• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Anisotropic deformation for local shape control

    2018-01-08 05:09:55MatteoColaianniChristianSieglJochenmuthFrankBauerandntherGreiner
    Computational Visual Media 2017年4期

    Matteo Colaianni,Christian Siegl,Jochen Sü?muth,Frank Bauer,and Günther Greiner

    ?The Author(s)2017.This article is published with open access at Springerlink.com

    Anisotropic deformation for local shape control

    Matteo Colaianni1,Christian Siegl1,Jochen Sü?muth2,Frank Bauer1,and Günther Greiner1

    ?The Author(s)2017.This article is published with open access at Springerlink.com

    We present a novel approach to mesh deformation that enables simple context sensitive manipulation of 3D geometry.The method is based on locally anisotropic transformations and is extended to global control directions. This allows intuitive directional modeling within an easy to implement framework. The proposed method complements current sculpting paradigms by providing further possibilities for intuitive surface-based editing without the need for additional host geometries.We show the anisotropic deformation to be seamlessly transferable to free boundary parameterization methods,which allows us to solve the hard problem of flattening compression garments in the domain of apparel design.

    anisotropy; modeling; as-rigid-aspossible (ARAP); deformation;parameterization

    1 Introduction

    When manipulating 3D geometry,artists often use methods that rely on host geometries such as cages,rigs,or control polygons. In contrast,approaches for articulated surface modeling exist such as sculpting. All these methods–with and without a rig–exhibit a lack of directional control while editing.To elongate parts of a mesh(e.g.,the legs of a dog,see Fig.1),an artist can use,amongst other methods,a cage attached to the mesh. However,such linear methods often lead to undesired results,as features are not preserved(see Fig.9,cage based).On the other hand,sculpting methods lack intuitive tools for directional operations such as elongation or thickening.In this work,we present a highly accessible approach to mesh modeling by combining a novel directional formulation with known surface-based deformation methods.We thus include direction dependent transformations directly into deformation energy formulations–namelyanisotropic as-rigidas-possible(AnARAP)anddeformation gradientbased editing(AnDefGrad).Using our method,the artist is able to transform parts of an object along on-surface directions while preserving essential shape features.Affine transformations–such as scaling,shearing,or rotation–enable many aspects of locally articulated modeling.Deformation directions are defined by generic vector fields or as user input.Using spatially varying directions(as used in expression editing,see Fig.10)even goes beyond the possibilities of proxy-based or linear methods.Figure 1 shows a dog with different edits to locally selected parts. By using the same basic intuition of on-surface directions,the presented work also transfers anisotropic deformation to the domain of mesh parameterization.This tackles an important problem in the apparel industry:meaningful shrinkage calculation for functional compression garments,along previously defined directions.We show that the method works for different formulations of surface elements:triangles(for both deformation gradients and ARAP parameterization)and triangle-fans(for ARAP).This work contributes by enabling:

    ?an enhancement to deformation methods that includes intuitive direction dependent modeling;

    ?a flexible way of defining deformation directions via fields or local or global directions;

    ?the possibility of flattening complex functional garments.

    Fig.1 Anisotropic deformation paradigm enables directionally aligned modeling without the need for a rig.The original model(right)was edited part-wise to change shape characteristics,such as the length and thickness of legs,body,ears,or tail(left).

    2 Previous work

    Modeling of surfaces based on skeletal rigging has a long tradition in mesh deformation[1–3].This easily enables directed deformations with respect to bones while other directions may not be that intuitive to model without deformation interpolation of affine matrices.In contrast,our method enables deformations along directions–even non-linear–on the surface itself. An alternative approach is to deform meshes by using cages as low-resolution proxies[4]as well as by replacing linear blending by a biharmonic scheme presented by Jacobson et al.[5].While offering more flexibility in the control of direction they still are based on an additional deformation geometry.As-rigid-as-possible(ARAP)deformation was used for 2D shape modeling by Igarashi et al.[6],constraining a deformation to behave in a rubber-like way. This was picked up for 3D mesh manipulation by Sorkine and Alexa[7]and Wang et al.[8].However,the issue of anisotropic articulated modeling was not considered by earlier works on ARAP modeling. Mesh manipulation based on the transfer of per-triangle deformation gradients was introduced by Sumner and Popovi′c[9].In the same fashion,arbitrary affine transformations applied to nodes to provide direct and intuitive deformation were presented by Sumner et al.[10]. More recently,modeling methods for articulated,organic shapes based on polar and quad representations have been presented in Refs.[11,12].

    Parameterizing meshes using ARAP methods was introduced by Liu et al.[13],extended for length conservation by Zhang and Wang[14]and further extended by Smith and Schaefer[15].When developing functional garments based on pattern shrinkage during compression[16],directed geometry manipulation is crucial.Their proposed scaling method is based on mechanical fabric properties but does not inherently include directional deformation in order to achieve per surface compression control.

    3 Anisotropic deformation

    In order to allow intuitive control while deforming a model in a directional manner,e.g.,scaling or shearing parts of an object,we introduce anisotropic transformation to two different surface based deformation methods.An artist defines the part he wants to modify by selecting a set of vertices on the surface and provides a direction with the desired amount of deformation.The system then modifies the model in an articulated,feature preserving way while performing the desired directed deformation.This deformation is not driven by boundary conditions or handles,but instead the selected surface elements are directly deformed to locally alter the shape.This local shape shift is then considered by the solver as an extension to the energy formulation and changes the global shape of the geometry. Since the basic intuition of the presented work is to apply deformation to discrete surface elements(i.e.,triangles or trianglefans),it is not restricted to a specific surface representation. Different transformations–such as scaling,shear,and rotation–are introduced and embedded in two basic deformation methods:ARAP modeling[6,7]and deformation gradients[9].

