• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Face image retrieval based on shape and texture feature fusion

    2018-01-08 05:10:03ZongguangLuJingYangandQingshanLiu
    Computational Visual Media 2017年4期

    Zongguang LuJing Yang,and Qingshan Liu

    ?The Author(s)2017.This article is published with open access at Springerlink.com

    Face image retrieval based on shape and texture feature fusion

    Zongguang Lu1Jing Yang1,and Qingshan Liu1

    ?The Author(s)2017.This article is published with open access at Springerlink.com

    Humongous amounts of data bring various challenges to face image retrieval.This paper proposes an efficient method to solve those problems.Firstly,we use accurate facial landmark locations as shape features.Secondly,we utilise shape priors to provide discriminative texture features for convolutional neural networks.These shape and texture features are fused to make the learned representation more robust.Finally,in order to increase efficiency,a coarse-tofine search mechanism is exploited to efficiently find similar objects.Extensive experiments on the CASIAWebFace,MSRA-CFW,and LFW datasets illustrate the superiority of our method.

    face retrieval; convolutional neural networks(CNNs);coarse-to- fine

    1 Introduction

    One of the first visual patterns an infant learns to recognize is the face.The face provides a natural means for people to recognize each other. For this and several other reasons,face recognition and retrieval have been problems of prime interest in the fields of computer vision,biometrics,pattern recognition,and machine learning for decades.The face has been very successful used in biometrics due to its unobtrusive nature and ease of use;it is suited to both overt and covert applications.Along with advances in face analysis technology,face recognition,expression recognition,attribute analysis,and other applications have come tothe fore. Also,content-based image information retrieval technology has gradually matured,and major search engines now offer asearch by imagefunction.Progress in face recognition and context based information retrieval technology have made automatic similar face retrieval possible.Similar face retrieval has high application value in the fields of entertainment search,criminal surveillance,and so on.Figure 1 illustrates large-scale face retrieval in the field of prevention of terrorist crimes.

    As a specific application of image retrieval,face retrieval has the same research characteristics.Unlike face recognition and face identification,the aim of face retrieval is to search for all the face images similar to an input image in a given face image database,and to sort the results by similarity.Existing face retrieval methods are usually designed to compute geometric properties and relationships between significant local features,such as the eyes,nose,and mouth[1,2].Bach et al.[3]manually annotated images of faces and used artificial features extracted from the annotated regions for face matching,thus providing a semiautomatic face retrieval system.Eickeler[4]applied the pseudo 2D hidden Markov model method for the first time in a face retrieval system,achieving good results.Gudivada and Raghavan[5]borrowed methods from face matching and proposed using features extracted from face matching in a face retrieval system.Wang et al.[6]proposed a multitask learning structure using local binary patterns(LBP)[7]to solve face verification and retrieval problems.

    Fig.1 Example of large-scale face retrieval problem.

    Learning face representations via deep learning has achieved a series of breakthroughs in recent years[8–13]. The idea of mapping a pair of face images to a distance originated in Ref.[14].They trained Siamese networks as a basis for the similarity metric,which is small for positive pairs and large for the negative pairs.This approach requires image pairs as input.

    Very recently,Refs.[12,15]supervised the learning process in CNNs using challenging identification signals(with a softmax loss function),which brings richer identity-related information to deeply learned features.Subsequently,a joint identification–verification supervision signal was adopted in Refs.[10,13],leading to more discriminative representation features.Reference[16]enhanced supervision by adding a fully connected layer and loss functions to each convolutional layer.The advantage of triplet loss has been proved in Refs.[8,9,17].With deep embedding,the distance between an anchor and a positive instance is minimized,while the distance between an anchor and a negative instance is maximized until a preset margin is met.They achieved state-of-the-art performance on the LFW dataset.

    We propose a method for fast large-scale face retrieval using fused shape and texture features to represent a face.Firstly,we use accurate face alignment to gain shape information,inspired by SDM[18]. Secondly,we adopt a modified Google Net[19]to gain texture information about the face. Thirdly,we fuse these two features to represent the face image.Furthermore,we use a coarse-to- fine structure that clusters the dataset into several dense subsets to achieve fast retrieval.We thoroughly evaluate the contributions of each part in this paper and show that it achieves excellent performance on experimental datasets.

    2 Method

    2.1 Overview

    Figure 2 provides an overview of our shape and texture cascade face retrieval approach.Firstly we use SDM to extract face landmarks and a modified GoogleNet to extract face texture information.Secondly we fuse and balance the two features using principal component analysis(PCA).Finally,we search the face dataset using the fused features to get the result.

    2.2 Shape feature representation

    This section describes use of SDM in the context of face alignment.Algorithm 1 shows the main steps of the SDM evaluation procedure.SDM is based on a regress or that starts from a raw initial shape guessx0and progressively re fines this estimate using descent directionsRkand bias termsbk,outputting a final shape estimatexk.The descent directions setRkand bias termsbkhave been learned during training.The training procedure corresponds to minimizing:

    wherex?are the manually annotated face landmarks.Minimizing this corresponds to a linear least squares problem that can be solved in closed-form.

    Fig.2 Proposed large-scale face retrieval approach.

    ?

    2.3 Texture feature representation

    This section explains how we use CNNs modified fromGoogleNet V2[20]to extract the texture features. Convolutional neural networks(CNNs)have played an extremely significant role in computer vision due to the revolutionary improvements they provide over the state of the art in many applications.In the field of face analysis,however,large scale public datasets are extremely scarce.Thus,here we use a face dataset containing 20,000 celebrities,each with 50–1000 images,for a total of about 2,000,000 images taken from the Internet.We combine the state of the art performance of theGoogleNet V2and the accurate and efficient approach of triplet loss[8]to train our face texture extraction model using the above dataset.

