亚洲精品国产色婷婷电影| 久久久久国产精品人妻一区二区| 啦啦啦啦在线视频资源| 亚洲精品自拍成人| 成年人午夜在线观看视频| 永久网站在线| 午夜福利影视在线免费观看| 性高湖久久久久久久久免费观看| 日日摸夜夜添夜夜爱| 亚洲,欧美精品.| 午夜久久久在线观看| 亚洲国产毛片av蜜桃av| 视频区图区小说| 麻豆乱淫一区二区| 高清视频免费观看一区二区| av又黄又爽大尺度在线免费看| 黑人巨大精品欧美一区二区蜜桃| 91aial.com中文字幕在线观看| 午夜91福利影院| 十八禁网站网址无遮挡| 成人漫画全彩无遮挡| 午夜福利一区二区在线看| 亚洲精品国产色婷婷电影| 考比视频在线观看| 国产激情久久老熟女| 国产日韩欧美亚洲二区| 99热网站在线观看| 免费黄频网站在线观看国产| 亚洲成国产人片在线观看| 免费少妇av软件| 亚洲欧洲日产国产| 1024香蕉在线观看| 久久综合国产亚洲精品| 十八禁网站网址无遮挡| 一二三四中文在线观看免费高清| 人人妻人人澡人人爽人人夜夜| 人妻人人澡人人爽人人| 亚洲欧美一区二区三区黑人 | 国产精品不卡视频一区二区| 天美传媒精品一区二区| 美女高潮到喷水免费观看| 精品卡一卡二卡四卡免费| 中文字幕另类日韩欧美亚洲嫩草| 日韩免费高清中文字幕av| 免费女性裸体啪啪无遮挡网站| 国产片特级美女逼逼视频| 亚洲一区二区三区欧美精品| 性色av一级| 久久精品久久久久久噜噜老黄| videos熟女内射| 一边亲一边摸免费视频| 国产精品不卡视频一区二区| xxxhd国产人妻xxx| 亚洲av电影在线进入| 久久国内精品自在自线图片| 亚洲第一区二区三区不卡| 国产成人欧美| 午夜久久久在线观看| 国产成人精品在线电影| 亚洲欧美日韩另类电影网站| 精品一区二区免费观看| 午夜福利,免费看| 在现免费观看毛片| 最新中文字幕久久久久| 国产成人午夜福利电影在线观看| 亚洲精品国产av成人精品| 亚洲熟女精品中文字幕| h视频一区二区三区| 精品国产国语对白av| 国产精品成人在线| 亚洲国产看品久久| 99久久综合免费| 国产黄频视频在线观看| 日韩视频在线欧美| 国产成人a∨麻豆精品| 亚洲精品久久久久久婷婷小说| tube8黄色片| 啦啦啦在线免费观看视频4| 91午夜精品亚洲一区二区三区| 高清在线视频一区二区三区| 国产成人av激情在线播放| 亚洲精品aⅴ在线观看| 亚洲伊人色综图| 欧美日韩视频高清一区二区三区二| 男女下面插进去视频免费观看| 丝瓜视频免费看黄片| 美女xxoo啪啪120秒动态图| 亚洲一码二码三码区别大吗| 久久精品国产亚洲av天美| av一本久久久久| 国产精品av久久久久免费| 美女视频免费永久观看网站| 色哟哟·www| 在线天堂中文资源库| a级毛片黄视频| 亚洲伊人久久精品综合| 91精品三级在线观看| 九色亚洲精品在线播放| 成人国产av品久久久| 91精品三级在线观看| 欧美精品亚洲一区二区| 久久精品亚洲av国产电影网| 日本欧美视频一区| 嫩草影院入口| 午夜av观看不卡| 午夜福利一区二区在线看| 欧美人与性动交α欧美软件| 久久久久精品久久久久真实原创|