    3.1 Anisotropic ARAP(AnARAP)

    ARAP deformation minimizes the non-rigid remainder of a deformation.Therefore,the currently deformed instance of a mesh is compared to the reference shape. In the original work(see Ref.[7]),the error is defined to be the difference between two rigidly aligned corresponding vertex neighborhoods.We present a method extending this formula by including the anisotropy directly into the deformation energy.Essentially,the reference shape is transformed non-uniformly on a disjunct,per surface element level.For this,the anisotropic ARAP energy is defined as

    The matrixTidefines the desired affine mapping for transforming the local surface elements.

    3.1.1Solving for anisotropic ARAP

    In the spirit of the work by Sorkine and Alexa[7]the solution for the best vertex positions is found in an iterative flip- flop fashion with a local phase and a global phase.In the local phase,we achieve this by additionally transforming the reference vertices bywhen seeking the best rotations–this holds for transformations with no rotation part.To solve for the best global vertex positions,our method directionally transforms the reference shape’s vertices as well.sparse linear system is built from the partial derivatives of the AnARAP energy with respect to the reference shape’s positionsRegarding a vertexvi,the equation is written as

    When using local trans formations that include rotations,the local phase has to be modified.Solving this step seeks the rotation that aligns two fans rigidly. Performing this step for rotated target geometrieswill cause ARAP deformation to counteract the rotation,which is not the desired effect. Instead,we compare the deformed fan in the local phase to a transformed target without the rotational portion.

    3.2 Anisotropic deformation gradient

    Modeling with anisotropy is not restricted to ARAP deformation.Some shapes exhibit organic behaviour when deforming them using ARAP methods,and this may not always be intended by the user.Therefore,we introduce the same intuition to the method ofdeformation transfer[9]to enable anisotropic modeling.The original work represents a mesh’s deformation as a collection of per-triangle affine transformations.This encoding subsequently is used to decode a topologically equivalent mesh which leads to a deformation transfer.Our method follows this basic intuition and encodes a source which–in the decoding step–is applied to the original mesh in order to deform it.In contrast,our source transformations are not derived from a mesh,but we directly use the desired edits as an encoding.The initial transformationfor a trianglejis the identityA decoding of the mesh using this set of identities will not cause a deformation.As in the anisotropic ARAP extension,the user defines a set of vertices and a direction dependent transformation(e.g.,scaling,rotation,or shear)to drive the deformation.UsingAnDefGrad,we replace the initially set identities for affected triangles by the desired local transformationAs a result,the encoding for a deformation iswithbeing the set of triangles anda 3×3 affine matrix for affected triangles;is used for unaffected triangles.To decode the mesh with the desired transformations,we solve the sparse linear system:

    with the unknown deformed vertex positions?vand the weight-sensitive adjacency matrix:

    Note thatwijis zero whenever the verticesiandjdo not share an edge.Adjacency weights between two vertices depend on the adjacent triangles to this edge.wiiis the summed edge weight for all edges adjacent to the vertexi.The right-hand sidecis the sum of each disjunct triangle corner position PFor efficiency reasons,we pre-factorize the matrixonce and solve the system for spatially separated positions.Figure 2 depicts the difference between the ARAP based and the deformation gradient based anisotropic deformation methods on an example,for a scaling of the orange vertices.In contrast to the modified ARAP method,this method leads to a more local solution and the triangle deformation at the selection boundary exhibits a higher discontinuity.Depending on the need(a more organic versus a more articulated style of feature preservation),one of the two methods can be selected.

    3.3 Local affine transformations

    3.3.1Anisotropic scaling

    One possible transformationis a scaling along a local vector field.Withsuandsvas the scale-factors in vertexi’s tangent plane,the matrix is de fined as

    Ciis the local basis of the vertexvialigned to the desired direction of deformationci:

    Figure 3(top)shows the scaling in a local vertex–fan space.

    Anisotropic shearing.Using an affine shearing to deform the surface of a mesh follows the same principle as directed scaling.The per-vertex applied matrixTisimply is modified to be a local shearing(exemplary for a shear along thex-axis):

    Fig.2 Parts of a torus(left)are elongated using anisotropic deformation gradients(middle)and ARAP deformation(right).While the deformation gradient based method exhibits a high discontinuity of triangle sizes,the deformation using anisotropic ARAP deformation is distributed more globally over the selection border.

    Fig.3 Top:instead of aligning the currently deformed vertex fan(green)to the reference mesh’s fan(blue),we scale the neighborhood ?viby the directed scaling Ti(red).Bottom:the triangle case for the parameterization is shown accordingly.

    With this,a geometry can be sheared,as depicted in Fig.4.

    3.3.2Anisotropic rotation

    In the same fashion,local rotations are performed by a simple modification toTi.Replacing the local transformationSby a rotation matrix leads to

    Fig.4 The original geometry(left)is sheared using AnARAP(middle)as well as AnDefGrad(right)deformations.The organic appearance of ARAP is visible.The modified deformation gradient method gives more control.The orange regions are involved in the deformation while the blue ones are unaffected.

    The organic character of ARAP leads to less predictable results due to the organic fashion of the deformation(see Fig.5(middle)).For certain scenarios and low strengths,this appearance is preferable to the results of the gradient-based method(see Fig.5(right)).

    3.4 Deformation directions

    The local frame to which the transformations are aligned is spanned by the normaland the tangent vectorsand. In the present work we give several possibilities for creating deformation directions.Avector fieldfollowing principal curvature directions[17]is used for the snake example in Fig.8.Theprojection of screen space directionsonto the surface enables an intuitive way of modeling without the need for a previously determined vector field. However,this method is obviously limited to directions which are not parallel to the surface’s normal direction.Finally,aglobal directioncan immediately be used as the deformation direction(see Figs.4,5,and 6).