    GoogleNet Inception V1is the earliest version ofGoogleNet,appearing in 2014[19].Generally,the most direct way to increase network performance is to increase the depth and width of the network,which means generating a massive number of parameters.However,so many parameters will not only cause over fitting but also increase the computation.Reference [19]believes that the fundamental way to solve these two drawbacks is to convert the connections,even the convolutions,to a sparse set of connections.For non-uniform sparse data,the computational efficiency of computer software and hardware is very poor,so determining an approach that not only keeps the sparsity of the network,but also permits the high computational performance associated with dense matrices,is a key issue. A large number of papers show that the computing performance can be improved by clustering the sparse matrix into dense submatrices.Inspired by those methods,theInceptionmodule was designed to realize the above ideas.

    Figure 3(a)shows the initial version of theInceptionmodule.The different sizes of convolutions mean different sizes of receptive fields; filter concatenation fuses diverse scale features.As the network deepens,the features tend to become more abstract,and the receptive field of each feature involved is also increased.Thus,with an increasing number of layers,the proportion of 3×3 and 5×5 convolutions also increases,resulting in a huge computational load.Inspired by Ref.[21],a 1×1 convolutional kernel is applied to dimensionality reduction.The dimension-reduction form of theInceptionmodule is shown in Fig.3(b).

    Although this network has been proposed,building deeper networks is becoming mainstream,but the computational efficiency reduces as the models enlarge. Hence,Szegedy et al.[20]tried to find a method to expand the network while avoiding increased computational requirements.GoogleNet V2was proposed in 2015,which,compared withV1,is an improvement in that it appliesn×1 rather thann×nconvolutional kernels. Because of this scheme,the convolutional neural network can keep a wide range of receptive fields and reduce the number of parameters needed when expanding the network,increasing the computational speed.Figure 4 illustrates the architecture of theInceptionmodule ofGoogleNet V2.Here,n=7 for the 17×17 grid.In virtue of its high performance and lightweight model,we choose it as the basic network used to extract face texture features.

    Fig.3 GoogleNet Inception V1.

    As an improvement,we adopt atriplet-based lossto learn a face embedding when we train the GoogleNet.The triplet-loss acts,in brief,such that when we compare a pair of two alike faces(a,b)and a third differing facec,the aim is to ensure thatais more similar tobthanc,unlike traditional metric learning approaches.

    The outputof the GoogleNet,pretrained,isl2-normalised and mapped to anL?Ddimensional space using an affine projectionxt=whereThere are two key differences compared to use of a linear predictor: firstly,is not equal to the number of class identities,but it is the size of the descriptor embedding;secondly,the projectionis trained to minimise the empirical triplet loss:

    whereα≥0 is a fixed scalar representing a learningmarginandTis a set oftraining triplets.Here we do not learn the bias,unlike in the previous function.A triplet(a,p,n)is composed of an anchor facea,and furthermore a positivep/=a,and negativensample of the anchor’s identity.

    Fig.4 Inception module after factorization of n×n convolutions.

    We obtain our texture feature representation by training using a face dataset that contains 2,000,000 images;the model size is 58.7 MB.

    2.4 Fast face retrieval via coarse-to- fine procedure

    This section explains we achieve fast face retrieval for large-scale databases,using two main steps.The first fuses face shape and texture features.The above two features are 132 and 256 dimensional vectors respectively.We apply PCA to reduce the combined features to a final fused feature vector of 128 dimensions.All face data is used in this operation.The second step clusters the combined feature vectors for each dataset into several dense subclusters.We determine the number of clusters according to the number of images in each dataset.Our experiments show that about 100,000 images per cluster give the best balance between speed and precision of retrieval.Therefore,we choose 5 and 2 clusters respectively for theCASIA-WebFace[22](abbreviated as CASIA in the following)andMRSA-CFW[23](abbreviated as CFW)datasets.

    3 Results and discussion

    3.1 Experimental data

    As Table 1 shows,we have performed experiments on three datasets.As most identities contain only one image in LFW[24],we conduct face verification on this dataset to demonstrate the excellent selectivity of our face feature representation.The other two datasets are used for face retrieval.Figure 5 shows some examples of face images in these three face datasets.All face images from CASIA are cropped to a uniform size but we use the original images from CFW.Thus,CASIA only contains face images while CFW includes many busts and full-body pictures.

    Table 1 Datasets used in experiments

    Fig.5 Example of face images from the three face datasets.

    3.2 Evaluation

    We now explain how we carried out the experiments.Because both CASIA and CFW were collected for training face recognition tasks,and do not give a standard test set for face retrieval,we therefore manually selected a test sample for each identity in both datasets.Extensive experiments on the LFW dataset were used to evaluate the performance of the features extracted by our method.

    As there is no benchmark for face image retrieval using CASIA and CFW,in the following evaluations,we selected 10,575 representative face images using each identity in CASIA as its test set,and used the same method to set up a test set for CFW with 1583 representative face images.Following standard image retrieval experimental practice,we use top-1 and top-5 retrieval precisions as our performance metric.Top-1 and top-5 precisions are calculated using:

    wherenrepresents the number of representative face images in the test set,andC(Xi,Yi)compares the ground truthXiand the retrieval resultYi.In top-1 retrieval mode,Yicontains just the most similar retrieval result,and ifXi=Yi,C(Xi,Yi)=1,otherwiseC(Xi,Yi)=0.In top-5 retrieval mode,Yicontains the five most similar retrieval results,and as long as one of the five results is equal to the ground truth,C(Xi,Yi)=1,otherwiseC(Xi,Yi)=0.