    Fig.5 The post(left)is rotated locally at the selected vertices to become a hook.The AnARAP approach(middle)exhibits more global deformation while AnDefGrad(right)has more local control.

    Fig.6 The selected(orange)vertices of the post are twisted using anisotropic deformation gradients along a global direction.The twist angle increases with height.The torsion frequency is increased from left to right.

    Fig.7 Anisotropic deformation is performed by selecting vertices(orange)and applying different classes of deformations. Top:a stretch transformation performs anisotropic scaling along the desired direction. Bottom: a local rotation of the surface elements is performed for two different rotation axes.The blue regions remain unaffected and,therefore,act as deformation constraints.

    Elongation of parts can be achieved using a skeleton which involves tedious and unintuitive rigging.By interpolating the bone transformations,it is even possible to achieve a spatial dependency of deformation directions.Our method not only eases this process by allowing on-surface direction control,but it expands this possibility by allowing arbitrary,even procedural or user-painted deformation directions.This is demonstrated in facial expression modeling in Fig.10(top),where the direction field varies its orientation across the lips.

    4 Applications and results

    4.1 Modeling with the directional method

    Fig.8 A curvature-aligned direction field is used to deform the snake.Top:the snake is scaled parallel to the field to elongate it–its thickness is well preserved.Bottom:deformation is performed perpendicular to the field to achieve a thickening–its length is well preserved.

    Using the presented directional modeling approach,a user can select parts of an object and perform deformation along arbitrary directions. In doing so,a set of vertices is selected and different local transformations can be applied. The shape intuitively deforms accordingly. In Fig.7,local scaling and rotation transformations are depicted.The deformation is shown to follow the desired direction while the features are preserved. In contrast,the snake in Fig.8 was deformed along an automatically-defined vector field along the surface.A deformation parallel to the field elongates the snake maintaining its diameter,while scaling orthogonal to the field preserves its length.We compare the two different incarnations of our method to commonly used approaches in directional modeling: cage-based deformation(see Fig.9)and handle-based modeling via isotropic ARAP deformation. As the chess piece is elongated,significant features,e.g.,the rims below the head and at the bottom,should remain as similar as possible to their original shapes.The cage based approach stretches the shape uniformly,leading to less pronounced features. Likewise,AnARAP deformation produces a result which does not strongly preserves features–the shape becomes organic. This is an inherent property of ARAP methods,where edges are smoothed by three dimensional rotations of the fans. Naturally,the original ARAP method’s performance is poor as well. Using AnDefGrad preserves sharp features much better with respect to the original object,due to the highly local deformation approach of deformation gradients.In addition,the benefit of using an anisotropic formulation of the deformation in contrast to the regular(isotropic)energy is also shown in Fig.9.The original ARAP method is used to calculate the deformation for an elongated chess piece without considering anisotropy while using the inherently anisotropic deformation elongates the geometry in a more feature-preserving way,because the penalty is restricted orthogonally to the desired deformation energy.

    Fig.9 The original geometry(left)is linearly elongated using single cage-based deformation. Regular ARAP deformation and anisotropic ARAP deformation(AnARAP)results are shown in comparison.Note that feature sharpness is lost using an isotropic energy formulation.Overall,ARAP–with or without anisotropy–does not perform as well at sharp edges as the anisotropic deformation gradient modeling(AnDefGrad).

    4.1.1Facial sculpting

    Fig.10 Top:the vector field(left)is bent along the lips to cause the Roman bust(middle)to smile(right).Bottom:the beard is elongated along a vector field on the surface.

    We present an other strength of the method by altering the facial expression of an ancient Roman bust using anisotropic deformation(see Fig.10(top)).A vector field is defined across the lips which changes direction depending on the distance to the corners of the mouth.AnARAP deformation is used to stretch the surface along the altering field leading to a different but still articulated expression.This result is achieved with little modeling input–a vector field changing over surface and a deformation strength is defined–and thus,it is highly accessible to the user.To show that even high-frequency features are well preserved,we elongate the beard of the face as shown in Fig.10(bottom).Here,the beard becomes longer following a constrained direction defined on the surface.

    4.2 AnARAP parameterization for compression garments

    Our method is not restricted to mesh deformation for the purpose of sculpting-inspired modeling.We show that the directional scaling can be applied to the parameterization method introduced by Ref.[13].Since our directional scaling is invariant to the surface elements(triangles or fans)used,the method can easily be used to also enrich the above formulation by adding anisotropy(see Fig.3(bottom)). Using anisotropy for free boundary parameterization solves an important issue in apparel design: flattening cut pieces for cloth production with proper compression scaling.Functional garments are important in the field of sports,and garment development pipelines are more and more influenced by virtual technologies.Including compression into the cloth is usually achieved by shrinkage of the flat cut piece. To increase compression while not shortening the garment,this scaling currently is performed nonuniformly along one single direction in 2D.This makes it hard to properly shrink patterns with more complex shapes deviating from this single direction.Our current methods allow us to define the shrinkage for local positions independently,and in 3D.Forcing the directionscifor some target verticesvion the surface gives the user control over the compression behavior at desired positions(see the arrows below the armpit in Fig.11(left)).In this example,compression is applied to support the area below the arms.The constrained compressions are propagated over the whole surface patch and the cut piece is computed by flattening the original surface subset. Solving for the best parameterization while taking the local,directed shrinkage into account leads to the desired compression scaling even for complex shapes.In contrast to state-of-the art shrinkage (Fig.11(scaled)), our approach distributes compression along defined field directions(Fig.11(AnARAP)).The anisotropic parameterization for garment pattern development was used to extend the pipeline presented in Ref.[18].Figure 12 shows a short pipeline overview of how user-defined shrinkage-directions result in a sewn functional garment with the desired compression behavior.

    Fig.11 The desired compression directions are de fined for a patch(left). The original method of scaling fails to distribute the compression well(middle).Our method maintains the desired compression over the whole surface.

    5 Discussion

    Limitations.The method presented exhibits a major limitation in the inconvenient need for a deformation direction as a user input.Although the method is based on a vector field distributed on surface,one can exchange the direction generation for more convenient and intuitive methods.As with many modeling methods,a high amount of deformation results in an inhomogeneous distribution of differently sized triangles. This is solvable by re-triangulation of the mesh but not considered further here because an expensive recalculation of the system matrix is required. AnDefGrad and AnARAP exhibit similar performance with respect to conservation of low-frequency shape features(see Figs.7 and 8).For high-frequency features(e.g.,creases and sharp borders)AnARAP performs worse than AnDefGrad(see Fig.9);it should only be used for organic shapes.However,AnARAP results in more continuous triangle sizes,which is well suited for low-frequency modeling(see Fig.2). Finally,the projection of global or screen directions onto the surface includes an obvious drawback:directions orthogonal to the surface result in undetermined behavior and need special treatment.

    Conclusions.In this paper we have presented a method to enrich sculpting-and modeling-based mesh deformation,providing directional control of surface deformations. We have shown that the method allows intuitive deformation of surfaces,while maintaining semantic features of the original shape well. In contrast to other methods,the presented deformation paradigm does not rely on handles or constraints.Surface regions are selected and the deformation is directly applied to the selection.Different affine transformations:scaling,shearing,and rotation,are implemented in the framework for two exisiting deformation paradigms:ARAP deformation and deformation gradients.The method of generating deformation directions can easily be replaced. We have presented shape manipulation along different kinds of on-surface directions as well as surface-aligned anisotropy for facial modeling.As anisotropic scaling is applicable to mesh parameterization,it is well suited to solving an important restriction in functional apparel development.

    Acknowledgements

    We want to thank Blendswap artists Calore for the cobra,Metalix for the dog,and Nerotbf for the Roman bust.

    [1]Magnenat-Thalmann,N.;Laperri`ere,R.;Thalmann,D.Joint-dependent local deformations for hand animation and object grasping.In:Proceedings on Graphics Interface,26–33,1988.

    [2]Baran,I.; Popovi′c, J.Automatic rigging and animation of 3D characters.ACM Transactions on GraphicsVol.26,No.3,Article No.72,2007.

    [3]Jacobson,A.;Sorkine,O.Stretchable and twistable bones for skeletal shape deformation.ACM Transactions on GraphicsVol.30,No.6,Article No.165,2011.

    [4]Nieto,J.R.;Sus′?n,A.Cage based deformations:A survey.In:Deformation Models.Hidalgo,M.;Torres,A.M.;G′omez,J.V.Eds.Springer Netherlands,75–99,2013.

    [5]Jacobson,A.; Baran,I.; Popovi′c,J.; Sorkine-Hornung,O.Bounded biharmonic weights for realtime deformation.Communications of the ACMVol.57,No.4,99–106,2014.

    [6]Igarashi,T.;Moscovich,T.;Hughes,J.F.As-rigidas-possible shape manipulation.ACM Transactions on GraphicsVol.24,No.3,1134–1141,2005.

    [7]Sorkine,O.;Alexa,M.As-rigid-as-possible surface modeling.In:Proceedings of the 5th Eurographics Symposium on Geometry Processing,109–116,2007.

    [8]Wang,Y.;Jacobson,A.;Barbiˇc,J.;Kavan,L.Linear subspace design for real-time shape deformation.ACM Transactions on GraphicsVol.34,No.4,Article No.57,2015.

    [9]Sumner,R.W.;Popovi′c,J.Deformation transfer for triangle meshes.ACM Transactions on GraphicsVol.23,No.3,399–405,2004.

    [10]Sumner,R.W.;Schmid,J.;Pauly,M.Embedded deformation for shape manipulation.ACM Transactions on GraphicsVol.26,No.3,Article No.80,2007.

    [11]B?rentzen,J.A.;Abdrashitov,R.; Singh,K.Interactive shape modeling using a skeleton-mesh corepresentation.ACM Transactions on GraphicsVol.33,No.4,Article No.132,2014.

    [12]Usai,F.;Livesu,M.;Puppo,E.;Tarini,M.;Scateni,R.Extraction of the quad layout of a triangle mesh guided by its curve skeleton.ACM Transactions on GraphicsVol.35,No.1,Article No.6,2015.

    [13]Liu,L.;Zhang,L.;Xu,Y.;Gotsman,C.;Gortler,S.J.A local/global approach to mesh parameterization.Computer Graphics ForumVol.27,No.5,1495–1504,2008.

    [14]Zhang,Y.;Wang,C.C.L.WireWarping++:Robust and flexible surface flattening with length control.IEEE Transactions on Automation Science and EngineeringVol.8,No.1,205–215,2011.

    [15]Smith,J.;Schaefer,S.Bijective parameterization with free boundaries.ACM Transactions on GraphicsVol.34,No.4,Article No.70,2015.

    [16]Krzywinski, S.VerbindungvonDesignund KonstruktionindertextilenKonfektionunter Anwendung von CAE.TUDpress,2005.

    [17]Crane,K.; Desbrun,M.; Schr?der,P.Trivial connections on discrete surfaces.Computer Graphics ForumVol.29,No.5,1525–1533,2010.

    [18]Colaianni,M.;Siegl,C.;Sü?muth,J.;Rott,F.;Greiner,G.Shape adaptive cut lines.In:Proceedings of the Eurographics Workshop on Graphics for Digital Fabrication,49–55,2016.