    3.2.1Face retrieval evaluation

    As Table 1 shows,CASIA contains 494,414 face images with 10,575 identities while CFW contains 202,792 face images with 1583 identities.Here we conduct two kinds of experiments.The first strategy performs face retrieval by directly calculating the Euclidean distance between the test image and all images in the test database(thelinear scan approach).Sorting the distances gives the top-1 and top-5 retrieval results.We also use a coarse-to- fine strategy(thecoarse-to- fine approach).Firstly,we adoptk-means to cluster the database image features intokdense subsets(k=5 andk=2 respectively for CASIA and CFW).Secondly,we find the nearest subset to the test image.Finally,we search this closest subset for the final top-1 and top-5 results.Our retrieval results are shown in Table 2.For the CASIA dataset we find that our features give excellent performance,achieving 96.62%and 99.34%precisions in top-1 and top-5 modes respectively using linear scan to find the top-kface images.However,the linear scan method is time consuming.The average search time per probe face is nearly 3s,which is unacceptable.Therefore,we use a coarseto- fine structure to speed up the retrieval.It takes about 0.3s to produce retrieval results per probe image.The retrieval speed increased by 8–9 times,at a cost of precision decrease by approximately 2%.We also achieve outstanding performance on CFW,the retrieval precisions in top-1 and top-5modes using linear scan being 98.61%and 99.30%respectively.As the dataset is much smaller than CASIA,the retrieval time is only about 0.5s.When we applied the coarse-to- fine procedure to the retrieval,the results were quite different from those expected.In top-1 mode,the time cost of each retrieval did not reduce,but increased.This experiment illustrates that if the dataset is not large,the coarse-to- fine operation does not reduce the retrieval time,but increases the complexity of the search.

    Table 2 Face retrieval results for CASIA and CFW;retrieval time is the average search time per probe face

    In order to prove that the fusing features gives better retrieval results,we performed comparative experiments on both CASIA and CFW with fused features,and only texture feature.Table 3 shows the retrieval results,which con firm our expectations.For CASIA,using only texture features,top-1 and top-5 retrieval accuracies decreased by 8%and 5%.The reduction for CFW is more severe,top-1 and top-5 retrieval accuracies being reduced by 17%and 11%respectively.The differences between the two databases led to these quite different accuracy reductions:all face images of CASIA are cropped to uniform size but CFW still contains the original images.As expected,the facial shape information indeed contributes to the good performance.

    We demonstrate some results using real examples.Figures 6 and 7 show top-10 results for CASIA and CFW retrieved by the coarse-to- fine method.All retrieval experiments were carried out on a desktop computer with an Intel i7-2600 CPU and 24GB RAM.

    3.2.2Face verification evaluation

    We conducted a face verification evaluation using the LFW dataset,which is the standard test set for face verification in an unconstrained environment.

    Table 3 Face retrieval results for different kinds of features

    Fig.6 Top-10 retrieval results for five probes using CASIA.

    Fig.7 Top-10 retrieval results for five probes using CFW.

    We report mean face verification accuracy and the receiver operating characteristic(ROC)curve on the6000 given face pairs in LFW.We rely on a huge outside dataset for training our face representation model,like all recent high performance face representation methods[12,15,25–34].We compared our method with these methods which all used unrestricted,labeled outside data for training. Furthermore,we used SVM to learn a threshold to verify whether two faces have the same identity or not.In this way,we achieved 97.68%face verification accuracy.We also only used texture features to conduct a face verification evaluation,and achieved 96.70%face verification accuracy,once again proving the advantages of our fused features.The comparison of accuracy and ROC curves to previous state-of-the-art methods using LFW are shown in Table 4 and Fig.8,respectively.We achieve outstanding results that demonstrate the excellence of our face representation model.

    4 Conclusions

    Fig.8 ROC comparison with previous best methods using LFW.

    We have designed a face image retrieval method with a novel fused face shape and texture feature representation that exploits specific facial attributes to achieve both scalability and outstanding retrieval performance,as shown by experiments with CASIA and CFW datasets.Extensive experiments on the LFW dataset demonstrate the excellence of our face representation model.In our retrieval experiments,the scale of the test database is still small.In future we plan to set up a larger face retrieval test set with millions of face images and perform experiments on it.We will improve our method and apply it in a system for similar face retrieval.

    [1]Chan,C.H.;Tahir,M.A.;Kittler,J.;Pietikainen,M.Multiscale local phase quantization for robust component-based face recognition using kernel fusion of multiple descriptors.IEEE Transactions on Pattern Analysis and Machine IntelligenceVol.35,No.5,1164–1177,2013.

    Table 4 Accuracy comparison with previous best methods using LFW

    [2]Wu,Z.;Ke,Q.;Sun,J.;Shum,H.-Y.Scalable face image retrieval with identity-based quantization and multireference reranking.IEEE Transactions on Pattern Analysis and Machine IntelligenceVol.33,No.10,1991–2001,2011.

    [3]Bach,J.R.;Paul,S.;Jain,R.A visual information management system for the interactive retrieval of faces.IEEE Transactions on Knowledge and Data EngineeringVol.5,No.4,619–628,1993.

    [4]Eickeler,S.Face database retrieval using pseudo 2D hidden Markov models.In:Proceedings of the 5th IEEE International Conference on Automatic Face Gesture Recognition,58–63,2002.

    [5]Gudivada,V.N.;Raghavan,V.V.Modeling and retrieving images by content.Information Processing&ManagementVol.33,No.4,427–452,1997.

    [6]Wang,X.;Zhang,C.;Zhang,Z.Boosted multitask learning for face verification with applications to web image and video search.In:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,142–149,2009.

    [7]Ojala, T.; Pietikainen, M.; Maenpaa, T.Multiresolution gray-scale and rotation invariant texture classification with local binary patterns.IEEE Transactions on Pattern Analysis and Machine IntelligenceVol.24,No.7,971–987,2002.