    1 Computer Graphics Group, University Erlangen-Nuremberg, 91058 Erlangen, Germany. E-mail:M.Colaianni,matteo.colaianni@fau.deC.Siegl,christian.siegl@fau.de;F.Bauer,frank.bauer@fau.de;G.Greiner,guenther.greiner@fau.de.

    2Adidas AG,Adi-Dassler-Strasse1,91074 Herzogenaurach,Germany.E-mail:jochen.suessmuth@adidas-group.com.Manuscript

    2017-03-07;accepted:2017-05-30

    MatteoColaianniis a Ph.D.candidate in the Computer Graphics Group of the University of Erlangen-Nuremberg. His research focus is geometry processing in the field of apparel design and statistical shape analysis.

    Christian Sieglis a Ph.D.candidate in the Computer Graphics Group of the University of Erlangen-Nuremberg.His research focuses on mixed-reality using projection mapping, medicalimage processing,and the virtual creation of apparel.

    JochenSu¨?muthcompletedhis Ph.D.degree on geometry processing in Erlangen University in 2011.After that,he joined the Adidas group where he is currently working as a researcher in the field of computer graphics.

    Frank Baueris a research fellow in the Computer Graphics Group of the University of Erlangen-Nuremberg.His research focuses on 3D scene reconstruction, augmented, mixed and virtual-reality applications,and accessible human–machine interactions.

    Günther Greineris the head of the Computer Graphics Group of the University of Erlangen-Nuremberg.His research focuses on geometry processing and geometric modelling.

    Open AccessThe articles published in this journal are distributed under the terms of the Creative Commons Attribution 4.0 International License(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,distribution,and reproduction in any medium,provided you give appropriate credit to the original author(s)and the source,provide a link to the Creative Commons license,and indicate if changes were made.

    Other papers from this open access journal are available free of charge from http://www.springer.com/journal/41095.To submit a manuscript,please go to https://www.editorialmanager.com/cvmj.

    国产亚洲欧美精品永久| 久久久亚洲精品成人影院| 五月伊人婷婷丁香| 亚洲国产精品一区三区| 韩国av在线不卡| 精品视频人人做人人爽| 国产av码专区亚洲av| 久久久久精品久久久久真实原创| 好男人视频免费观看在线| 国产精品久久久久久精品古装| 成年女人在线观看亚洲视频| 亚洲av欧美aⅴ国产| 国产伦精品一区二区三区视频9| 国产亚洲最大av| 国产亚洲精品久久久com| 亚洲精品一区蜜桃| 色网站视频免费| 国产欧美日韩综合在线一区二区| av在线播放精品| 妹子高潮喷水视频| 国产午夜精品一二区理论片| 欧美亚洲 丝袜 人妻 在线| xxx大片免费视频| 成人无遮挡网站| 久久精品国产a三级三级三级| 在线精品无人区一区二区三| 国产精品无大码| 成人18禁高潮啪啪吃奶动态图 | 黄色欧美视频在线观看| 伊人亚洲综合成人网| 桃花免费在线播放| 丰满少妇做爰视频| 国产亚洲精品第一综合不卡 | 亚洲怡红院男人天堂| 国产高清有码在线观看视频| 黑人巨大精品欧美一区二区蜜桃 | 草草在线视频免费看| 久久精品久久精品一区二区三区| 欧美成人午夜免费资源| 日韩熟女老妇一区二区性免费视频| 大香蕉久久成人网| 国产精品女同一区二区软件| 欧美 日韩 精品 国产| 国产在线视频一区二区| 最黄视频免费看| 亚洲国产精品一区三区| 久久99热6这里只有精品| 久久久国产欧美日韩av| 在线播放无遮挡| 免费观看在线日韩| 国产熟女午夜一区二区三区 | 日本欧美视频一区| 男女无遮挡免费网站观看| 免费人成在线观看视频色| 久热久热在线精品观看| 日韩伦理黄色片| 精品久久久久久电影网| 国产国拍精品亚洲av在线观看| 亚洲精品国产色婷婷电影| 亚洲精品乱码久久久久久按摩| 久久精品人人爽人人爽视色| tube8黄色片| 狂野欧美激情性bbbbbb| 日本爱情动作片www.在线观看| 亚州av有码| 国产 一区精品| 爱豆传媒免费全集在线观看| 久久久久人妻精品一区果冻| 国产欧美另类精品又又久久亚洲欧美| 欧美国产精品一级二级三级| 亚洲内射少妇av| 国产高清有码在线观看视频| 夜夜骑夜夜射夜夜干| 国产精品久久久久久精品电影小说| 亚洲欧美日韩另类电影网站| 欧美亚洲日本最大视频资源| 中文字幕制服av| 男女无遮挡免费网站观看| 免费看不卡的av| 女人久久www免费人成看片| 亚洲国产精品一区二区三区在线| 蜜臀久久99精品久久宅男| 人人妻人人澡人人看| 午夜日本视频在线| 国产亚洲最大av| 韩国高清视频一区二区三区| 日日啪夜夜爽| 伊人久久精品亚洲午夜| 久久99一区二区三区| 99精国产麻豆久久婷婷| 岛国毛片在线播放| 母亲3免费完整高清在线观看 | 亚洲情色 制服丝袜| 久久国产亚洲av麻豆专区| 亚洲四区av| 三上悠亚av全集在线观看| 久久国产精品男人的天堂亚洲 | 国产精品久久久久久久电影| 天天躁夜夜躁狠狠久久av| 三级国产精品欧美在线观看| 日本av免费视频播放| 极品人妻少妇av视频| 亚洲av.av天堂| av天堂久久9| 黄色毛片三级朝国网站| 一级毛片我不卡| 亚洲五月色婷婷综合| 欧美成人午夜免费资源| 考比视频在线观看| 伦理电影大哥的女人| a级毛片在线看网站| 欧美日韩视频精品一区| 少妇丰满av| 国模一区二区三区四区视频| 亚洲三级黄色毛片| 日本色播在线视频| 插阴视频在线观看视频| 日韩电影二区| 欧美日韩在线观看h| 免费观看无遮挡的男女| 夜夜爽夜夜爽视频| 欧美日韩视频精品一区| 午夜老司机福利剧场| 国产成人精品一,二区| 成人毛片a级毛片在线播放| 男女高潮啪啪啪动态图| 热re99久久精品国产66热6| 伦精品一区二区三区| 日韩伦理黄色片| 日韩免费高清中文字幕av| 日本91视频免费播放| 插逼视频在线观看| 午夜久久久在线观看| 黄色视频在线播放观看不卡| 亚洲,欧美,日韩| 日韩精品有码人妻一区| 大香蕉97超碰在线| 国产成人一区二区在线| 日韩三级伦理在线观看| 999精品在线视频| 黄色配什么色好看| 亚洲精品乱久久久久久| 国产精品久久久久久精品古装| 精品人妻熟女毛片av久久网站| 看非洲黑人一级黄片| 日韩欧美精品免费久久| 在线播放无遮挡| 久久精品久久久久久噜噜老黄| 午夜福利影视在线免费观看| h视频一区二区三区| 亚洲av中文av极速乱| 国产高清有码在线观看视频| 久久狼人影院| 日本色播在线视频| 下体分泌物呈黄色| 高清视频免费观看一区二区| 久久久久久久久大av| 国产精品久久久久久精品电影小说| 久久久精品免费免费高清| 一区在线观看完整版| 亚洲精品av麻豆狂野| 欧美成人午夜免费资源| 亚洲av中文av极速乱| 日日爽夜夜爽网站| 日本91视频免费播放| 亚洲精品aⅴ在线观看| 黑人欧美特级aaaaaa片| 成年av动漫网址| 永久网站在线| 久久 成人 亚洲| 伊人久久国产一区二区| 日韩一本色道免费dvd| 黄色怎么调成土黄色| 九九爱精品视频在线观看| 久久国产精品大桥未久av| 3wmmmm亚洲av在线观看| 99九九线精品视频在线观看视频| 2021少妇久久久久久久久久久| 亚洲国产欧美日韩在线播放| 美女中出高潮动态图| 久久久久久久久久久免费av| 五月伊人婷婷丁香| av国产精品久久久久影院| 人妻人人澡人人爽人人| 国产精品国产三级国产专区5o| 午夜免费男女啪啪视频观看| 亚洲一区二区三区欧美精品| av又黄又爽大尺度在线免费看| 亚洲国产精品成人久久小说| 秋霞伦理黄片| 久久热精品热| 一边亲一边摸免费视频| 美女国产高潮福利片在线看| 国产亚洲av片在线观看秒播厂| 人妻制服诱惑在线中文字幕| 制服诱惑二区| 中国国产av一级| 99热这里只有是精品在线观看| 日韩成人伦理影院| 欧美精品一区二区免费开放| 成人18禁高潮啪啪吃奶动态图 | 国产成人freesex在线| 婷婷色综合大香蕉| 国产成人a∨麻豆精品| 乱人伦中国视频| 国产在线视频一区二区| 亚洲欧美精品自产自拍| 