    [8]Parkhi,O.M.;Vedaldi,A.;Zisserman,A.Deep face recognition.In: Proceedings of the British Machine Vision Conference, 2015.Available at http://www.bmva.org/bmvc/2015/papers/paper041/abstract041.pdf.

    [9]Schroff,F.;Kalenichenko,D.;Philbin,J.FaceNET:A uni fied embedding for face recognition and clustering.In:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,815–823,2015.

    [10]Sun,Y.;Chen,Y.;Wang,X.;Tang,X.Deep learning face representation by joint identification-verification.In:Proceedings of the Advances in Neural Information Processing Systems 27,1988–1996,2014.

    [11]Sun,Y.;Wang,X.;Tang,X.Hybrid deep learning for face verification.IEEE Transactions on Pattern Analysis and Machine IntelligenceVol.38,No.10,1997–2009,2016.

    [12]Taigman,Y.;Yang,M.; Ranzato,M.; Wolf,L.DeepFace: Closing the gap to human-level performance in face verification.In:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,1701–1708,2014.

    [13]Wen,Y.;Li,Z.;Qiao,Y.Latent factor guided convolutional neural networks for age-invariant face recognition.In:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,4893–4901,2016.

    [14]Chopra,S.;Hadsell,R.;Lecun,Y.Learning a similarity metric discriminatively,with application to face verification.In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,Vol.1,539–546,2005.

    [15]Sun,Y.;Wang,X.;Tang,X.Deep learning face representation from predicting 10,000 classes.In:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,1891–1898,2014.

    [16]Sun,Y.;Wang,X.;Tang,X.Deeply learned face representations are sparse,selective,and robust.In:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2892–2900,2015.

    [17]Liu,J.;Deng,Y.;Bai,T.;Wei,Z.;Huang,C.Targeting ultimate accuracy: Face recognition via deep embedding.arXiv preprintarXiv:1506.07310,2015.

    [18]Xiong,X.;la Torre,F.D.Supervised descent method and its applications to face alignment.In:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,532–539,2013.

    [19]Szegedy,C.;Liu,W.;Jia,Y.;Sermanet,P.;Reed,S.;Anguelov,D.;Erhan,D.;Vanhoucke,V.;Rabinovich,A.Going deeper with convolutions.In:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,1–9,2015.

    [20]Szegedy,C.;Vanhoucke,V.;Ioffe,S.;Shlens,J.;Wojna,Z.Rethinking the inception architecture for computer vision.In: Proceedings ofthe IEEE Conference on Computer Vision and Pattern Recognition,2818–2826,2016.

    [21]Lin,M.;Chen,Q.;Yan,S.Network in network.arXiv preprintarXiv:1312.4400,2013.

    [22]Yi,D.;Lei,Z.;Liao,S.;Li,S.Z.Learning face representation from scratch.arXivpreprintarXiv:1411.7923,2014.

    [23]MSRA-CFW:Data set of celebrity faces on the web.Available at https://www.microsoft.com/en-us/research/project/msra-cfw-data-set-of-celebrity-faceson-the-web/.

    [24]Huang,G.B.;Mattar,M.;Berg,T.;Learned-Miller,E.Labeled faces in the wild:A database for studying face recognition in unconstrained environments.In:Proceedings of the Workshop on Faces in “Real-Life”Images:Detection,Alignment,and Recognition,2008.

    [25]Cao,Z.;Yin,Q.;Tang,X.;Sun,J.Face recognition with learning-based descriptor.In:Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2707–2714,2010.

    [26]Kumar,N.;Berg,A.C.;Belhumeur,P.N.;Nayar,S.K.Attribute and simile classifiers for face verification.In: Proceedings of the IEEE 12th International Conference on Computer Vision,365–372,2009.

    [27]Yin,Q.;Tang,X.;Sun,J.An associate-predict model for face recognition.In:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,497–504,2011.

    [28]Taigman,Y.;Wolf,L.Leveraging billions of faces to overcome performance barriers in unconstrained face recognition.arXiv preprintarXiv:1108.1122,2011.

    [29]Chen,D.;Cao,X.;Wang,L.;Wen,F.;Sun,J.Bayesian face revisited: A joint formulation.In:Computer Vision–ECCV 2012.Fitzgibbon,A.;Lazebnik,S.;Perona,P.;Sato,Y.;Schmid,C.Eds.Springer Berlin Heidelberg,566–579,2012.

    [30]Berg,T.;Belhumeur,P.N.POOF:Part-based onevs.-one features for fine-grained categorization,face verification,and attribute estimation.In:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,955–962,2013.

    [31]Berg, T.; Belhumeur, P. N. Tom-vs-Pete classifiers and identity-preserving alignment for face verification.In: Proceedings of the British Machine Vision Conference, 2012.Available at http://www.bmva.org/bmvc/2012/BMVC/paper129/paper129.pdf.

    [32]Chen,D.;Cao,X.;Wen,F.;Sun,J.Blessing of dimensionality: High-dimensional feature and its efficient compression for face verification.In:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,3025–3032,2013.

    [33]Cao,X.;Wipf,D.;Wen,F.;Duan,G.;Sun,J.A practical transfer learning algorithm for face verification.In:Proceedings of the IEEE International Conference on Computer Vision,3208–3215,2013.

    [34]Zhu,Z.;Luo,P.;Wang,X.;Tang,X.Recover canonical-view faces in the wild with deep neural networks.arXiv preprintarXiv:1404.3543,2014.

    [35]TCIT.Available at http://www.tcit-us.com/.

    [36]INSKY.Available at http://www.insky.so/.

    [37]DaHua-FaceImage. Available at http://www.dahuatech.com/.

    1School of Information and Control Engineering,Nanjing University of Information Science and Technology,China.E-mail:Z.Lu,zongguanglu@nuist.edu.cnJ.Yang,nuistyj@126.com;Q.Liu,qsliu@nuist.edu.cn.