七月丁香在线播放| 国语对白做爰xxxⅹ性视频网站| 91国产中文字幕| 一级,二级,三级黄色视频| 精品久久久久久电影网| 校园人妻丝袜中文字幕| 韩国av在线不卡| 日韩成人伦理影院| 亚洲精品日韩av片在线观看| 久久久国产一区二区| 中文字幕精品免费在线观看视频 | 熟女人妻精品中文字幕| 国产一区有黄有色的免费视频| 伦精品一区二区三区| 欧美日韩成人在线一区二区| 亚洲精品色激情综合| 色婷婷久久久亚洲欧美| 老熟女久久久| 久久鲁丝午夜福利片| 日韩中字成人| 午夜福利视频精品| 内地一区二区视频在线| 夫妻性生交免费视频一级片| 日韩不卡一区二区三区视频在线| 中文字幕av电影在线播放| 性色av一级| 97超碰精品成人国产| 纵有疾风起免费观看全集完整版| 久久97久久精品| 在线观看免费视频网站a站| 男人操女人黄网站| 夜夜骑夜夜射夜夜干| 亚洲欧美成人精品一区二区| 国产男女内射视频| 国产爽快片一区二区三区| 永久免费av网站大全| 亚洲精品av麻豆狂野| 大又大粗又爽又黄少妇毛片口| 精品久久久久久久久亚洲| 人妻少妇偷人精品九色| 国产男女超爽视频在线观看| 亚洲欧美日韩卡通动漫| 人人妻人人爽人人添夜夜欢视频| 精品久久久久久久久av| 老熟女久久久| 国产 一区精品| 国产精品久久久久久精品电影小说| 国产一区二区三区综合在线观看 | 免费黄色在线免费观看| 国产av码专区亚洲av| 日本爱情动作片www.在线观看| 成年女人在线观看亚洲视频| 久久久久久伊人网av| 婷婷成人精品国产| 一级,二级,三级黄色视频| 午夜福利视频精品| 久久久久国产网址| 校园人妻丝袜中文字幕| 男人添女人高潮全过程视频| 男的添女的下面高潮视频| 国产一区二区在线观看av| 18禁在线播放成人免费| 久久精品国产鲁丝片午夜精品| 夜夜看夜夜爽夜夜摸| 国产精品人妻久久久影院| 五月天丁香电影| 少妇被粗大的猛进出69影院 | 成人毛片60女人毛片免费| 日韩强制内射视频| 久久久精品区二区三区| 久久狼人影院| 插逼视频在线观看| 久久精品久久久久久噜噜老黄| 久久人人爽av亚洲精品天堂| 欧美xxxx性猛交bbbb| 亚洲精华国产精华液的使用体验| 亚洲精品久久久久久婷婷小说| 视频中文字幕在线观看| 久久久久久人妻| 成人亚洲精品一区在线观看| 99热国产这里只有精品6| 黄色毛片三级朝国网站| 欧美 日韩 精品 国产| 亚洲人成77777在线视频| 美女国产视频在线观看| 高清欧美精品videossex| 在线观看免费视频网站a站| av网站免费在线观看视频| 精品一区在线观看国产| 免费看av在线观看网站| 黑丝袜美女国产一区| 国产一区二区在线观看av| 国产黄片视频在线免费观看| 自线自在国产av| 亚洲久久久国产精品| 大香蕉久久成人网| 国产片内射在线| 99热这里只有是精品在线观看| 欧美激情国产日韩精品一区| 亚洲精品日韩av片在线观看| 日本av手机在线免费观看| 在线观看www视频免费| 免费看不卡的av| av网站免费在线观看视频| 欧美日韩精品成人综合77777| 黄色毛片三级朝国网站| 蜜桃久久精品国产亚洲av| 亚洲欧美精品自产自拍| 国产高清国产精品国产三级| 免费看av在线观看网站| 色网站视频免费| 国产国拍精品亚洲av在线观看| 99热这里只有是精品在线观看| 亚洲成人av在线免费| 18禁裸乳无遮挡动漫免费视频| 一级毛片我不卡| 夜夜爽夜夜爽视频| 街头女战士在线观看网站| 久久久久久久精品精品| 老熟女久久久| 国产免费福利视频在线观看| 国产av国产精品国产| 成人综合一区亚洲| 久久人人爽人人爽人人片va| 精品一品国产午夜福利视频| 亚洲综合色网址| 亚洲精品国产av蜜桃| 久久99蜜桃精品久久| 狂野欧美激情性bbbbbb| 亚洲av欧美aⅴ国产| 插阴视频在线观看视频| 肉色欧美久久久久久久蜜桃| 精品久久久精品久久久| 你懂的网址亚洲精品在线观看| videossex国产| 亚洲成色77777| 一二三四中文在线观看免费高清| 十八禁网站网址无遮挡| 国产成人av激情在线播放 | 少妇丰满av| 久久久久久久大尺度免费视频| 国产精品偷伦视频观看了| 丝袜脚勾引网站| 夜夜看夜夜爽夜夜摸| 超色免费av| 亚洲av免费高清在线观看| 肉色欧美久久久久久久蜜桃| av电影中文网址| 九草在线视频观看| 91精品伊人久久大香线蕉| 女人久久www免费人成看片| 免费观看无遮挡的男女| 免费av不卡在线播放| 嫩草影院入口| 国产有黄有色有爽视频| 日韩亚洲欧美综合| 天天躁夜夜躁狠狠久久av| 黄色视频在线播放观看不卡| av网站免费在线观看视频| 99久久综合免费| 亚洲精品久久成人aⅴ小说 | 国产免费又黄又爽又色| 大话2 男鬼变身卡| 91在线精品国自产拍蜜月| 亚洲三级黄色毛片| 亚洲av成人精品一二三区| 国产亚洲精品久久久com| 欧美激情国产日韩精品一区| 国产一区亚洲一区在线观看| 18禁动态无遮挡网站| 成人毛片a级毛片在线播放| 日韩成人av中文字幕在线观看| 久久久国产欧美日韩av| 久久女婷五月综合色啪小说| 五月玫瑰六月丁香| 女的被弄到高潮叫床怎么办| 午夜福利网站1000一区二区三区| 啦啦啦视频在线资源免费观看| 少妇精品久久久久久久| 亚洲精品视频女| 一二三四中文在线观看免费高清| 男女无遮挡免费网站观看| 一区在线观看完整版| 国产精品嫩草影院av在线观看| 欧美老熟妇乱子伦牲交| 少妇丰满av| 秋霞在线观看毛片| 欧美xxⅹ黑人| 国产成人免费无遮挡视频| 午夜影院在线不卡| 亚洲精品,欧美精品| 亚洲色图综合在线观看| 亚洲国产av新网站| 热re99久久精品国产66热6| 成人免费观看视频高清| 国产成人91sexporn| 特大巨黑吊av在线直播| av网站免费在线观看视频| 亚洲高清免费不卡视频| 欧美人与善性xxx| 亚洲欧洲日产国产| 高清在线视频一区二区三区| 亚洲精品,欧美精品| 