    2017-02-27;accepted:2017-05-26

    ZongguangLureceived his B.E.degree in information engineering(system engineering) from Nanjing University of Information Science and Technology,Nanjing,China,in 2015.Since2015,he has been a master student in the School of Information and Control Engineering at Nanjing University of Information Science and Technology,Nanjing,China.His research interests include pattern recognition,face analysis,and computer vision.

    Jing Yanghas been a master student in the School of Information and Control Engineering at Nanjing University of Information Science and Technology since September 2014.She received her bachelor degree in system engineering from Nanjing University of Information Science and Technology in June 2014.Her research interests include machine learning and computer vision.

    QingshanLiuis a professor in the School of Information and Control Engineering at Nanjing University of Information Science and Technology,Nanjing,China.He received his Ph.D.degree from the National Laboratory of Pattern Recognition,Chinese Academy of Sciences,Beijing,China,in 2003,and his M.S.degree from the Department of Auto Control at Southeast University,Nanjing,China,in 2000.He was an assistant research professor in the Department of Computer Science,Computational Biomedicine Imaging and Modeling Center,Rutgers,the State University of New Jersey,from 2010 to 2011.Before that,he was an associate professor in the National Laboratory of Pattern Recognition,Chinese Academy of Sciences,and an associate researcher in the Multi-media Laboratory,Chinese University of Hong Kong,in 2004–2005.He was a recipient of the President’s Scholarship of the Chinese Academy of Sciences in 2003.His current research interests are image and vision analysis,including face image analysis,graph and hypergraph-based image and video understanding,medical image analysis,and event-based video analysis.

    Open AccessThe articles published in this journal are distributed under the terms of the Creative Commons Attribution 4.0 International License(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,distribution,and reproduction in any medium,provided you give appropriate credit to the original author(s)and the source,provide a link to the Creative Commons license,and indicate if changes were made.

    Other papers from this open access journal are available free of charge from http://www.springer.com/journal/41095.To submit a manuscript,please go to https://www.editorialmanager.com/cvmj.

    国产黄色免费在线视频| 777米奇影视久久| 国国产精品蜜臀av免费| 午夜老司机福利剧场| 如何舔出高潮| 日韩,欧美,国产一区二区三区| 麻豆久久精品国产亚洲av| 日韩不卡一区二区三区视频在线| 久久韩国三级中文字幕| 成人二区视频| 欧美潮喷喷水| 国产高潮美女av| 菩萨蛮人人尽说江南好唐韦庄| 嫩草影院新地址| 三级国产精品片| 国产一区有黄有色的免费视频 | 国产午夜精品久久久久久一区二区三区| 中文精品一卡2卡3卡4更新| 嫩草影院入口| 天堂影院成人在线观看| 日本免费在线观看一区| 免费av毛片视频| 日日摸夜夜添夜夜爱| 日本黄色片子视频| 内射极品少妇av片p| 国产精品国产三级专区第一集| 久久久久久久久久黄片| 最近手机中文字幕大全| 久久精品国产鲁丝片午夜精品| 九草在线视频观看| 91aial.com中文字幕在线观看| 一级毛片电影观看| 精品人妻熟女av久视频| 国产免费又黄又爽又色| 男的添女的下面高潮视频| 欧美精品国产亚洲| 最近2019中文字幕mv第一页| 秋霞伦理黄片| 黄色一级大片看看| 欧美bdsm另类| 国产综合精华液| 国产视频内射| 国产一区二区三区综合在线观看 | 亚洲欧美精品自产自拍| 亚洲一级一片aⅴ在线观看| 欧美成人a在线观看| 欧美 日韩 精品 国产| 欧美激情国产日韩精品一区| 亚洲熟女精品中文字幕| 亚洲av一区综合| 99热这里只有是精品在线观看| 波多野结衣巨乳人妻| 午夜福利网站1000一区二区三区| 国产成人福利小说| 又粗又硬又长又爽又黄的视频| 久久精品久久精品一区二区三区| 国产精品蜜桃在线观看| 精品酒店卫生间| 亚洲乱码一区二区免费版| 久久久精品94久久精品| 熟女人妻精品中文字幕| 免费看不卡的av| 婷婷色麻豆天堂久久| 高清av免费在线| 久久国内精品自在自线图片| 秋霞伦理黄片| 国产精品无大码| 国产高清国产精品国产三级 | 毛片一级片免费看久久久久| 亚洲av电影不卡..在线观看| 老司机影院毛片| 精品国产三级普通话版| 免费观看的影片在线观看| 国产亚洲av片在线观看秒播厂 | 亚洲精品国产成人久久av| 国产精品美女特级片免费视频播放器| 国产亚洲精品av在线| 日产精品乱码卡一卡2卡三| 色哟哟·www| 在线 av 中文字幕| 18+在线观看网站| 午夜福利在线在线| 校园人妻丝袜中文字幕| 精品99又大又爽又粗少妇毛片| 大香蕉久久网| 日日撸夜夜添| 亚洲国产色片| 80岁老熟妇乱子伦牲交| 亚洲精品aⅴ在线观看| 久久久久久久久久黄片| 国产美女午夜福利| 91狼人影院| 自拍偷自拍亚洲精品老妇| 18禁在线播放成人免费| 久久精品久久久久久久性| 国产精品99久久久久久久久| 亚洲美女视频黄频| 99久久精品国产国产毛片| 亚洲成人一二三区av| 麻豆av噜噜一区二区三区| 日本猛色少妇xxxxx猛交久久| 欧美另类一区| 在线观看美女被高潮喷水网站| 久久午夜福利片| 51国产日韩欧美| 99热这里只有精品一区| 久久久欧美国产精品| 国产精品久久久久久久电影| 男女边摸边吃奶| 欧美bdsm另类| 国产精品三级大全| 美女xxoo啪啪120秒动态图| 毛片一级片免费看久久久久| 日韩 亚洲 欧美在线| 精品亚洲乱码少妇综合久久| 久久这里有精品视频免费| 99久久九九国产精品国产免费| 久久久久久久久久人人人人人人| 国产有黄有色有爽视频| 亚洲精品日韩av片在线观看| 午夜福利视频精品| 免费观看精品视频网站| 日日啪夜夜撸| 亚洲国产精品成人综合色| 亚洲不卡免费看| 在线a可以看的网站| 色吧在线观看| 韩国av在线不卡| 日韩国内少妇激情av| 国产真实伦视频高清在线观看| 日日干狠狠操夜夜爽| 久久精品国产亚洲av天美| 全区人妻精品视频| 深爱激情五月婷婷| 极品少妇高潮喷水抽搐| 在线观看av片永久免费下载| 国精品久久久久久国模美| 精品99又大又爽又粗少妇毛片| 欧美区成人在线视频| 五月伊人婷婷丁香| 亚洲精品乱久久久久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 男插女下体视频免费在线播放| 欧美日韩国产mv在线观看视频 | 亚洲第一区二区三区不卡| 中文天堂在线官网| 九九在线视频观看精品| 亚洲精品成人久久久久久| 欧美zozozo另类| 天堂影院成人在线观看| 午夜福利网站1000一区二区三区| 综合色丁香网| 老师上课跳d突然被开到最大视频| 日韩欧美三级三区| 亚洲精品成人av观看孕妇| 亚洲欧美成人精品一区二区| 日韩伦理黄色片| 性插视频无遮挡在线免费观看| 99久久人妻综合| 日本免费在线观看一区| 欧美性感艳星| 免费黄频网站在线观看国产| 两个人的视频大全免费| 日韩av在线大香蕉| 成人美女网站在线观看视频| 22中文网久久字幕| 久久精品久久精品一区二区三区| 免费少妇av软件| 亚洲精品自拍成人| 免费看美女性在线毛片视频| 亚洲精品乱码久久久v下载方式| 最近中文字幕2019免费版| 97超视频在线观看视频| 建设人人有责人人尽责人人享有的 | 欧美日韩精品成人综合77777| 大片免费播放器 马上看| 亚洲久久久久久中文字幕| 最近中文字幕2019免费版| 中文精品一卡2卡3卡4更新| 国产成人aa在线观看| 日韩成人伦理影院| 国产真实伦视频高清在线观看| 国产免费视频播放在线视频 | 亚洲18禁久久av| 午夜激情欧美在线| 白带黄色成豆腐渣| 国产精品三级大全| 一级av片app| 九九在线视频观看精品| 久久综合国产亚洲精品| 国产成人a区在线观看| 国产乱人视频| av国产久精品久网站免费入址| 成人综合一区亚洲| 五月伊人婷婷丁香| 午夜激情欧美在线| 99视频精品全部免费 在线| 成人特级av手机在线观看| 国产精品伦人一区二区| 三级国产精品欧美在线观看| 亚洲国产精品成人综合色| 国产精品麻豆人妻色哟哟久久 | 狠狠精品人妻久久久久久综合| 