久久99热6这里只有精品| 亚洲色图 男人天堂 中文字幕 | 一级黄片播放器| 国产黄频视频在线观看| 熟妇人妻不卡中文字幕| 日韩三级伦理在线观看| 国产午夜精品一二区理论片| 18禁在线播放成人免费| videosex国产| 久久午夜福利片| 日本免费在线观看一区| 久久久久精品性色| 91国产中文字幕| 国产无遮挡羞羞视频在线观看| 日本与韩国留学比较| 91精品国产九色| 亚洲国产av新网站| 亚洲三级黄色毛片| 欧美性感艳星| 色94色欧美一区二区| 一区二区三区免费毛片| 午夜福利在线观看免费完整高清在| 亚洲国产色片| 久久99精品国语久久久| 国产爽快片一区二区三区| 一区二区av电影网| 免费黄频网站在线观看国产| 夫妻午夜视频| 国产在线视频一区二区| 精品少妇内射三级| 国产熟女欧美一区二区| 日韩 亚洲 欧美在线| 街头女战士在线观看网站| 18禁观看日本| 亚洲国产精品专区欧美| 秋霞伦理黄片| 黑人欧美特级aaaaaa片| 黄色一级大片看看| 日韩免费高清中文字幕av| 成年美女黄网站色视频大全免费 | 日韩中字成人| 亚洲国产毛片av蜜桃av| 午夜激情久久久久久久| 午夜福利,免费看| 久久99热这里只频精品6学生| 免费高清在线观看日韩| 国产精品熟女久久久久浪| 精品久久久久久电影网| 91成人精品电影| 七月丁香在线播放| 少妇的逼水好多| xxxhd国产人妻xxx| 免费av不卡在线播放| av不卡在线播放| 三级国产精品欧美在线观看| 人妻系列 视频| 久久精品久久久久久噜噜老黄| 精品亚洲成a人片在线观看| 一本—道久久a久久精品蜜桃钙片| 精品久久久噜噜| av一本久久久久| www.av在线官网国产| 欧美日韩国产mv在线观看视频| 最近中文字幕2019免费版| 男人爽女人下面视频在线观看| 大香蕉久久成人网| 另类精品久久| 日本午夜av视频| 精品亚洲成国产av| 一边亲一边摸免费视频| 日本黄色日本黄色录像| av卡一久久| 国产免费福利视频在线观看| 99热这里只有是精品在线观看| 亚洲欧洲国产日韩| 精品视频人人做人人爽| 搡老乐熟女国产| 久久久国产精品麻豆| 最近手机中文字幕大全| 蜜臀久久99精品久久宅男| 精品99又大又爽又粗少妇毛片| 各种免费的搞黄视频| 日韩精品免费视频一区二区三区 | 欧美bdsm另类| 乱人伦中国视频| 国产成人免费观看mmmm| av视频免费观看在线观看| 黄片播放在线免费| 国产白丝娇喘喷水9色精品| 亚洲精品日本国产第一区| 91aial.com中文字幕在线观看| av在线app专区| 国产男女内射视频| 亚洲,欧美,日韩| 性色avwww在线观看| 亚洲av国产av综合av卡| 黑人巨大精品欧美一区二区蜜桃 | 51国产日韩欧美| 最新中文字幕久久久久| h视频一区二区三区| 久久综合国产亚洲精品| 一级毛片黄色毛片免费观看视频| 国产精品国产三级国产专区5o| 极品人妻少妇av视频| 男人添女人高潮全过程视频| 青青草视频在线视频观看| 熟女电影av网| 久久精品久久久久久久性| 亚洲综合色惰| 赤兔流量卡办理| 美女福利国产在线| 永久免费av网站大全| 亚洲精品国产av成人精品| 精品国产露脸久久av麻豆| 国产黄片视频在线免费观看| 岛国毛片在线播放| 美女福利国产在线| 看免费成人av毛片| xxxhd国产人妻xxx| 国产精品久久久久成人av| 在线亚洲精品国产二区图片欧美 | 亚洲情色 制服丝袜| 日韩在线高清观看一区二区三区| 91久久精品国产一区二区三区| 涩涩av久久男人的天堂| 亚洲欧美一区二区三区黑人 | 国产亚洲av片在线观看秒播厂| 久久热精品热| 午夜激情av网站| 精品国产露脸久久av麻豆| 91精品伊人久久大香线蕉| 亚洲成色77777| av在线播放精品| 色94色欧美一区二区| 久久青草综合色| 国产毛片在线视频| 久久ye,这里只有精品| 国产午夜精品一二区理论片| 中文字幕最新亚洲高清| 80岁老熟妇乱子伦牲交| 久久ye,这里只有精品| 两个人免费观看高清视频| 午夜久久久在线观看| 亚洲精品久久成人aⅴ小说 | 久久久久久久久久久丰满| a级毛片免费高清观看在线播放| 夫妻性生交免费视频一级片| 建设人人有责人人尽责人人享有的| 人人妻人人澡人人看| 免费人成在线观看视频色| 国产免费视频播放在线视频| 边亲边吃奶的免费视频| 亚洲美女搞黄在线观看| 制服人妻中文乱码| 精品国产一区二区三区久久久樱花| 最近2019中文字幕mv第一页| 国产一区二区在线观看av| 秋霞伦理黄片| 国产免费一区二区三区四区乱码| a级毛片在线看网站| 亚洲人成网站在线播| a级毛片免费高清观看在线播放| 99精国产麻豆久久婷婷| 国产日韩欧美视频二区| 色婷婷av一区二区三区视频| 另类亚洲欧美激情| videossex国产| 国产午夜精品久久久久久一区二区三区| 国产日韩欧美在线精品| 免费观看性生交大片5| 22中文网久久字幕| 99久久人妻综合| 国产精品女同一区二区软件| 国产成人精品无人区| 晚上一个人看的免费电影| 精品久久国产蜜桃| 精品国产一区二区三区久久久樱花| 亚洲精品成人av观看孕妇| 97超视频在线观看视频| 岛国毛片在线播放| 少妇熟女欧美另类| 精品午夜福利在线看| 精品酒店卫生间| 99热6这里只有精品| 日韩中文字幕视频在线看片| 欧美激情国产日韩精品一区| a 毛片基地| 日韩不卡一区二区三区视频在线| 熟女av电影| 午夜福利影视在线免费观看| 亚洲美女黄色视频免费看| 欧美精品高潮呻吟av久久| 精品少妇久久久久久888优播| 高清黄色对白视频在线免费看| 晚上一个人看的免费电影| 91久久精品国产一区二区三区| 国产精品久久久久久久电影| 国产欧美日韩一区二区三区在线 | 亚洲成色77777| 免费看av在线观看网站| 国产精品欧美亚洲77777| 国产精品一区二区在线观看99| 久久精品夜色国产| 国产一区亚洲一区在线观看| 国产免费现黄频在线看|