夜夜看夜夜爽夜夜摸| 国产一区二区亚洲精品在线观看| 高清毛片免费看| 国产精品综合久久久久久久免费| 嫩草影院新地址| 日韩欧美国产在线观看| 久久99精品国语久久久| 美女内射精品一级片tv| 国产又色又爽无遮挡免| 精品一区二区免费观看| 欧美3d第一页| 国产爱豆传媒在线观看| 午夜老司机福利剧场| 少妇的逼水好多| 成人国产麻豆网| 久久久久网色| 黄色配什么色好看| 亚洲av成人av| 亚洲国产成人一精品久久久| 日韩av不卡免费在线播放| 丝袜美腿在线中文| 91精品一卡2卡3卡4卡| 99久久精品热视频| 国产乱来视频区| 成人亚洲精品一区在线观看 | 中文字幕av成人在线电影| 色播亚洲综合网| 一级毛片aaaaaa免费看小| 亚洲熟女精品中文字幕| 久久久久网色| 岛国毛片在线播放| 亚洲自偷自拍三级| 国产黄色视频一区二区在线观看| 99re6热这里在线精品视频| 亚洲怡红院男人天堂| 日本一二三区视频观看| 日韩电影二区| 久久精品夜夜夜夜夜久久蜜豆| 久久午夜福利片| 久久久久久久亚洲中文字幕| 亚洲乱码一区二区免费版| 亚洲国产精品成人综合色| 亚洲在线自拍视频| 午夜福利在线在线| 亚洲国产精品成人综合色| 亚洲国产精品国产精品| 天天躁夜夜躁狠狠久久av| 久久精品夜夜夜夜夜久久蜜豆| 日韩欧美三级三区| 综合色丁香网| 亚洲欧美一区二区三区国产| 国产一级毛片在线| 国产91av在线免费观看| 国产成人a区在线观看| 国产黄片美女视频| 国产精品福利在线免费观看| 亚州av有码| 听说在线观看完整版免费高清| 久久久久九九精品影院| 看黄色毛片网站| 搡女人真爽免费视频火全软件| 亚洲国产色片| 国产精品.久久久| 国产一区亚洲一区在线观看| 女的被弄到高潮叫床怎么办| av.在线天堂| 久久久久久国产a免费观看| 特大巨黑吊av在线直播| 久久久久久九九精品二区国产| 最近中文字幕高清免费大全6| 日本一本二区三区精品| 国产精品福利在线免费观看| 丰满少妇做爰视频| 搞女人的毛片| 在线免费观看的www视频| 久久久久性生活片| 99久久九九国产精品国产免费| 99久久中文字幕三级久久日本| 99热6这里只有精品| 久久久久免费精品人妻一区二区| 亚洲伊人久久精品综合| 天堂俺去俺来也www色官网 | 久久久精品免费免费高清| 插逼视频在线观看| 亚洲欧美成人综合另类久久久| 视频中文字幕在线观看| 天堂俺去俺来也www色官网 | 国产免费一级a男人的天堂| 高清av免费在线| 三级毛片av免费| 国产男女超爽视频在线观看| 久久久午夜欧美精品| 亚洲av一区综合| 久热久热在线精品观看| 久久亚洲国产成人精品v| 只有这里有精品99| 一本久久精品| 看免费成人av毛片| 中国国产av一级| 丝袜喷水一区| 亚洲av日韩在线播放| 久久99热这里只频精品6学生| 午夜免费男女啪啪视频观看| 精品午夜福利在线看| 国产在线一区二区三区精| av免费观看日本| 韩国高清视频一区二区三区| 汤姆久久久久久久影院中文字幕 | 白带黄色成豆腐渣| 一二三四中文在线观看免费高清| 人妻制服诱惑在线中文字幕| 日日干狠狠操夜夜爽| 尾随美女入室| 在线观看美女被高潮喷水网站| 午夜免费男女啪啪视频观看| or卡值多少钱| av专区在线播放| 男人舔女人下体高潮全视频| 丝袜美腿在线中文| 青青草视频在线视频观看| 国产亚洲av嫩草精品影院| 亚洲av成人精品一区久久| 1000部很黄的大片| 九色成人免费人妻av| 国产精品久久久久久久久免| 久久久久久久久久久免费av| 天堂中文最新版在线下载 | 18禁裸乳无遮挡免费网站照片| 免费黄网站久久成人精品| 看免费成人av毛片| 最近最新中文字幕免费大全7| 好男人在线观看高清免费视频| 97超碰精品成人国产| 国产精品国产三级专区第一集| 成人特级av手机在线观看| 欧美丝袜亚洲另类| 看免费成人av毛片| 国产av不卡久久| 狠狠精品人妻久久久久久综合| 纵有疾风起免费观看全集完整版 | 人妻少妇偷人精品九色| 成人高潮视频无遮挡免费网站| 亚洲av免费在线观看| 欧美xxxx性猛交bbbb| 麻豆成人av视频| 欧美日韩精品成人综合77777| 欧美性感艳星| 亚洲av在线观看美女高潮| 亚洲在线自拍视频| 国产麻豆成人av免费视频| 欧美激情国产日韩精品一区| 看非洲黑人一级黄片| 国产亚洲精品久久久com| 免费少妇av软件| 男人舔奶头视频| 免费观看性生交大片5| 一二三四中文在线观看免费高清| 免费观看的影片在线观看| 美女被艹到高潮喷水动态| 成人毛片a级毛片在线播放| 国产一区二区亚洲精品在线观看| 干丝袜人妻中文字幕| 国产一级毛片七仙女欲春2| 五月玫瑰六月丁香| 人妻少妇偷人精品九色| 亚洲精华国产精华液的使用体验| 91久久精品电影网| 男女国产视频网站| 干丝袜人妻中文字幕| 国产在线男女| 亚洲自拍偷在线| 亚洲一级一片aⅴ在线观看| 亚洲av成人av| 亚洲av免费高清在线观看| 国产一区有黄有色的免费视频 | 国产精品久久久久久久电影| 99久久中文字幕三级久久日本| 国产亚洲一区二区精品| 国产精品不卡视频一区二区| 看非洲黑人一级黄片| 午夜老司机福利剧场| 联通29元200g的流量卡| 男女啪啪激烈高潮av片| 69人妻影院| 成人综合一区亚洲| 只有这里有精品99| 99久久精品国产国产毛片| 赤兔流量卡办理| 亚洲国产精品专区欧美| 国产精品女同一区二区软件| 日日啪夜夜撸| 国产精品久久久久久精品电影| 亚洲成人久久爱视频| 久久鲁丝午夜福利片| 亚洲av.av天堂| 免费看av在线观看网站| 伊人久久精品亚洲午夜| 国产不卡一卡二| 丰满少妇做爰视频| 久久亚洲国产成人精品v| 亚洲熟女精品中文字幕| 久久久色成人| 国产成人freesex在线| 99久久精品热视频| 少妇熟女欧美另类| 国产精品一区二区三区四区免费观看| 国产国拍精品亚洲av在线观看| 午夜精品在线福利| 日本熟妇午夜| 欧美日韩在线观看h| 在现免费观看毛片| 国产伦理片在线播放av一区| 我的女老师完整版在线观看| 能在线免费观看的黄片| 在线a可以看的网站| 成人特级av手机在线观看| 欧美成人午夜免费资源| 美女大奶头视频| 欧美 日韩 精品 国产| 亚洲av日韩在线播放| 一级毛片我不卡| 高清视频免费观看一区二区 | 久久久久网色| 欧美+日韩+精品| 嫩草影院精品99| 十八禁国产超污无遮挡网站| 成人国产麻豆网| av免费在线看不卡| 国产美女午夜福利| 国产成人精品久久久久久| 噜噜噜噜噜久久久久久91| 大又大粗又爽又黄少妇毛片口| 又大又黄又爽视频免费| 国产一级毛片在线| 人妻夜夜爽99麻豆av| 精品久久久久久久末码| 午夜视频国产福利| 色吧在线观看| 成人av在线播放网站| 国产熟女欧美一区二区| 亚洲av电影在线观看一区二区三区 | 亚洲成人精品中文字幕电影| 深爱激情五月婷婷| 观看免费一级毛片| 午夜福利网站1000一区二区三区| 国产精品久久久久久久久免| 三级男女做爰猛烈吃奶摸视频| 99九九线精品视频在线观看视频| 狠狠精品人妻久久久久久综合| 国产 一区精品| 成人鲁丝片一二三区免费| 2022亚洲国产成人精品| 亚洲国产成人一精品久久久| 亚州av有码| 亚洲人成网站在线观看播放| 亚洲精品久久午夜乱码| 三级男女做爰猛烈吃奶摸视频| 日韩亚洲欧美综合| 久久99蜜桃精品久久| a级毛片免费高清观看在线播放| 欧美日韩在线观看h| 欧美zozozo另类| 免费av观看视频| 国产男人的电影天堂91| 免费黄网站久久成人精品| 热99在线观看视频| 特大巨黑吊av在线直播| 26uuu在线亚洲综合色| 婷婷色av中文字幕| 97人妻精品一区二区三区麻豆| 成人无遮挡网站| 国产高清不卡午夜福利| 一二三四中文在线观看免费高清| 岛国毛片在线播放| 最近视频中文字幕2019在线8| 国产日韩欧美在线精品| 日韩精品青青久久久久久| av女优亚洲男人天堂| 成年女人看的毛片在线观看| 免费观看性生交大片5| 国产亚洲精品av在线| 观看美女的网站| 欧美最新免费一区二区三区| 乱系列少妇在线播放| 亚洲激情五月婷婷啪啪| 熟妇人妻不卡中文字幕| 又粗又硬又长又爽又黄的视频| 国产色婷婷99| 视频中文字幕在线观看| av.在线天堂| 久久国内精品自在自线图片| 精品人妻偷拍中文字幕| 国产乱来视频区| 亚洲成人中文字幕在线播放| 天堂网av新在线| 舔av片在线| 一个人看视频在线观看www免费| 插阴视频在线观看视频| 婷婷色麻豆天堂久久| 久久人人爽人人片av| 久久久久精品久久久久真实原创| 免费观看精品视频网站| 久久精品综合一区二区三区| 免费无遮挡裸体视频| av女优亚洲男人天堂| 麻豆久久精品国产亚洲av| 国产美女午夜福利| 久久精品久久久久久噜噜老黄| 丝瓜视频免费看黄片| 亚洲欧洲日产国产| 看十八女毛片水多多多| 色播亚洲综合网| 麻豆久久精品国产亚洲av| 男人狂女人下面高潮的视频| 亚洲精品乱久久久久久| 日韩一区二区视频免费看| 久久6这里有精品| 午夜福利网站1000一区二区三区| 一级黄片播放器| 国产精品av视频在线免费观看| 中文字幕久久专区| 嫩草影院精品99| 国产老妇女一区| 国产中年淑女户外野战色| 亚洲精品,欧美精品| 中文在线观看免费www的网站| 国产精品爽爽va在线观看网站| 欧美人与善性xxx| 高清欧美精品videossex| 亚洲真实伦在线观看| 一级av片app| 777米奇影视久久| 久久鲁丝午夜福利片| 国产片特级美女逼逼视频| 国产黄色免费在线视频| av黄色大香蕉| 搡老乐熟女国产| 国产一区二区三区综合在线观看 | 亚洲真实伦在线观看| 尤物成人国产欧美一区二区三区| 午夜福利高清视频| 秋霞在线观看毛片| 亚洲精品视频女| 嘟嘟电影网在线观看| 777米奇影视久久| 久久久久国产网址| 91精品伊人久久大香线蕉| av网站免费在线观看视频 | 免费观看在线日韩| 亚洲精品中文字幕在线视频 | 好男人视频免费观看在线| 亚洲精品亚洲一区二区| 伊人久久国产一区二区| 我的女老师完整版在线观看| 欧美变态另类bdsm刘玥| 亚洲婷婷狠狠爱综合网| 日产精品乱码卡一卡2卡三| 狠狠精品人妻久久久久久综合| 久久久久久国产a免费观看| 久久久久久久久久久免费av| 亚洲最大成人手机在线| 少妇被粗大猛烈的视频| 日韩电影二区| 一个人免费在线观看电影| 大话2 男鬼变身卡| 熟妇人妻不卡中文字幕| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 好男人在线观看高清免费视频| 亚洲精品成人久久久久久| 99久久精品一区二区三区| 久久97久久精品| 天天躁夜夜躁狠狠久久av| 极品少妇高潮喷水抽搐| 亚洲熟妇中文字幕五十中出| 精品酒店卫生间| 三级毛片av免费| 美女黄网站色视频| 国产在线男女| 18禁裸乳无遮挡免费网站照片| 亚洲熟女精品中文字幕| 可以在线观看毛片的网站| 综合色丁香网| 久久热精品热| 老师上课跳d突然被开到最大视频| 亚洲国产欧美人成| 熟女电影av网| 特大巨黑吊av在线直播| 亚洲精品色激情综合| 看免费成人av毛片| 国产中年淑女户外野战色| 久久久久久久久久黄片| 日日摸夜夜添夜夜添av毛片| 在线 av 中文字幕| 草草在线视频免费看| 亚洲精品一二三| 欧美成人a在线观看| 黄片无遮挡物在线观看| 亚洲在线自拍视频| 尤物成人国产欧美一区二区三区| 日本猛色少妇xxxxx猛交久久| 国产老妇女一区| 晚上一个人看的免费电影| 久久久精品94久久精品| 国产毛片a区久久久久| 国产乱来视频区| 国产国拍精品亚洲av在线观看| 搞女人的毛片| 最近的中文字幕免费完整| 国产精品国产三级国产av玫瑰| 久久久欧美国产精品| 99久国产av精品国产电影| 国产伦精品一区二区三区视频9|